
HAL Id: hal-00620011
https://hal.science/hal-00620011

Submitted on 7 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PEARL: a programmable virtual router platform
Gaogang Xie, Peng He, Hongtao Guan, Zhenyu Li, Yingke Xie, Layong Luo,

Jianhua Zhang, Yonggong Wang, Kavé Salamatian

To cite this version:
Gaogang Xie, Peng He, Hongtao Guan, Zhenyu Li, Yingke Xie, et al.. PEARL: a programmable
virtual router platform. IEEE Communications Magazine, 2011, 49 (7), pp.71-77. �hal-00620011�

https://hal.science/hal-00620011
https://hal.archives-ouvertes.fr


PEARL:	
  A	
  Programmable	
  Virtual	
  Router	
  Platform	
  
Gaogang Xie, Peng He, Hongtao Guan, Zhenyu Li, Yingke Xie,  

Layong Luo, Jianhua Zhang, Yonggong Wang 
Institute of Computing Technology, Chinese Academy of Sciences 

Kave Salamatian 
University of Savoie 

ABSTRACT 
Programmable routers supporting virtualization are a key building block for bridging the gap between new 

Internet protocols and their deployment in real operational networks. This article presents the design and 
implementation of PEARL, a ProgrammablE virtuAl Router pLatform with relatively high-performance. It offers high 
flexibility by allowing users to control the configuration of both hardware and software data paths. The platform 
makes use of fast lookup in hardware and software exceptions in commodity multi-core CPUs to achieve high speed 
packet processing. Multiple isolated packet streams and virtualization techniques ensure isolation among virtual router 
instances.  

INTRODUCTION 
 Deploying, experimenting and testing new protocols and systems over Internet have always been a major issue. 
While, one could use simulation tools for the evaluation of a new systems aimed toward large-scale deployment, real 
experimentation in experimental environment with realistic enough settings, such as real traffic workload and 
application mix are mandatory. Therefore easy programmable platforms that can support high-performance packet 
forwarding and enable parallels deployment and experiment of different research ideas are highly demanded. 

Moreover, we are moving toward a future Internet architecture that seems to be polymorphic rather than 
monolithic, i.e., the architecture will have to accommodate simultaneous coexistence of several architectures (like the 
Named Data Network (NDN) [1], etc.) including the current Internet. Therefore future Internet should be based on 
platforms running different architectures in virtual slices enabling independent programming and configuration of 
functions of each individual slice. 

Current commercial routers, the most important building blocks for Internet, while attaining very high 
performance, offer only a very limited access to the researchers and developers to their internal component to 
implement and deploy innovative networking architecture. In contrast open software based routers naturally facilitate 
the access and adaptation of almost all their component however with a frequently low packet processing 
performance. 

As an example, recent OpenFlow switches provides flexibility by allowing programmers to configure the 
10-tuple of flow table entries, enabling the change of packet processing of a flow. OpenFlow switches are not ready 
for non-IP based packet flows, such as NDN. Moreover, while the switches allow a number of slices for different 
routing protocols through the FlowVisor, the slices are not isolated in terms of processing capacity, memory and 
bandwidth.  

Motivated by these facts, we have designed and built a ProgrammablE virtuAl Router pLatform, PEARL that can 
guarantee high performance. The challenges are two-fold: first to manage the flexibility vs. performance trade-off that 
translates into pushing functionality to hardware for performance vs. programming them in software for flexibility, 
second to ensure isolation between virtual router instances both in hardware and software with low performance 
overhead.  



This article describes the PEARL router’s architecture, its key components and the performance results. It shows 
that PEARL meets the design goals of flexibility, high performance and isolation. In the next section, we describe the 
design goals of the PEARL platform. These goals can be taken as the main features of our designed platform. We then 
detail the design and implementation of the platform, including both hardware and software platform. In the next 
section, we evaluate the performance of a PEARL based router using the Spirent TestCenter by injecting into it both  
IPv4 and IPv6 traffic. Finally, we briefly summarize the related works, and conclude the paper. 

