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Abstract

Parametric anomaly detection is generally a three steps
process where, in the first step a model of normal behavior
is calibrated and thereafter, the obtained model is used in
order to reduce the entropy of the observation. The second
step generates an innovation process that is used in the
third step to make a decision on the existence or not of an
anomaly in the observed data. Under favorable conditions
the innovation process is expected to be a Gaussian white
noise. However, in practice, this is hardly the case as fre-
quently the observed signals are not gaussian themselves.
Moreover long range dependencies, as well as heavy tail
in the observation can lead to important deviation from
the normality and the independence in the innovation
processes. This, results in the frequent observation that the
decisions made assuming that the innovation process is a
white and Gaussian results in a large false positive rate.
In this paper we deal with the above issue. Our approach
consists of not assuming anymore that the innovation pro-
cess is Gaussian and white. In place we are assuming that
the real distribution of the process is a mixture of Gaussian
and that there are some time dependency in the innovation
that we will capture by using a Hidden Markov Model. We
therefore derive a new decision process and we show that
this approach results into an important decrease of false
alarm rates. We validate this approach over realistic traces.

Keywords: Anomaly Detection, System Monitors,
Kalman filter, GMM, HMM

1 Introduction

In the Internet, anomalous traffic behavior such as at-
tacks, configuration changes, flash crowds, large transfer
file and outages occur frequently. Large enterprise net-
works often have a security operations center where op-
erators continuously monitor the network traffic hoping to
detect, identify and treat anomalous events. The detection

process of these events can then be used to trigger alarms
to the network management system, which, in turn, trig-
ger recovery mechanisms. Despite the recent growth in
monitoring technology and in intrusion detection systems,
correctly detecting anomalies in a timely fashion remains a
challenging task. One of the reasons for this is that, many
today’s security solutions yield equipments that collect and
analyze traffic from one link at a time. Similarly many re-
search efforts consider anomaly detection on a per link basis
[13],[11],[12].

To detect traffic anomalies, one typically seeks to char-
acterize or build a model of normal behavior. In this pa-
per we use signal processing techniques to track anomalies
in situations where normal network conditions occur. The
approaches used to address the anomaly detection problem
are dependent on the nature of the data that is available for
analysis. Network data can be obtained at multiple levels
of granularity such as end-user-based (TCP/UDP data) or
network-based. Traffic counts obtained from both types of
data can be used to generate a time series to which statisti-
cal signal processing techniques can be applied [15], [16].
In this work, we focus our attention on network-based (at
the IP flow level) anomaly detection. After filtering out nor-
mal looking traffic, anomaly detection methods analyze the
residual traffic pattern for deviations. Taking account only
one link per unit time is limiting, since any flow will tra-
verse multiple links along its path. And it is intuitive that, a
flow carrying an anomalous event will appear in these links,
thus increasing the evidence to detect it.

In this paper we will show that, it is more convenient
to track anomalies by running the detection mechanism in
all links at the same time, than in the case of per-link de-
tection. To do this, we focus on using data from all links
in an enterprise or ISP network simultaneously. Since any
anomaly has to traverse several links on route to its destina-
tion, an anomaly has the potential to be visible in any of the
links it traverses. Since we cannot know in advance where
anomalies will originate, nor the path they will take, it is ad-
vantageous to consider the behavior of all links in the same
time, when developing both a model of ”normal” traffic and
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a method for analyzing ”residuals”.

Our study is built on traffic matrix scheme [2],[4]. Each
traffic matrix entries describes the average volume of traf-
fic, in a given time interval, that originates at a given source
node (routers) and is headed towards a particular destina-
tion node. In this paper we propose to use predictions of
traffic matrix behavior for the purpose of anomaly detec-
tion. Since the traffic matrix is a representation of traffic
volume, the types of anomalies we might be able to detect
via analysis of the traffic matrix are volume anomalies,[8].
In [4], we used traffic matrix at the granularity of OD flows
to detect, identify and track anomalies, by comparing four
schemes (a basic analysis using variance, the CUSUM and
Generalized Likelihood Ration test combined, Wavelets and
a fourth method based multi scale variance shift). We had
shown that the basic analysis using variance performs the
best above the four methods, in the case of real network
data (Abilene). In this work, we show that our method
perform better that that analysis using variance, with the
same network data. Our study differs, to the previously
cited work, in numerous ways: i) instead of using OD flows,
we used granularity of link counts ii)we do not assume that
the Kalman innovation process does strictly remain a zero
mean gaussian process,iii) instead, we assume that the real
distribution of the process is a mixture of gaussians, mak-
ing sense the use of gaussian mixture modeller to show that
residuals can be split in different families (where anomalies
might or might not happen), iv) we use also hidden markov
model in order to capture time dependencies over the differ-
ent mixture components, v) we use the Viterbi algorithm to
select the potential best sates path where anomalies might
come from v) we use finally variance shift analysis to track
the anomalies.

