Nadia El-Mabrouk

Maxime Crochemore

Boyer-Moore strategy to e cient approximate string matching

We propose a simple but e cient algorithm for searching all occurrences of a pattern or a class of patterns (length m) in a text (length n) with at most k mismatches. This algorithm relies on the Shift-Add algorithm of Baeza-Yates and Gonnet 6], which involves representing by a bit number the current state of the search and uses the ability of programming languages to handle bit words. State representation should not, therefore, exceeds the word size !, that is, m(dlog 2 (k + 1)e + 1) !. This algorithm consists in a preprocessing step and a searching step. It is linear and performs 3n operations during the searching step. Notions of shift and character skip found in the Boyer-Moore (BM) 9] approach, are introduced in this algorithm. Provided that the considered alphabet is large enough (compared to the Pattern length), the average number of operations performed by our algorithm during the searching step becomes n(2 + k+4 m k).

Introduction

Our purpose is approximate matching of a pattern or a class of patterns in a text, all sequences of characters or classes of characters from a nite alphabet . Errors considered here are mismatches. A class of patterns, is a set of patterns with don't care symbols, patterns containing the complementary of a character or any other class of characters. Such a problem has a lot of applications, in particular in molecular biology for predicting potential nuclear gene-coding sequences in genomic DNA sequences. In fact, exact string matching is not su cient since gene-coding sequences are in general only partially and approximately speci ed.

Concerning exact string matching, algorithms based on the Boyer-Moore (BM) [START_REF] Boyer | A fast string searching algorithm[END_REF][START_REF] Knuth | Fast pattern matching in strings[END_REF] approach are the fastest in practice. Such algorithms are linear and may even have a sublinear behaviour, in the sense that every character in the text need not be checked. In certain cases, text characters can be \skipped" without missing a pattern occurrence. The larger the alphabet and the longer the pattern, the faster the algorithm works.

Various algorithms have been developed for searching with k mismatches all occurrences of a pattern (length m) in a text (length n), both de ned over an alphabet (length c). Running times have ranged from O(mn) for the naive algorithm, to O(kn) [START_REF] Landau | E cient string matching with k mismatches[END_REF][START_REF] Galil | Improved string matching with k mismatches[END_REF] or O(n log m) 12]. The rst two algorithms consist in a preprocessing step and a searching step. Grossi and Luccio algorithm 12] uses the su x tree. Other algorithms have used the BM approach in approximate string matching [START_REF] Baeza-Yates | Fast string matching with k mismatches[END_REF][START_REF] Tarhio | Boyer-moore approach to approximate string matching[END_REF]. Running times are O(kn) for Baeza-Yates and Gonnet 4] and O(kn(1 m k + k c)) for Tarhio and Ukkonen 18]. The problem of approximate matching of a class of patterns was also studied 2, 1, 5], especially in the case of patterns with don't care symbols [START_REF] Fischer | String-matching and other products[END_REF][START_REF] Pinter | E cient string matching whith don't-care patterns[END_REF][START_REF] Manber | An algorithm for string matching with a sequence of don't cares[END_REF][START_REF] Akutsu | Approximate string matching with don't care characters[END_REF][START_REF] Bertossiand | Parallel string matching with variable length don't cares[END_REF][START_REF] Kucherov | Matching a set of strings with variable length don't cares[END_REF]. Fisher et Paterson 10] developed an O(n log c log 2 m log log m) time algorithm based on the linear product. Abrahamson 1] extended this method for generalized string pattern. Pinter 17] has used the Aho and Corasick automaton 2] for searching a set of patterns. Other algorithms have considered the problem of exact matching of patterns with variable length don't cares [START_REF] Manber | An algorithm for string matching with a sequence of don't cares[END_REF][START_REF] Bertossiand | Parallel string matching with variable length don't cares[END_REF][START_REF] Kucherov | Matching a set of strings with variable length don't cares[END_REF]. As for Akutsu 3], he developed an O(p km n log c log 2 m k log log m k) time algorithm for searching a pattern with don't cares in a text with don't cares.