DESIGN GOALS 
In the past few years, several future Internet architectures and protocols at different layers have been proposed to 

cope with the challenges that the current Internet faces [1]. Evaluating the reliability and the performance of these 
proposed innovative mechanisms is mandatory before envisioning a real scale deployment. Besides theoretically 
evaluating the performance of a system and simulating these implementations, one needs to deploy them in a 
production network with real user behavior, traffic workload, resource distribution, and applications mixture. 
However, a major principle in experimental deployment is the "No harm" principle that states that normal services on 
a production network should not be impacted by the deployment of a new service. Moreover, no unique architecture 
or protocol stack will be able to support all actual and future Internet services and we might need specific packet 
processing for given services. Obviously, a flexible router platform with high-speed packet processing ability and 
support of multiple parallel and virtualized independent architectures is extremely attractive for both Internet research 
and operation.  Based on this observation one can define isolation, flexibility, and high performance as the needed 
characteristics and the design goals of a router platform future Internet. 

In particular, the platform should be able to cope with various types of packets including IPv4, IPv6, even non-IP 
and be able to apply packet routing as well as circuit switching. Various software solutions like Quagga or XORP [2] 
have provided such flexible platform that is able to adapt their packet-processing components as well as to customize 
the functionalities of their data, control and management planes. However, these approaches fail to be fast enough to 
be used in operational context where a wire-speed is needed. Nevertheless, by adding and configuring convenient 
hardware packet processing resources such as FPGA, CPU cores and memory storage one can hope to meet the 
performance requirements. Indeed, flexibility and high performance are in conflict in most situations. Flexibility 
requires more functionalities to be implemented in software to maximize the programmability. On other hand, high 
performance cannot be reached in software and needs custom hardware. A major challenge for PEARL is to allocate 
enough hardware and multi-cores in order to achieve both flexibility and high performance. 

Another design goal is relative to isolation. By isolation we mean a mechanism that enables different 
architectures or protocols running in parallel on separate virtual router instances without impacting each other 
performances. In order to achieve isolation, we should provide a mechanism that will ensure that one instance can 
only use its allocated hardware (CPU cores and cycles, memory, resources, etc.) and software resources (lookup 
routing tables, packet queue, etc.) and is forbidden to access resources of other instances even when they are idle. We 
need also a dispatching component that will ensure that IP or non-IP packet are delivered to specified instances 
following custom rules defined over MAC layer parameters, protocols, flow label or packet header fields. 

 
The PEARL offers high flexibility through the custom configurations of both hardware data path and software 

data path. Multiple isolated packet streams and virtualization techniques enable the isolation among virtual router 
instances, while the fast lookup hardware provides the capacity to achieve high performance 



PLATFORM DESIGN AND IMPLEMENTATION 

A. System Overview 

PEARL uses commodity multi-core CPUs hardware platforms that run generic softwares as well as specialized 
packet-processing cards for high performance packet processing as shown in Figure 1. The virtualization environment 
is build using the Linux-based LXC solution. This enables multiple virtual router instances to run in parallel over a 
CPU core or one router instance over multiple CPU cores. Each virtual machine can be logically viewed as a separate 
host. The hardware platform contains a FPGA-based packet processing card with embedded TCAM and SRAM. This 
card enables fast packet processing and strong isolation. 
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Figure 1 Overview of the PEARL architecture 

Isolation. PEARL implements multiple simultaneous fast virtual data planes by allocating separate hardware 
resources to each virtual data plane. This facilitates strong isolation among the hardware virtual data planes. Moreover, 
LXC takes advantage of a group of the kernel feature (namespace, Cgroup) to ensure isolation in software between 
virtual router instances. A multi-stream high-performance DMA engine is also used in PEARL, which receives and 
transmits packets via high-speed PCI Express bus between hardware and software platform. Each IO stream can be 
either assigned to a dedicated virtual router or shared by several virtual routers using a net IO proxy. 

