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ABSTRACT

A Brain-Computer Interface (BCI) is a specific type of
human-machine interface that enables communication
between a subject/patient and a computer by a direct
control from the decoding of brain activity. To improve
the ergonomics and to minimize the cost of such a BCI,
reducing the number of electrodes is mandatory. A the-
oretical analysis of the subjacent model induced by the
BCI paradigm leads to derive a closed form theoreti-
cal expression of the spatial filters which maximize the
signal to signal-plus-noise ratio. Moreover, this new for-
mulation is useful to improve a previously introduced
method to automatically select relevant sensors. Exper-
imental results on 20 subjects show that the proposed
method is efficient to select the most relevant sensors:
from 32 down to 8 sensors, the loss in classification accu-
racy is less than 2%. Furethermore, the computational
time required to rank the 32 sensors is reduced by a 4.6
speed up factor allowing dynamical monitoring of sensor
relevance as a marker of the user’s mental state.

1. INTRODUCTION

Brain-Computer Interfaces (BCI) are devices which en-
able direct communication between the user’s brain and
a computer without requiring any movement, e.g., by
recording electroencephalography (EEG) activity [13].
The BCI problem addressed in this paper concerns the
P300-speller, which enables people to write text on a
computer [3]. It is based on the oddball paradigm: the
task is to discriminate between epochs containing a P300
potential evoked by a (rare) target stimulus and epochs
associated with the (frequent) non-target stimuli. This
well-known paradigm to explore the brain activity in
cognitive science [8] allows us to propose an efficient
model of the recorded signals. These latter signals are
thus composed of two typical patterns plus an additive
noise which models the ongoing brain activity as well as
all the artifacts (e.g., muscular, ocular). The first pat-
tern is evoked by the target stimuli and the second one is
evoked by all the stimuli (target and non-target ones).
As already shown [10, 9], this model is useful to pro-
vide an accurate estimation of spatial filters to enhance
target evoked potentials by maximizing the signal to
signal-plus-noise ratio (SSNR). However, these studies

lack an analysis to express the estimated spatial filters
theoretically.

Moreover, the reduction of the number of EEG sen-
sors is of a great interest to improve the real-life BCI
ergonomics. Indeed, using a large number of electrodes
is undesirable since it increases the discomfort of the pa-
tient, the time needed to install the whole system, its
global cost as well as the power consumption for wire-
less EEG caps and nomad systems. However, only a
few studies have focused on sensor selection so far (e.g.,
[6, 11, 5, 12]). In a previous study [2, 1], we proposed
a more efficient sensor selection procedure than classi-
cal ones by considering signal to signal-plus-noise ratio
(SSNR) instead of the classical classification accuracy.

In this study, a theoretical analysis of the model of
the evoked potential paradigm is derived in the case of
a P300 speller BCI to give the theoretical expression
of the estimated spatial filters. Moreover, this analysis
allows us to implement the sensor selection procedure
in an elegant and more efficient way than in previous
studies.

2. THEORETICAL ANALYSIS OF XDAWN
ALGORITHM

In this section, the principles of the xDAWN algorithm
are briefly reprised [10, 9] and a new theoretical analysis
of it is derived. This method relies on two assumptions:
e i) signal is composed of two typical patterns, one
evoked by the target stimuli and one evoked by all
stimuli (target and non-target ones);
e ii) patterns evoked by the target stimuli could be
enhanced by spatial filtering.
Let X € RM*Ns denote the recorded signals, where NN,
and N, are the number of samples and sensors, respec-
tively. The patterns synchronized with the target and
non-target stimuli are denoted by P; € RN *Ns and
P, € RV2XNs regpectively. As a consequence, the first
assumption allows to write the recorded signals X as

X =D1Pi+ D3P, + N, (1)

where D; € RV >Nt and Dy € RYNXN2 gre Toeplitz ma-
trices whose first column entries are set to zero except
for those that correspond to target stimuli time indexes



and all stimuli time indexes, respectively. N; and Ns
indicate the number of time samples in responses P;
and P,. N € RN+*Ns denotes the residual noise. Un-
der the assumption that the target pattern P; is mono-
dimensional, P; can be factorized as P, = alw? where
a; € RM is the temporal pattern and w; € R™s is its
spatial distribution over the sensors.