In 1992, several new algorithms for approximate string matching were published [START_REF] Baeza-Yates | A new approach to text searching[END_REF][START_REF] Wu | Fast text searching allowing errors[END_REF][START_REF] Baeza-Yates | Fast and practical approximate string matching[END_REF]. They combine both speed and programming practicality, in contrast with older results, most of which being mainly of theoretical interest. Moreover, they are exible enough to allow searching for a class of patterns. These algorithms consist in a pattern preprocessing step and a searching step. They are all based on the same approach, consisting in nding, at a given position in the text, all approximate pattern pre xes ending at this position. Speed is increased by representing the state of the search as a bit number 6, 19] or an array 7], and by using the ability of programming languages to handle bit words.

Nevertheless, these algorithms are based on a naive approach and process each character of the text. Our goal is to speed up searching by using a BM strategy and including notions of shift and character skip.

We have chosen to consider such an improvement in the case of the Shift-Add algorithm of Baeza-Yates and Gonnet 6]. The main idea of Shift-Add is to represent the state of the search as a bit number, and perform a few simple arithmetic and logical operations. Provided that representations don't exceed the word size !, that is m(dlog 2 (k + 1)e + 1) !, each search step does exactly a shift, a test and an addition. Therefore, this algorithm runs in O(n) time and the searching step does 3n operations. We developed an algorithm combining the practicality of the Shift-Add method and the speed of the BM approach. Provided that the considered alphabet is large enough compared to m, our new algorithm performs on average n 2 + k+4 m k operations during the searching step.

The paper is organized as follows. Section 2 summarises the algorithm Shift-Add, in the case of exact or approximate matching of a pattern or a class of patterns. Section 3 develops the adaptation of the BM approach to the Shift-Add method. An improvement of this last algorithm is given in Section 4. Finally, section 5 gives experimental results obtained with both algorithms.

2 Shift-Add Algorithm Let P = p 1 p m be a pattern and t = t 1 t n be a text over a nite alphabet . The problem is to nd in t all occurrences of P with at most k mismatches (0 k m). In other words, the distance between two patterns of the same length will be de ned as the number of their mismatching characters (the Hamming distance). An equivalent problem is then to nd in t all substrings of length m such that the Hamming distance between these substrings and P is at most k, that is to nd all j positions in the text such that, for 1 i m, p i = t j m+i , except for at most k indices.

The main idea is to represent the state of the search as a vector of size m. Thus, S j denotes the state vector given a current position j in the text. S j contains individual states of the search between each pre x of P and the corresponding substring of t. Namely, for 1 i m, S j i] is the number of mismatches between p 1 p i and t j i+1 t j .

P matches at j if and only if S j m] < k + 1. When t j+1 is read, the number of mismatches for each pre x of P needs to be completed. Values of boolean expressions t j+1 = p i , for 1 i m, can be computed during a preprocessing step. For each character a in , a vector T a of size m is constructed such that :

For i, 1 i m, T a i] = 0 if a = p i 1 otherwise

(1)

(it is su cient to construct the T arrays only for characters appearing in the pattern).

Finally, S j+1 i] = S j i 1] + T tj+1 i].

In order to obtain S j+1 from S j by simple arithmetic and logical operations, vectors are considered as numbers and represented in base 2 b , where b is the bit number needed to represent each vector component.

Thus, S j = m X i=1 S j i]2 (i 1)b and T a = m X i=1 T a i]2 (i 1)b . Representations should not exceed the word size !, namely, mb !. It is easy now to verify that the transition from S j to S j+1 amounts to no more than a left shift (denoted by <<) of b bits and an addition : S j+1 = (S j << b) + T tj+1 (2) Initial state is S 0 = 0. P matches at j if and only if S j < (k + 1)2 (m 1)b . Possible values of the vector state components are 1; ; m. Thus, to represent each component, b = dlog 2 (m + 1)e bits are required. However, since we need only to compare the number of mismatches with k, it is enough to represent values from 1 to k. In this case, one more bit is needed for carrying over additions. The improved algorithm uses b = dlog 2 (k + 1)e + 1 bits. At each position j in the text, the over ow bits are recorded in an over ow state R j and the over ow bits of S j are reset.

The Shift-Add algorithm works in O(n) time, and the searching step (disregarding the over ow state) performs 3n operations. In fact, at each step, that is for each position j, three operations are performed: one shift, one addition and one test to determine whether P matches at position j.