To start our study, first a linear dynamical system is
needed to model the link counts. Thus, a model is built,
where the Kalman filter algorithm is derived to estimate the
state of the system, for denoising the observed data. There-
after, we use a gaussian mixture modeller above the inno-
vation process (obtained from the Kalman filter phase), for
clustering. This makes our monitoring technique robust to-
ward gaussianity, since we do not assume that the residual
remains typically a zero mean gaussian process. These two
steps constitute our learning phase. In the second step, we
perform an operational phase where, first, we build a dis-
crete sequence of finite alphabet of mixture memberships
IDs (based on the residual clustered in the GMM-learning
phase), using a maximum a posteriori (MAP) criteria. This
discrete sequence is then used to check the sequence of
hidden states (each state containing a part of our alpha-
bet) of the HMM, using again a MAP criteria. We perform
anomaly detection on this results, combining finally the use
of the Viterbi algorithm (in order to find the only best se-
quence of our hidden states) and a variance shift test.

The organization of this paper is as follows. Section 2
describes the system monitoring design we used. Section 3
deals with the methodology we adopt in our anomaly detec-
tion scheme. In section 4, we detail our calibration method
and we validate our approach by showing efficient results.
Section 5 concludes our work and fixes some ideas for fu-
ture works.

2 Description of the Monitoring System

In our paper referred in [2], a simple basic system was
designed to monitor OD flows traffic coming from network
backbone. This system was produced with three functional
blocks: data collection (by a NOC-Network Operations
Center), a data analysis block and a decision process phase.
The data analysis center is simply an operational phase built
on Kalman filtering. We extend this anomaly detection sys-
tem, to take account to three new components shown as part
of our learning phase. In addition, our decision process is
based on a combination of two underlying materials: the
Viterbi algorithm and a variance test based data-point analy-
sis. In Figure 2, the data analysis block contains a gaussian
mixture modeller, a hidden markov modeller and a maxi-
mum a posteriori criteria used twice. Recall that we have
made no assumptions that the residual process (on which
we perform our anomaly detection scheme) is a zero mean
gaussian process; instead the kalman innovation is supposed
to be driven by a family of normal distributions. One can
think that, this idea can be a good decision, if we know that
the real distribution of the original data themselves is not
purely gaussian. Based on this belief, we have introduced
the use of a GMM, which is a good paradigm for modelling
processes in situations where data might come from differ-
ent families of exponential distributions. So, the calibra-
tion of a gaussian mixture model will help us for data clus-
tering, then making possible to classify each residual data
point into a gaussian component. After building a finite set
of classes of residuals, all elements belonging to the same
class might appear with the same identifier. The motivation
to do so, is based on the fact that, one should easily identify
a cluster (with label 1,2,3,...) and at the other hand, as we
will see later, the use of a hidden markov model will be ad-
equate to study the temporal dependencies between all the
clusters. To perform this task, the gaussian mixture model is
followed by a phase where we run, using a Maximum A Pos-
teriori (MAP)criteria, an operation making us possible to
form a discrete finite alphabet (sequence of symbols), using
all the GMM components. At this step, all the continuous
observation sequences are transformed into a discrete ob-
servation sequence, which can be easily re-used to perform
a monitoring method for the purpose of anomaly detection.

The GMM phase for clustering and the MAP criteria op-
eration for discrimination, are followed by the use of an hid-



Figure 1. Architecture of the monitoring sys-
tem.