Flexibility. We use TAP/TUN device as the network interface in each virtual machine. Each virtual machine 
could be considered as a standard Linux host containing multiple network ports. Thus, the IPv4, IPv6, OpenFlow, 
even Non-IP protocol stack can be easily loaded. Adding new functions to router is also convenient though 
programming Linux applications. For example, to load IPv4 or IPv6, Quagga routing software suite can be used as the 
control plane inside each Linux container.  

High performance. The operations of routing table lookup and packets dispatch to different virtual machines 
are always the performance bottleneck. PEARL offloads these two operations into hardware to achieve high speed 
packet forwarding. In addition, since LXC is a light-weight virtualization technique with low-overhead, the 
performance is further improved. 

B. Hardware Platform 

To provide both high performance and strong isolation in PEARL, we design a specialized packet processing 
card. Figure 2 shows the architecture of hardware data plane. It’s a pipeline-based architecture, which consists of two 



main data paths: the transmitting and the receiving data path. The receiving data path is responsible for processing the 
ingress packets and the transmitting data path processes the egress packets. In what follows, the processing stages of 
the pipeline are detailed. 

 
Header Extractor. For each incoming packet, one or many fields are extracted from the packet header. These fields 
are used for virtual router ID (VID) lookup in the next processing stage. For IP-based protocols, a 10-tuple, defined 
following OpenFlow [3], is extracted, while for non-IP protocols, the MAC address is extracted. 

 

Figure 2: The architecture of PEARL’s hardware data plane  

VID Lookup. Each virtual router in the platform is marked by a unique VID. This stage classifies the packet based on 
the fields extracted in the previous stage. We use a TCAM for the storage and lookup of the fields, which can be 
configured by the users. Due to the special features of TCAM, each field of the rules in VID lookup table can be a 
wildcard. Hence, PEARL can classify packets of any kind of protocol into different virtual routers as long as they are 
Ethernet based, such as IPV4, IPv6 and non-IP protocols. The VID lookup table is managed by a software controller 
which enables users to define the fields as needed. The VID of the virtual router to which a packet belongs is 
appended on the packet as a custom header. 
 
Routing Table Lookup. In a network virtualization environment, each virtual router should have a distinct routing 
table. Since there are no standards for non-IP protocols until now, we only consider the storage and lookup of routing 
tables for IP-based protocols in hardware. It is worth noting that routing tables for non-IP protocols can be 
accommodated through FPGA in the cards.  

Given limited hardware resources, we implement four routing tables in current design. The tables are stored in 
TCAM as well. We take the VID combined with destination IP address as search key. The VID part of the key is 
performed exact matching and the IP part is performed the longest prefix matching in TCAM. Once a packet matches 
in the hardware, it needn’t be sent to the kernel for further processing, greatly improving the packet forwarding 
performance.  

For non-IP protocols or the IP-based protocols that are not accommodated in the hardware, we integrate a CPU 
transceiver module. The module is responsible for transmitting the packet to the CPU directly without looking up 
routing tables. Whether a packet should be transmitted by the CPU transceiver module is completely determined by 
software. With the flexibility offered by the CPU transceiver module, it’s easy to integrate more flexible software 
virtual data planes into PEARL. 
 



Action Logic.  The result of routing table lookup is the next hop information, including output card number, output 
port number, the destination MAC address and so on, which is stored in a SRAM-based table. It defines how to 
process the packet, so it can be considered as an action associated with each entry of the routing tables. Based on the 
next hop information, this stage performs some decisions such as forwarding, dropping, broadcasting, decrementing 
TTL or updating MAC address.  
 