Exact string matching

In the case of exact string matching, it is only necessary to know whether a given pre x of P matches exactly the considered substring of t. We de ne S j as follows:

For 1 i m, S j i] = 0 if p 1 p i = t j i+1 t j 1 otherwise When t j+1 is read, we need to determine whether t j+1 can extend any of the partial matches. Thus, in order to have a match of p 1 p i at position j + 1, both S j i 1] = 0 and t j+1 = p i should be satis ed. Here, b = 1, and in formula [START_REF] Aho | E cient string matching: an aid to bibliographic search[END_REF] the + symbol should be replaced by an OR operation. The algorithm based on this new formula is called Shift-Or.

Extensions

Flexibility is one of the principal advantages of the Shift-Add method. It can be easily adapted to a class of patterns. A class of patterns is a set of patterns, de ned by a string in which each position is a set of characters. A set of characters is for example a subset of or the complementary of a subset of . A pattern class de ned by a string in which each position is either a single character or the whole alphabet is called pattern with don't care symbols.

To take into account such classes, only the de nition of the T array needs changing: for a position i in P and a character a in , T a i] will contain 0 if a belongs to the set of characters corresponding to that position in P, and 1 otherwise. Thus, the T array computed during the preprocessing step contains all needed information about the pattern. Then, the searching step is not modi ed. [START_REF] Akutsu | Approximate string matching with don't care characters[END_REF] Boyer-Moore Approach to Shift-Add method Here, we consider the problem of searching all occurrences of a pattern string P = p 1 p m in a text string t = t 1 t n with at most k mismatches, 1 k m.

The problem of exact string matching can be solved by substituting the OR operation to the add operation. In the case of string matching with classes, the T array is modi ed as in section (2.2).

For some position j, the state S j is a bit number (represented in base 2 b) de ned as previously: each individual state S j i], for 1 i m, contains the number of mismatches between p 1 p i and t j m+1 t j . Here, the introduction of the over ow state is ignored.

Shift

Our goal is to avoid processing each character of the text, in other words, avoid computing S j for every position j. It is easy to see that if for some pre x of length i of P, S j i] > k, then since S j+(m i) m] S j i], P will not occur at position j + (m i). The following proposition can be deduced: Proposition 1. For some position j in t, let l be the largest index i, 1 i m 1, such that S j i] k, if such an index exists and 0 otherwise. Let d = m l.

Then, the next position after j where P is likely to occur is j next = j + d. In other words, S j 0 m] > k, for every j 0 such that j < j 0 < j next .

d is the next shift and 1 d m k.

Consider now the transition between S j and S j+d .

The number of mismatches between the pre x p 1 p i of P, for d+1 i m, and the substring t j+d i+1 t j+d of t, i.e. S j+d i], is the sum of the number of mismatches between p 1 p i d and t j+d i+1 t j , i.e. S j i d], and the number of mismatches between p i d+1 p i and t j+1 t j+d .

The T array de ned in [START_REF] Abrahamson | Generalized string matching[END_REF] contains the information about the occurrence of a given character a at a given position in the pattern. Consequently:

S j+d i] = 8 > > > > < > > > > : S j i d] + d 1 X r=0 T t j+d r i r] if d < i m i 1 X r=0 T t j+d r i r] otherwise (3)
In order to obtain S j+d as a sum of numbers in base 2 b , the next de nition is needed: De nition 2. D denotes the j j m matrix such that, element D a] m r] for each a 2 and 0 r m 1, is denoted by D a;m r and de ned as follows:

D a;m r = m X i=r+1 T a i r]2 (i 1)b :
Intuitively, D a;m r denotes positions in p 1 p m r containing character a. For a xed r, D a;m r is obtained by a left shift of T a of rb positions.

S j+d can then be represented as follows:

S j+d = (S j << bd) + Practically, in order to determine the shift d, S j is shifted b bits at a time, until the obtained number is below k2 (m 1)b . S j will have nally been shifted d times to obtain S j << bd. Therefore, shifts are not grouped.

Character skip

The Boyer-Moore (BM) algorithm is an e cient exact string matching algorithm.

It is fast since it is possible, in certain conditions, to skip substrings of the text, that is not process them, without loss of information. At each step, characters of the text are processed from right to left.