den markov model, for time dependencies tracking, in the
innovation process. One can think that time dependencies
might involve in the innovation process, and these tempo-
ral correlation might appear between the different clusters
we have already built. This means that the different fami-
lies of discrete alphabet can be re-organized into different
other groups, each of them containing a subset of the GMM
components. Since these groups are a priori unknown, we
denote them as hidden states. The use of hidden markov
model will be a good paradigm to achieve this aim. Here,
we perform a maximum a posteriori criteria to obtain the se-
quence of the hidden states of our HMM. Finally, the Figure
2 shows that, to track anomalies buried in the link counts,
the use of a decision process is necessary, for management
and decisions issue. In our anomaly detection philosophy,
since anomalous events might be rare, we believe that it
is possible to find one typically unique path, where these
anomalies might be identified and detected. So, to perform
the management task, we propose in this work a decision
process based on two routines: the use of the Viterbi al-
gorithm, in order to find all the variations in the residual
process and, as a final step, the use of variance test for each
data-point in the residual. Clearly, we will build a GMM
with N components, then we use these N components to
form an HMM with P states(each state containing part of
the N components), and at last the Viterbi algorithm will
find one unique path with a sequence of K(¡P) states and
finally we use these K states to perform anomaly detection.
Based on the discrete innovation sequence, the Viterbi algo-
rithm finds the only best sequence that capture all the vari-
ations in the continuous form of the innovation process. In
the case of per-link analysis, we build a Viterbi path for
each data observation sequence, but in the case where we
analyze all the links simultaneously, we find one single best
Viterbi sequence. Our study shows thereafter that, a simple
basic variance test based point-analysis suffices to identify
and track the anomalous events.

3 Methodology

The first step in our study is to seek for a model which
can monitor the system traffic dynamics. We believe that
observing and estimated the real values of these metrics can
help networks administrators to understand normal or po-
tential abnormal conditions in their environment. A pow-
erful model might identify the behaviour of normal traffic,
by capturing the temporal evolution of the data, and at least
can help operators to do future prediction. The full model is
represented by the two linear equations, combined to form
the complete specification of our system:

{
Xt+1=CtXt + Wt

Yt =AtXt + Vt
(1)

This block equations is the classic form for linear dynami-
cal system (without inputs). In this model we assume that
the state-noise Wt and the measurement-noise Vt are un-
correlated zero-mean gaussian white-noise processes with
covariance matrices Qt and Rt, respectively. For a full un-
derstanding of these system, we refer the reader to our work
in [4]. Since we have found a model and system equations
for our system, next we need to deal properly with the dif-
ferent steps of our optimization algorithm for anomaly de-
cision issue.

3.1 Equations of the Kalman filter

The first problem to solve after building a simple model
to monitor link counts, is to find an optimal estimate (X̂t)
of our unobservable network states Xt, given a set of mea-
surements {Y1, ....., Yt}. A well-known and robust method
to achieve this aim is the Kalman filtering algorithm. In our
dynamical linear system, we refer to Yt as the observation
vector at a specific time t. And the state of the system at
time t is given by Xt, let also X̂t|k denotes the estimate
of Xt using all the information available up to time k, i.e,
∀τ < k. X̂t+1 denotes the estimate of Xt+1 using all the
information up to time t, (this constitutes the phase predic-
tor). The quantity X̂t+1|t+1 denotes the estimate of Xt+1

using all past information and the recently arrived data point
at time t+1. In the other hand, Pt|t denotes the covariance
of the state estimate and Pt+1|t indicates the covariance of
the state prediction. As it is shown in its earlier elabora-
tion, the Kalman filter addresses the problem of estimating
a discrete state vector when the observations are only a lin-
ear combination of the underlying state vector. The filter
runs as a predictor-corrector algorithm. As an iterative al-
gorithm, it estimates the system state using two steps: pre-
diction comes in the time update phase, and correction in
the measurement update phase.

• Prediction step (time update equations):
In this step, the estimated state of the system at time



t, X̂t|t, is used to predict the state at next time t+1,
X̂t+1|t. And, as we know that the noise Wt influences
the evolution of the system at each time t, we compute
only the covariance of the prediction, Pt+1|t based on
the updated covariance at the previous time t, Pt|t, and
the noise covariance at the same time, Q. The error
covariance Pt+1|t provides an indication of the uncer-
tainty associated with the state estimate.

{
X̂t+1|t= X̂t|t
Pt+1|t =Pt|t + Q

(2)

• Correction step (measurement update equations):
This step updates (corrects) the state and the variance
of the estimate in the previous step, using a combina-
tion of their predicted values and the new observations
Yt+1. The correctness of this update depends on the
Kalman innovation Yt+1 − X̂t+1|t.
{

X̂t+1|t+1= X̂t+1|t + Kt+1(Yt+1 − X̂t+1|t),
Pt+1 =(I −Kt+1)Pt+1|t(I −Kt+1)T + Kt+1RKT

t+1

(3)

In the measurement equations, Kt+1 denotes the Kalman
gain. For more details in linear dynamical system, esti-
mation and Kalman filter techniques, we refer the reader
to: [22],[20],[3] and [1]. The above equations with ini-
tial conditions of the state of the system X̂0|0 = E[X0]
and the associated error covariance matrix P0|0 = E[(X̂0−
X0)(X̂0 −X0)T ] define the discrete-time sequential recur-
sive algorithm for determining the linear minimum variance
estimate known as the Kalman filter.