Multi-stream DMA Engine. To accelerate the IO performance and to greatly exploit the parallel processing power of 
multi-core processor, we design a multi-stream high-performance DMA engine in PEARL. It can receive packets of 
different virtual routers from the network card to different memory regions in the host, and transmit packets in the 
opposite direction via high-speed PCI Express bus. From a software programmer’s perspective, there are multiple 
independent DMA engines, and the packets of different virtual routers are directed into different memory regions, 
which is convenient and lockless for programming. Meanwhile, we make a tradeoff between flexibility and high 
performance of DMA transfer mechanism, and carefully redesign the DMA engine in FPGA. The DMA engine can 
transfer packets to the pre-allocated huge static buffer at contiguous memory locations. It greatly decreases the 
number of memory accesses required to transfer a packet to CPU. Each packet transported between the CPU and the 
network card is equipped with a custom header, which is used for carrying processing information to the destination, 
such as the matching results. 
 
Output Scheduler. The egress packets sent back by the CPU are scheduled based on their output port number, which 
is a specific field in the custom header of the packet. Each physical output port is equipped with an output queue. The 
scheduler puts each packet in the appropriate output queue for transmitting. 

C. Software Platform 

 Our software platform of PEARL consists of several components, as shown in Figure 3. These include vmmd, to 
provide the basic management functions for the virtual routers and the packet processing cards; nacd, to offer a 
uniform interface to the underlying processing cards outside the virtual environment; routed, to translate the 
forwarding rules generated by the kernel or user applications into a uniform format in each virtual router, and install 
these rules into the TCAM of the processing cards; netio_proxy, to transmit the packets between the physical 
interfaces and virtual interfaces, and low_proxy, to dispatch packets into low priority virtual routers which shares one 
pair of DMA Rx/Tx buffers. With different configuration and combination of these programs, PEARL can generate 
different types of the virtual routers to achieve flexibility.  
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Figure 3  Packet path in the software 



There are two types of virtual routers in our PEARL: the high and low priority virtual routers. Each high-priority 
virtual router is assigned with one pair of DMA Rx/Tx buffers, and an independent TCAM space for lookup. With the 
high-speed lookup based on TCAM, and efficient IO channels provided by the hardware, the virtual router can 
achieve the maximum throughput in PEARL platform. For low-priority virtual routers, all the virtual routers share 
only one pair of DMA Rx/Tx buffers and they can’t utilize TCAM for lookup. The macvlan mechanism is adopted to 
dispatch packets between multiple virtual routers. The applications inside the low priority virtual routers can use the 
socket APIs to capture packets from the virtual interfaces. Note that each packets needs to go through at least 2 times 
context switch (system calls) during the transmission to the user application, resulting in a relatively low IO 
performance. 

 
We take IPv4 and IPv6 as two Internet protocols to show how the virtual routers can be easily implemented on 

the PEARL.  
High-priority IPv4 virtual router. To create a high-priority IPv4 virtual router in our platform, the vmmd process 
first starts a new Linux container with several virtual interfaces, and collects the MAC address of each virtual 
interface, installs these addresses in the underlying cards via the nacd process, so that the hardware can identify the 
packets heading to this virtual router, and copy the packet into the certain DMA Tx buffer which assigned to this 
virtual router. 

Then, the routed process is launched in the new container. It extracts the routes through the NETLINK socket 
inside the virtual router and installs routes and the forwarding action in hardware, so the hardware can fill a little 
structure in the memory to notify the netio_proxy process when a packet match a route in TCAM. The netio_proxy 
process delivers the packets either to the virtual interface or directly to the physical interface according to the 
forwarding action in memory. 

For example, most of time, normal packets will match a route in the hardware. When the netio_proxy receive 
these packets, it will directly send them through a DMA Tx buffer. An ARP request packet will not match any rules in 
the TCAM, the netio_proxy process will deliver this packet to the virtual interface, receive the corresponding ARP 
reply packet from the virtual interface, and then send it to the physical interface. 