In this section, we try to nd conditions in which parts of the text can be avoided without missing occurrences of the pattern.

Assume j is the last position scanned in the text and d is the next shift.

The substring of the text still to be scanned at this step of the search is then t j+1 t j+d . This substring is processed from right to left, that is beginning with t j+d , and the processing stops when t j+1 is reached, or when the information for all pre xes of P ending at position j + d is obtained.

Practically, in order to compute state S j+d , S j should rst be shifted on the left of bd bits. Let S j+d;0 = S j << bd be the obtained number. Then, each of the d characters t j+d r+1 , with 1 r d, should be processed. Let S j+d;r be the partial state obtained after processing characters t j+d ; ; t j+d r+1 of t. Then, S j+d;r = S j+d;r 1 + D t j+d r+1 ;m r+1 and we have S j+d = S j+d;d .

For given indexes r, 1 r d, and i, 1 i m:

(a) If S j+d;r i] > k, then without processing the remaining characters t j+d r ; ; t j+1 , we know that the pre x of length i of P does not occur at position j + d.

(b) If S j+d;r i] k and no more comparisons have to be performed for the pre x of length i of P, then this pre x matches at position j + d.

Therefore, instead of computing the number of mismatches with the corresponding substring of t, for each pre x of P, i.e. the terminal state, the computation stops at the rst partial state giving enough information for further processing. Let S 0 j be this partial state. Di erences between S j and S 0 j are located only in individual states exceeding k + 1.

Algorithm We suppose that the D matrix has been computed during a preprocessing step. For a given position j in the text, an index r and a prex of length i of P, State denotes the bit number consisting in individual states of partial state S j;r for pre xes with length from 1 to i. More precisely, State = S j;r i] S j;r 1]0 0. (2) Else : (2.2) Else : 12.

(2.2.1) If i = m then 13.

\Occurrence of P at position j";

PROOF :

Step [START_REF] Abrahamson | Generalized string matching[END_REF] of the algorithm corresponds to situation (a), that is when the partial number S j;r i] of mismatches found at this step of the search for the pre x i of P, exceeds k+1. In this case, this pre x is ignored and the next pre x i 1 of P is considered.

Step (2.1) corresponds to the situation where there is not enough information to stop comparing. In fact, for the pre x i of P, the number S j;r i] of mismatches obtained at this step of the search is less than k+1, but a number of comparisons remain to be done for this pre x.

Step (2.2) corresponds to situation (b), that is when S j;r i] < k + 1 for the pre x i, no more comparisons have to be performed for this pre x. In this case, if i = m, then position j matches and the search for the next shift goes on. If i < m, then the next shift is equal to m i. In fact, i corresponds to the length of the longest pre x of P matching the corresponding substring of t Example 2: Let , P, t and k be those de ned in example 1. Shifts are the same as for example1 and only state S 5 is not the terminal state. Recall that the scanning of t by the Shift-Add algorithm needs 3n operations, since each search step does exactly a shift, an addition and a test. It is not di cult to see that our algorithm does the same number of shifts (n) and less additions.

In fact, one addition is performed for each character processed in the text, and not all characters are examined. However, the number of tests increases, since in addition to those considered by the Shift-Add algorithm, those which make transitions between partial states should be considered.

Let t be a random text and j j = c. The probability of a given character to occur at a given position in the text is then 1 c .

Let X be a random variable denoting the length of the shift in Algorithm1 when searching pattern P in the random text t with at most k mismatches. The following lemma gives the average shift d m , that is the expected value < X > of the random variable X.

Lemma 1 Provided c is large enough compared to m, the average shift d m obtained by Algorithm1 exceeds d 0 m , with:

d 0 m m k 1 + 1 1 c k+1 ! 1 1 c
Now, we analyze the average number M k of characters processed at a given position j + d m of the text, where j is the last position scanned in the text. This number of characters is the length of the smallest substring of t ending at position j + d m and mismatching all substrings of P which are not pre xes. The maximum number of characters to be processed at this step is d m .

From the last remarks, we can deduce the following lemma: Lemma 2 Provided c is large enough compared to m, M k k + 2.