3.2 Gaussian Mixture Model

In Kalman filtering philosophy it is more generally as-
sumed that the residual remains a zero mean gaussian pro-
cess, however this assertion is not always true in practice.
Long range dependences and heavy tails distribution can
lead to non negligible deviation from the normality and the
independence of the innovation process. Thus our moti-
vation to use gaussian mixture model is based on our be-
lief that the real distribution of the process is an ensemble
(mixture) of gaussians and there is some time dependency
in the innovation (which we will later study with the aid
of an hidden markov model). This assertion allows us to
build a method which has the ability to find anomalies in
different families built on the same residual sequence. The
calibration of a GMM helps us, taking as input the Kalman
innovation, to build K families (clusters) and in the next step
we propose the use of an hidden markov model (HMM) to
classify these groups into P states, each state being formed
with part of the K families. This operation have the advan-
tage to discover the potential temporal dependencies in the
innovation process.

To find the values of the GMM model parameters µm

(mean)and Σm (variance), as well as the prior probabil-
ity vector π, we are interested in maximizing the likeli-
hood £(θ|X) = p(X; θ) of generating the known observed
data (X) given the model parameters θ = {µm,Σm, πm},
1≤m≤M. X denotes all the observation while θ contains all
the parameters of the mixture. In other words, we hope to
find θ̂ML=argmax p(x|θ). This approach is called the Max-
imum Likelihood (ML) framework since it finds the param-
eter settings that maximize the likelihood of observing the
data sets.
To find the best parameters of the features of θ, the Expec-
tation Maximization (EM) iterative algorithm can be used
to simplify the math considerably and numerically compute
the unknown parameters. For more details about mathemat-
ical routines for EM, see [10],[17],[21].

3.3 Hidden Markov Model

From the above learning phase, each GMM component
(cluster) is transformed into a sequence of a finite set of al-
phabet (symbols as 1,2,3,...), using a maximum a posteriori
criteria. This discrimination phase will help for plugging
the above clusters into different a priori unknown states, us-
ing hidden markov model. Our results will show us that,
clusters with anomalies appear on some states and clusters
with no anomalies remain in an other states. We represent
these families of states by the following collection of un-
known random variables {Q1, Q2, .....QT } (where Qt is a
constant value with values in {1, 2, ..., K}). We also repre-
sent our alphabet by the known vector {O1, O2, ....., ON}.
Now, the problem is resumed to find a model to produce
the states and to determine the probability of each symbol
being in a state. A well known model-based approach to
tackle this problem, is the discrete hidden markov model
(HMM) which is an exponential family of mixture model.
Our choice of using HMM is based on the fact that: i)
potential time dependencies in the innovation process can
be modelled and captured using a finite set of a priori
hidden states, each of them containing a subset of gaus-
sian components ii) relatively efficient algorithm can be de-
rived to solve the problems related to them, [17],[10],[9].
The full HMM model we used is defined by the quantity
λ = (A,B, π) (where A is the transition matrix, B is the
emission probabilities matrix and pi the prior probabilities).
To find and estimate the best parameters of our model, we
use the well-known forward-backward algorithm parameter
estimation (or Baum-Welch algorithm). For more details
for EM techniques related to hidden markov model, see,
[10], [9]. Thereafter, we reuse the model to find the opti-
mal state sequence associated with the given observation se-
quence. We believe that this final step of our approach will
allow us to capture all the variations in the innovation pro-



cess. An optimal criteria we have chosen here is to find the
single best state sequence (path), Q = {q1, q2, ..., qT } for
the given observation sequence O = {O1, O2, ..., OT },i.e.,
we aim to maximize P (Q|O, λ). A formal technique for
finding this unique best state sequence is the Viterbi algo-
rithm.