The aim of the xDAWN algorithm is to estimate a
spatial filter u} € R™: so that the SSNR after the spatial
filtering is maximized

u] = argmax p(u) (2)
u

where the SSNR is defined by

ul’Su
p(u) = arsu’ (3)
with ¥y = E[PIDTD,P] and ©x = E[XTX]. From
model (1) and under the assumption that pattern P; and

concurrent signals H = Dy P> + N are not correlated,
SSNR p(u) can be rewritten as

o2(uTw,)?

u” (octwiw! + Ry)u

p(u) = :
with Ry = E[HTH] and 0} = E[al DI Dja;]. In a
practical way, since covariance matrices 7 and X x are
unknown, xDAWN algorithm maximizes the estimated
SSNR

a; = arg max p(u) (4)

where p(u) is defined by

uTilu
(u) = ———, 5
o) = T (5)
with £y = (PTDTD,P)/N;, $x = (XTX)/N,. Note
that P, is the least mean square estimation of the un-
known target evoked response P;. Since Dy P; and D5 P

could overlap, Py is estimated from

(1?1) — (D"D) ' DTX,
P,

with D = [Dy, D], Py is thus estimated by P, = BT X.
From the definition of estimated SSNR (5), the spa-
tial filter is given by 1; = R)_(l\?l where

TNHT T T
Vi QXBlRl RlBl Qle
viv,

Vi = arg max
Vi

and X = QxRx and D; = QiR; are the QR [4]
factorizations of X and Di, respectively. v is ob-
tained from the singular value decomposition (SVD) [4]
of RiBTQx = ®AVT as the right singular vector 1,
corresponding to the largest singular value. As a conse-
quence,

U = Ryl (6)

Moreover, one can rewrite ]51 = R;1<PA\IITRX. Since
P, =BYX = BI'D, P, + B H, w; is thus estimated as

Wy = R\, (7)

The enhanced signal is finally given by

VAN N N N A
Sl = Xul = D1A1u1 + DQAgul + Nul. (8)

In a practical way, since the two QR factorizations
and the SVD can be computationally time consum-
ing, the spatial filter 1; can be efficiently estimated by
the generalized eigenvalue decomposition (GEVD) [4] of

pair (21, ix) such that
Siiy = A Sy, 9)

where \; = p(1) is the largest generalized eigenvalue
and 1, is the associated eigenvector. As a consequence,
from (6) and (7) Wy can be expressed as W1 = RY Ry
so that .

w1 = Xxy, (10)

with Gy obtained from (9).

3. APPLICATION TO AN EFFICIENT
SENSOR SELECTION

In the previous section, the theoretical analysis of the
xDAWN algorithm allows to efficiently estimate the spa-
tial filter and the spatial distribution related to the tar-
get evoked potentials. This section describes how to
exploit this theoretical analysis to select efficiently and
elegantly relevant sensors in a P300 speller BCI.

The algorithm to adaptively select relevant sensors is
based on a recursive sensor elimination (backward elimi-
nation). Let us denote by Z the set of M remaining sen-
sors to be ranked at the j-th iteration of the backward
elimination (i.e. M = card(Z)). Each of the M remain-
ing sensors is dropped alternatively and yields a perfor-
mance score based on testing the subset Z_;) = T\ {i}
made of the remaining M — 1 sensors (\ is the minus
set operator). Then, selecting the subset with the high-
est score pz_, means that the least relevant sensor is
eliminated

i = . 11
(= argmaxpr_, (11)

The rank of this sensor (z) is defined by N, — j where
j is the iteration number at which the sensor has been
dropped. This recursive procedure is pursued until all
sensors have been eliminated, one by one. We thus ob-
tain an ordering of all sensors according to their rele-
vance to the task.