We are able now to evaluate the complexity of Algorithm1. Proposition 4. The average number OP k of operations performed by Algorithm1 is n 2 + 3M k +2 dm . When the considered alphabet is large enough, this number becomes OP k n 2 + 3k+8 m k .

PROOF :

Let OP dm;k be the average number of operations performed by Algorithm1 at each step of the search. Thus, OP k = n dm OP dm;k . At each step of the search, operations performed by Algorithm1 are: M k additions (one addition per character), d m shifts (lines 5. and 14. of the algorithm) and at most d m +2+2M k tests. In fact, note rst that condition 4 (State lim, step (1)) is true at most d m times and in that case we do not proceed to step [START_REF] Aho | E cient string matching: an aid to bibliographic search[END_REF]. Thus exactly d m tests are performed in these cases. Moreover, in order to know the next shift, we should go once through step (2.2.2) and then do tests 4. and 8. (test 12. could be avoided by changing the algorithm such that case i = m is examined at a previous step). Finally, since there are exactly M k additions, we should go through line 10. exactly M k times and at each time do tests 4. and 8. The average number of tests is therefore T

dm;k = d m + 2 + 2M k . So, OP dm;k = 2d m + 2 + 3M k and OP k = n 2 + 3M k +2
dm . The case of a large alphabet is deduced from lemmas 1 and 2

Improvement

In order to speed up the algorithm, it is obvious that a way should be found to perform less tests. Our idea is to process a certain number of characters at each step of the search, that is, do a certain number of additions before beginning tests.

Algorithm2

Let j be the current position in the text and d be the last shift obtained. We denote by C d the following number: C d = min (d; k + 2).

C d is the average number M k (lemma 2) of characters processed at each step by Algorithm1, provided this number does not exceed the maximum number of characters to be processed at this step, that is d.

Thus, before going through steps (1)-(2), our improved algorithm (Algo-rithm2) will process rst the C d characters t j C d +1 t j and compute the partial state S j;C d , that is do C d additions.

Algorithm2 is hence obtained by adding a preliminary step (0') before step (0) in Algorithm1.

Exact string matching

In this case, the considered algorithm is Shift-Or (2.1). Baeza-Yates and Gonnet have introduced the following improvement: if at a given position j in t, S j = 1 mb 1 mb 1 1, that is all pre xes of P mismatch at position j, then the next character processed in the text is p 1 (if such a character exists). In fact, the state remains the same for all other characters.

We improve Algorithm2 as well: at a given step of the search, characters are processed until the partial state is equal to 1 mb 1 mb 1 1 (Algorithm3).

We have experimented algorithms Shift-Or and Algorithm3 on a 4,000,000 character text (the french version of the Bible). Figure1 shows the execution time while searching 100 random patterns from the Bible. The rst column of the table shows the lengths of the considered patterns.

We can see that the longest the pattern, the fastest Algorithm3 works. Moreover, for patterns of lengths up to 3, Algorithm3 is faster than Shift-Or.

Approximate string matching

Figure2 shows experimental results for Algorithm2 and Shift-Add, while searching 100 random patterns in the Bible (5MO) with at most 1 or 2 mismatches.

When m is large enough compared to k, Algorithm2 is faster than Shift-Add: for k = 1, m should be larger than 7 and for k = 2 larger than 9. Since mb should not exceed the word size !, large values of m cannot be considered. For ! = 32, the e ciency of Algorithm2 is then limited to k 2.

For longer patterns, we need to use more than a word per number. It is not di cult to extend the algorithm for this case. Baeza-Yates and Gonnet have noticed that Shift-Add is still a good practical algorithm for string matching with mismatches and classes, provided the number of words per number is small.

Figure3 shows results in the case of two bit words per number. Notice that they extend the results in Figure2.

Conclusion

We have developed an algorithm combining both the programming practicality of the Shift-Add method and the speed of the BM approach. Flexibility is another advantage of this algorithm . In fact, it can be easily adapted to classes of patterns.

Nevertheless, as for the BM algorithm, the larger the alphabet and the longer the pattern, the faster our algorithm works. For a large alphabet (ASCII code), the searching step does on average n(2 + k+4 m k) operations. In some cases, it is necessary to consider small alphabets. In particular, in molecular biology when detecting potential gene-coding sequences in genomic DNA sequences. fA; C; G; Tg. For such alphabets, our algorithm does n(2 +) operations, with < 1, provided that the length m of the pattern is very large compared to k.