 
Low-priority virtual router. To create low priority virtual routers, a tap device is set up by the vmmd process (tap0). 
Low priority virtual routers are configured to share the network traffic of this tap device through the macvlan 
mechanism. The low_proxy process acts like a bridge, transmitting packets between DMA buffers and the tap device 
in both directions. Notes that the MAC addresses of the virtual interfaces are generated randomly, we can encode the 
MAC addresses to identify virtual interface where the packet comes from. For example, we can use the last byte of the 
MAC address to identify the virtual interfaces, if the low_proxy process receives a packet with source MAC address 
02:00:00:00:00:00, it knows that the packet is from the first virtual interface in one of the low priority virtual routers, 
and transmits the packet to the first physical interface immediately.  We adopted this method in the low_proxy 
process and vmmd process, and use the second byte to identify the different low virtual routers. It not only saves the 
time consumed by the inefficient MAC hash lookup to determine where the packet comes from, but also saves the 
space in TCAM, because all the low priority virtual routes only need one rule in TCAM (02:*:00:00:00:*). 
 
IPv4/IPv6 virtual router with kernel forwarding. In this configuration, the routed process does not extract the 
route from the kernel routing table; instead, it enables the ip_forward options of the kernel. As a result, all packets 
will match the default route in TCAM without the forwarding action. The netio_proxy process transmits all these 
packets into the virtual interfaces, so that the kernel will forward the packet instead of the underlying hardware. The 



tap/tun device is used as the virtual interface. Since the netio_proxy is a user space process, each packet needs two 
system calls to complete the whole forwarding. 
 
User-defined virtual router. User-define packet process procedure can be implemented as a plug-in loaded by the 
netio_proxy process, which makes the PEARL extensible. We opened the basic packet APIs to the users, such as 
read_packet(), send_packet(). Users can write their own process module in C Language, and runs it in the independent 
virtual routers. For the light-weight applications which do not need to deal with huge amount of network traffic, users 
can also write a socket program in either high or low priority virtual routers.  

EVALUATION AND DISCUSSION 
We implemented PEARL prototype using a common server with our specialized network card. The common 

server is equipped with a Xeon 2.5GHz 64-bit CPU and 16G DDR2 RAM. The OS-level virtualization techniques 
Linux Containers (LXC) is used to isolate the different virtual routers (VR). 
 In order to demonstrate the performance and flexibility of PEARL, our implementation is evaluated in three 
different configurations: high performance IPv4 virtual router, kernel forwarding IPv4/IPv6 virtual router, and IPv4 
forwarding in low priority virtual router. 

We conducted 4 independent sub-networks with Spirent TestCenter to measure the performance of the three 
configurations in 1-4 VRs. Three different length of packet (64, 512 and 1518) is used (for IPv6 packet, the packet 
length is 78, 512 and 1518. 78 bytes is the minimal IPv6 packet length supported by TestCenter). 
Figure 4 shows the throughputs of an increasing numbers of VRs using configuration 1. Each virtual data plane has 
been assigned with a pair of DMA RX/TX buffers, and the independent routing table space in the TCAM, resulting in 
an efficient IO performance and a high speed IP lookup. The result shows, when the number of the VR reaches to 2, 
the throughput of minimal IPv4 packet of PEARL is up to 4Gbps, which is the maximum theatrical speed of our 
implementation.  
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Figure 4 Throughput of high performance IPv4 virtual routers 

Figure 5 illustrates the throughputs of an increasing numbers of VRs using configuration 2. Each virtual data 
plane has the same configuration with Configuration 1, except that there is no virtual data plane has its own routing 
space in TCAM. In Figure 5, the throughput of minimal IPv4/IPv6 packet forwarding is only 100Mbps when there is 
only one VR. It’s because we used the original kernel for the packet forwarding, each packet needs to go through 2 
times context switch and 3 times memory copy in our design. We can optimize this by re-implement the forwarding 
functions as a plug-in in the netio_proxy process in VR.  
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Figure 5 Throughput of kernel forwarding IPv4/IPv6 virtual routers 