4 Model Evaluation

4.1 Data collection : Abilene network

The Abilene backbone has 11 Points of Presence(PoP)
and spans the continental US. The data from this net-
work was collected from every PoP at the granularity of IP
level flows. The Abilene backbone is composed of Juniper
routers whose traffic sampling feature was enabled. Of all
the packets entering a router, 1% are sampled at random.
Sampled packets are aggregated at the 5-tuple IP-flow level
and aggregated into intervals of 10 minute bins. This thus
dictates the underlying time unit of all of our estimations
and detections. The raw IP flow level data is converted into
a PoP-to-PoP level matrix using the procedure described in
[5]. Since the Abilene backbone has 11 PoPs, this yields
a traffic matrix with 121 OD flows. Note that each traffic
matrix element corresponds to a single OD flow, however,
for each OD flow we have a seven week long time series de-
picting the evolution (in 10 minute bin increments) of that
flow over the measurement period. All the OD flows have
traversed 41 links.

4.2 Model Validation

The anomalies injected in the Abilene data are small and
high synthetic volume anomalies. We used exactly the same
Abilene data as in [8]. So for a full understanding on how
the ground-truth is obtained (based on EWMA and Fourier
algorithms) , we refer the reader to [8].

4.2.1 System parameter identification.

Our method begins with a learning phase where we cali-
brate a Kalman filter for denoising, using our linear dynam-
ical system, and the collection of observation data. In order
to run the Kalman filter, we need the matrices A, Q, C et
R. The matrix A is available given the routing scheme of a
network. We thus only need to obtain Q, C and R. Recall
that one of our aims is to prove that, learning all the links
simultaneously is better than using one link at a time. Cali-
brating the system for one link at a time is not very straight-
forward. Here to estimate the parameters θ={C,Q, R}, we
use an autoregressive (AR) model of order p. The method
is based on a stepwise least squares algorithm which uses a
QR factorization of a data matrix to evaluate, for a sequence

of successive orders, a criterion (here Schwarz’s Bayesian
Criterion and Akaike’s Final Prediction Error) for the selec-
tion of the model order p, and to compute the parameters of
the AR model of the optimum order. It is sufficient to learn
the model’s parameters using a sample of one week mea-
surements from the data links studied. We run this method
based on the notes described in [6], and developed in [7].
We form the matrix C using the p parameters of the AR(p).
The noise variance of the model is used to fix Q. The ma-
trix R is built as a function of Q. In practice, R is obtained
by dividing the measurement noise by some constant. In
our experiments we have found this constant in the inter-
val [2:4]. In the case where we take account of all links at
the same time, we find the same parameters θ, using N con-
secutive samples of link counts, and we do our calibration
using the EM algorithm. In practice, in order to apply the
EM procedure, initial values are required for the parame-
ters and these were simply guessed by examining portions
of the completely observed series. It is a convenient idea to
examine several different sets of starting values, since the
EM algorithm may reach different kinds of stationary val-
ues corresponding to local rather than global maxima. For
more details of the EM techniques, see [18],[19].

4.2.2 Summary of the Results.

The first result we want to show is the ability of our method
to track the behavior of link counts (total byte per unit
time) over time. In Figure 2, we show the real and inferred
link counts for our model. The evolution of the traffic and
estimates are shown for a seven weeks duration for each
observation vector. The calibration is applied only once,
for the case where we analyze all the links at the same time
(we have shown only the figures for this case). For the
case of per-ink analysis, we have performed the calibration
for each sequence separately. Now we are looking at the
performance of our two methods, in the Abilene network.
To validate our GMM model, we calibrate one GMM
with a set of r components (r=2,3,4,5...) using the EM
algorithm, and the decision to select the best model is done
by analyzing the variance performed for each component in
the mixture. The model with the lowest variance is chosen.
We find in our computations, that the data residual can be
organized into three (r = 3) distinct clusters. Thereafter
A maximum a posteriori criteria is used to build, over the
clusters, a finite alphabet of symbols, where we run the
hidden markov model. To train the hidden markov model,
one must ensure that that the different hidden states are well
separated. This means that one should have a transition
matrix with higher probabilities in its main diagonal. In
our study we obtain two (2) states with the transition and
observation matrices shown as follow (case where the
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Figure 2. Real(red) and estimated (blue) links obtained using Kalman filter.

analysis is performed in all links.)1:

transmat =
[

0.9862 0.0138
0.0162 0.9838

]

obsmat =
[

0.0013 0.0020 0.9967
0.4892 0.5104 0.0004

]
.