In order to consider large patterns, one solution is to use more than a bit word per number. Moreover, Baeza-Yates and Perleberg (BYP) 7] have developed an algorithm for approximate string matching, based on the same naive method than for the Shift-Add algorithm, but using arrays instead of numbers.

In this case, there is no condition on the length of the searched pattern, however the algorithm is slower. The main di erence is that BYP considers the number of matches instead of the number of mismatches. The BYP algorithm can be adapted from BM in the same way the Shift-Add was and it is then possible to consider long patterns.

 r ;m r : Initial values are S 0 = 0 and d = m.

Example 1 :

 1 Let = fa; b; c; dg, P = abbac and k = 1shifts when searching P in t with at most k mismatches: of shifts does not improve the complexity of the Shift-Add algorithm . It only has the e ect of grouping additions and tests. However, shifts are essential to introduce the notion of characters skip which will nally speed up the algorithm.

Algorithm1:

 BM approach to approximate string matching 0. j := m; d := m; State := 0; 1. lim := (k + 1) << (m 1); 2. While j n do 3.(0) i := m; r := 0

 State + D tj r ;m r ; Go to (1).11.

19 .

 19 End of While. Proposition 3. Algorithm1 nds all occurrences of the pattern P in the text t with at most k mismatches.

Complexity

 Our goal is to evaluate the average number of operations performed by Algorithm1. Operations are of three kinds: shifts, additions and tests.

 l ;m l ; r := r + C d ; Obviously, Algorithm2 nds the same results, the same shifts and so the same average shift d m that Algorithm1. Proposition 5. Provided the alphabet is large enough, the average number of operations performed by Algorithm2 is OP k n 2 + k+4 m k . PROOF : Our goal is to evaluate the average number OP dm;k of operations performed by Algorithm2 at any search step. First, M k characters are processed and M k additions are performed. Two cases are then encountered: 1. The partial state holds enough information, so no more characters are processed at this step. In this case, d m + 2 tests and d m shifts are performed. 2. The partial state does not hold enough information. In this case, the maximum number of characters still to be performed is d m M k . The number of shifts is the same as that of the previous state and there are 2(d m M k) more tests. Let P k be the probability of the second case. Then, OP dm;k = M k + 2d m + 2 + P k (3 (d m M k)) and OP k = n 2 + M k + 2 + 3P k (d m M k) d m When the considered alphabet is large enough, d m m k (Lemma1), M k k + 2 (Lemma2) and we can prove that P k 0. Thus, OP k n 2 + k+4 m k 5 Experiments Our goal is to nd out under which conditions Algorithm2 is fastest than algorithm Shift-Add. Algorithm3: Exact string matching 0. j := m; d := m; State := 0; 1. lim:= (k + 1) << (m 1); initial:=1 mb 1 mb 1 State OR D tj r ;m r ;

Figure 3 :

 3 Figure 3: Complementary results when mb > 32. Two bit words per number are used.

 The considered alphabet consists in the four nucleotides Experimental results (in seconds) for searching 100 random patterns in the Bible with at most 1 or 2 mismatches. For k = 2 and m > 10, more than one word per number is needed.

	k = 1 m Shift-Add Algorithm2 Shift-Add Algorithm2 k = 2 6 157.56 178.05 157.24 215.77 7 155.83 161.88 156.25 195.68 8 156.01 154.05 155.64 175.67 9 155.57 148.13 156.33 161.02 10 155.10 145.85 150.72 155.63 11 141.67 155.76 12 135.80 154.66 13 129.40 155.02 14 125.28 155.45 15 121.08 154.94 16 155.73 117.21
	Figure 2: k = 1 m Shift-Add Algorithme2 Shift-Add Algorithme2 Shift-Add Algorithme2 k = 2 k = 3 12 281.56 275.96 282.38 308.53 14 281.27 266.48 278.75 281.75 16 281.17 250.82 265.46 281.25 18 280.54 219.24 280.78 238.18 256.98 281.12 20 282.25 211.78 281.85 227.57 246.60 281.65 205.70 22 280.48 198.13 26 281.38 194.20 28 280.85 32 280.93 188.52