Classical methods used classification accuracy as
performance score: for each iteration and each subset,
a classifier is trained and the performance score is the
classification accuracy achieved on a test database (i.e.
using different data than those used to train the classi-
fier to avoid over-fitting). The major drawback of this
approach is its need for a large amount of data to train
and to test the classifiers to avoid over-fitting. As a
consequence, the ranking procedure of the sensors is
computationally cumbersome and time consuming. To



overcome these drawbacks, we have proposed to use the
estimated SSNR (5) as the performance score [2, 1] since
this criterion has been proved to be more efficient to se-
lect relevant sensors.

In this study we propose to simplify the estimation of
the estimated SSNR (5) by avoiding the GEVD compu-
tation for each sensor subset and at each computational
step of the backward elimination which turns out to be
highly time consuming. Indeed, from (10) the SSNR. (3)
can be expressed as

p() = oIWT Ex1 w1, (12)

As a consequence, to rank j-th sensor, one has to
compute for all ¢ € Z the SSNR pz,_,  given by

T\ T (T L/ . Ts
pI( L)_O-1< “ )) (EXE )> (Wl( ))a (13)

T

STy - .
vector wj (resp. % ~") is defined from Wy (resp.

by x) by selecting components in Z(_;). Furthermore,
since o7 is independent of spatial filter 1; and remains
invariant at each step of the backward elimination, it can
be omitted to compute (13), which thus only requires the
estimations of w; and )y x. To avoid the computation
of the inverse of matrix 35" for each tested subset of
sensors, one can use the following trick, where for sake
of simplicity 3%, 57, w7 and w, " are denoted %,
Yy, wand w_y respectlvely Let us permute the
i-th and last columns and rows of ¥ (resp. the i-th
and last rows of w) and denote the new matrix by ¥’
(resp. w’). Furthermore, let us decompose ¥’ and w’
into block matrices such that

PR DXEE I r_ (W)
> = [ vl 7 W w

with $(_;) € RM-DxM=1) "y, ¢ RM=1 and w(_;) €
RM=1 As a consequence, the highest theoretical
SSNR (13) obtained when the i-th sensor has been
dropped is given by
2T -1
PI ) =01 W(ii)z(_i)W(,i).

The matrix inversion lemma will enable us to avoid the
computing of the inverse of ¥(_;) for each tested subset:

A Byt i R E(_ i
- ' A/z -, E( o Ti -, E( T
R 1z> 1
'y -, E( o Ti Vf—r?Z(ji)ri

Indeed, since

1 _
i halE)
o=\ T —rTZ( i

(e (o
%‘2 - r?E(ji)ri %‘2 - rzrz(,li)ri
1
(WQ - riTE(_—lnrl‘)

where each term in the latter expression are blocks of
5", the inversion of ¥’ allows to compute pr_, (13)
for each of the possible M subsets composed of (M — 1)
sensors as

bTW —q 2
PI o = W AW( i) = ¥’ (14)
where A
I~ b
= =[5 Y

with A € RIM-Dx(M-1) ', ¢ RM-1 and ¢ € R. Note
that the columns and rows of ¥ " are reordered to de-
fine A, b and c for each subsets Z(_;) composed of M —1
sensors (i € T).

The complete backward elimination procedure to
rank the sensors is summarized in algorithm 1.

Algorithm 1 Efficient sensor selection algorithm.
Initialization of the full set of sensors Z = {1,--- , Ny}
Estimation of ¥% < ¥x and w7 < w; (10)
for j = N, to 2 do

Compute inverse of ¥% = (fgg)fl
from (14)

for each i € 7 do

Compute pz_,
end for .
Estimate the less significant sensor ¢ as (11)
Exclude this sensor: Z < Z_;

7
UpdateEI eE M andw ew(”

Rank removed sensor i: r(z) =N;—3
end for

4. RESULTS

4.1 Data acquisition, pre-processing and classi-
fication

Data were recorded from 20 healthy subjects [7]. Data
from two separate sessions were considered: one dataset
to select the most relevant sensors and to train the spa-
tial filters and classifier, the second dataset to test the
approach and evaluate the classification accuracy. In the
training and test sessions, each subject had to write 50
and 60 predetermined symbols, respectively. Each row
and column in the spelling matrix was randomly inten-
sified for 100ms and the delay between two consecutive
intensifications was 80ms, leading to an interstimulus in-
terval of 180ms. The spelling of each symbol was based
on 10 consecutive repetitions (Nepoer, = 10).