The HMM results show clearly that, the state 1 is com-
posed with almost entirely the symbol#3 and the state 2
is a mixture of two symbols (1 and 2) with 49% of prob-
ability of presence of symbol#1 and 51% for symbol#2.
In the philosophy of anomaly detection theory, generally it
is assumed, that anomalies might be rare; base on this as-
sumption we can ask this question: if anomalous events oc-
cur, do they might come from state #1 or state #2 or both?
To answer this question, we believe that all the changes in
the mean of the residual (abrupt change, slow or high vari-
ations) can be tracked by a combination of symbols yield-
ing in one state. In other words, one can think that one
state must be classify as normal state and the other as ab-
normal state. Clearly, we believe that the state 1 contain-
ing the symbol #3 corresponding to the component with
mean closely equal to zero might be labelled as the ”nor-
mal state” and the state 2 as the ”abnormal state”. To con-
firm our intuition, we run the Viterbi algorithm for all the
sequences of discrete alphabet and we discover one unique
sequence composed only by the symbols in the state #2.
In Figure 3, we show how the lower and higher variations
in the residual are well tracked by the Viterbi path (com-
posed only by symbol#1 and symbol#2). For the purpose
of plotting, we multiply each symbol by a same constant).
At this time, we can argue that, if anomalies exist they might
be caught either by the two symbols simultaneously, either
by one symbol only. In addition, in our study we discover
that anomalous events never happen in the cluster (#3) with
mean closely equal to zero. Combining this theory with a
basic variance test performed for each data point, allows us
to detect, identify and track anomalies in the different links.
Among the 41 links, only 13 have drawn anomalies. In the
Figure 5 we plot the tracking operation for some links. For
all the figures, the red points corresponds to the symbol#1
and the blue ones to the symbol#2. The solid blue line is

1In the case of per-link analysis we obtain an transition matrix and an
observation matrix for each link

the threshold for the part of residual corresponding to the
symbol#1, and the dashed red line is the threshold for the
part of residual corresponding to the symbol#2. We run the
HMM more than one time to show that in some cases, the
Viterbi path can be a sequence with only the presence of one
symbol. And all anomalies yielding in the link in question
are tracked inside the residual corresponding to that sym-
bol. We can see some examples in Figure 4. In these cases,
we can plot the results in continuous time, what we can not
do in Figure 5. In our running scheme, we found that the
coefficient that we multiply the standard deviation (to fix
the threshold) of the residual variance lies in the interval
[2 : 6]. Another result is about the performance obtained in
analyzing the trade-off between false positive and false neg-
ative rates. We examine the entire traffic for each method at
two levels: in level 1 we run the methods using one link at
a time and in level 2 we consider all the links at the same
time. We then can compute one false positive percentage
and one false negative percentage for each threshold con-
figuration scheme. The performance of the two methods on
the Abilene data is depicted in the ROC (Receiver Operat-
ing Characteristic) curve of Figure 6. In Figure 6(a), we
can see clearly that: i) when the analysis is done on a per-
link basis, the hmm-variance-based anomaly detection per-
forms better than a basic variance analysis. We can see that
with a false positive rate (FPR) of 1.3% the HMM misses
no anomalies (100% detection rate), while the variance test
catches about 80% of the anomalies for the same FPR. ii)
in the Figure 6(b), we show that analyzing all the links
count simultaneously is more advantageous than taking ac-
count for one link at a time. One can observe that the HMM
catches all the anomalies (0% of false negative) with a false
positive rate of 0.006, while in the same time the variance
test catches 85% of anomalies with the same FPR.

5 Conclusion

Our work has shown the robustness of combining math-
ematical tools for Anomaly detection issue. We begin by
performing a Kalman filter on data selected in granularity
of link counts. Then a GMM is used to organize the resid-
ual into different gaussian components, since we have as-
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sumed that the real distribution of the innovation process is
a mixture of normal densities. Thereafter a MAP criteria
is used to build an alphabet in which we perform a hidden
markov model to find the temporal dependencies above the
different gaussian components. Finally, we use the Viterbi
algorithm to show that anomalous events can be tracked us-
ing a single sequence of our HMM states where we per-
form a variance test for each data point. In our study, we
show that our anomaly detection methodology can provide
appropriate management tools and can help network admin-
istrators to surveying their environment, since it can achieve
higher detection rate with few false positive and the results
are more convenient in the case of all-links analysis than in
per-link based analysis. We have found that anomalies are
capture by a part of the alphabet and one can ask this ques-
tion: what about the remaining symbol (here symbol #3) ?
Is it uncertain that anomalies may never happen in the clus-
ter with mean closely equal to zero ? At the other hand, we
must notice that the determination of the constant used to fix
the variance threshold is heuristic and not straightforward.
One would prefer the fixation of this value in an obvious
and automatic manner. We will point out these ideas and
questions in future works.
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