 Figure 6 show the throughputs of an increasing numbers of low priority VRs using configuration 3. Low priority 
VRs shares only one pair of DMA TX/RX IO channel and can’t take advantage of TCAM to speed up the IP Lookup. 
It can be used to verify the applications which handle little traffic (new routing protocols etc). 
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Figure 6 Throughput of low priority IPv4 virtual routers 

 We can see from the results, the total throughputs of the minimal IPv4 packet remains 60Mbps as the number of 
VR increases. The macvlan mechanism used for the sharing of the network traffic between multiple VRs results in a 
long kernel path for the packet processing, so the total performance is even lower than the IPv4 kernel forwarding in 
the Configuration 2. We can improve the performance by developing a new mechanism that suit for our case. 

RELATED WORK 
Recent researches, such as vRouter Project [4], RouteBricks [5] and PacketShader [6], have exploited the 

tremendous power of modern multi-core CPUs and multi-queue network interface cards (NICs) to build 
high-performance software routers on commodity hardware. Memory latency or IO performance becomes the 
bottleneck for small packets in such platforms. Due to the complexity of DMA transfer mechanism in commodity 
NICs, the performance of high speed PCI Express bus is not fully exploited. Meanwhile, the traditional DMA transfer 
and routing table lookup result in multiple memory accesses. In PEARL, we simplify the DMA transfer mechanism 
and redesign the DMA engine to accelerate IO performance, and offload the routing table lookup operation to the 
hardware platform.  

OpenFlow [3] enables rapid innovation of various new protocols, and divides the function into control plane and 
data plane. OpenFlow provides virtualization through flowvisor, without isolation in hardware. In contrast, PEARL 
hosts multiple virtual data plane in hardware itself, which could offer both strong isolation and high performance.  



SwitchBlade [7] builds virtualized data plane in FPGA-based hardware platform. It classified packets based on 
MAC address. PEARL, on the other hand, dispatches packets into different virtual routers based on the 10-tuple. With 
the flexibility of the 10-tuple and wildcard, PEARL has the capability to classify packets based on the protocol of any 
layer. Moreover, in PEARL, all packets are transmitted to the CPU for switch.  
 The Supercharged Planetlab Platform (SPP) [8] is a high performance, multi-application, overlay network 
platform. SPP utilizes the network processor (NP) to enhance the performance of traditional Planetlab [9] nodes. SPP 
divides the whole data plane functions into different pipeline stages on NP. Some of these pipeline stages can be 
replaced by custom code, resulting in an extensible packet processing. However, the flexibility and isolation of SPP is 
limited due to the inherent vendor-specific architecture of NP. PEARL takes advantage of the flexibility and full 
parallelism of FPGA to run multiple high-performance virtual data planes in parallel, while keeping good isolation in 
fast data path. 
 CoreLab [10] is a new network testbed architecture that supporting full-featured development environment. It 
enables excellent flexibility by offering researchers a full-virtualized environment on each node for whatever 
arrangement. PEARL can support the similar flexibility in software data path. Meanwhile, PEARL offers a high 
performance hardware data path for the performance-critical virtual network applications. 

CONCLUSIONS 
We aim at flexible routers to bridge the gap between new Internet protocols and the practical test, deployment. 

To this end, this work presents a programmable virtual router platform, PEARL. The platform allows users to easily 
implement new Internet protocols and run multiple isolated virtual data planes concurrently. A PEARL router consists 
of a hardware data plane and a software data plane with DMA engines for packet transmission. The hardware data 
plane is built on top of a FPGA based packet processing card with TCAM embedded. The card facilitates fast packet 
processing and IO virtualization. The software plane is built by a number of modular components and provides easy 
program interfaces. We have implemented and evaluated the virtual routers on the PEARL. 
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