EEG signals were initially sampled at 100Hz. Data
preprocessing included a fourth order bandpass filter be-
tween 1Hz and 20Hz.

Among the proposed classifiers that are consid-
ered for BCIs, Bayesian linear discriminant analysis
(BLDA) [5] is chosen since it has been shown to be ef-
ficient. The feature vector p here corresponds to the
concatenation of all time-course samples in the enhanced
signals. The discriminant vector d is estimated from the
set of pairs {p;,t; }1<j<12N.N,poen ODtained from the N,
symbols in the training database, where ¢; is the class
index associated with the corresponding feature vector.
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Figure 1: Average classification accuracy after 10 repe-
titions with respect to the number of selected sensors.

4.2 Sensor selection

In this section, the influence of the computational
method to select sensors is assessed. It is worth noting
that comparison with other methods of sensor selection
is not addressed in this study since it has already been
proven that this procedure is at least as efficient as more
classical ones [1].

Results of experiments are compared for three dif-
ferent performance score functions to rank the sensors.
Let us refer to the classical method “Reference”, which
computes the GEVD at each step of the backward elim-
ination and for each subset of sensors. This method
is compared to the proposed method (labelled “The-
oretical 17). Finally, to quantify the influence of the
inversion matrix lemma, a third method (“Theoretical

2”), which explicitly computes the inverse of f]f((_”, is
implemented.

Figure 1 presents the classification accuracy versus
the number of selected sensors. Obviously, the more sen-
sors there are, the better the performance are. However,
the number of sensors can be drastically decreased with-
out a significant decreased of performance: e.g., with 10
repetitions, from 32 sensors to 8 sensors the decrease of
performance is limited to 2% (96% to 94%) which re-
mains acceptable for a BCI use. If only the best 75% of
subjects are considered, from 32 sensors to 4 sensors the
loss in classification accuracy is about 1%. Fortunately,
this figure exhibits that the three methods provide quite
similar rankings but not exactly the same: a t-test shows
that at the 1% significance level there is no significative
difference (p-value=.10 and .11 by comparing ‘theoreri-
cal’ methods to ‘reference’). Fig. 2 details the classifi-
cation accuracy for each subject. The results achieved
with subjects 5, 12 and 17 are slightly different between
the theoretical prediction and the practical selection.
However these differences are not significant in average
(the three curves are largely overlapped). This latter
remark is confirmed by a pairwise two-tail t-test com-
parison which indicates that there is no significant differ-
ences between the three conditions (‘theoretical 1, ‘the-
oretical 2’ and ‘reference’) since the null hypothesis is
rejected. The slight differences can be explained by the
fact that the theoretical SSNR (3) is derived from ideal
covariance matrices ¥; and Y x which thus suppose per-
fect estimation of w; and Y x while in practice we only
have estimation of these parameters (10). Nevertheless,

Time (ms) Speed up
Ref. Old | 150037 £+ 3189 1
Ref. 392 £+ 9 383
Theo. 1 85 = 1 1765
Theo. 2 153 £+ 6 981

Table 1: Average computational time to rank sensor for
one subject plus or minus the standard deviation.

a t-test shows that this slight difference is not significa-
tive at the 1% significance level (p-value=0.43). Finally,
this result is evidence that the proposed model (1) and
the xDAWN algorithm used to estimate model param-
eters are successful since for almost all the subjects the
sensors selected by the practical way are the same as
those predicted by the theoretical analysis.

Table 1 reports the average computation time to
complete the full backward elimination procedure to
rank all the 32 sensors for one subject. In this table an
additional method is added (“Reference Old”): it cor-
responds to the classical method which computes the
two QR factorizations and the SVD at each step of the
backward elimination. As one can see, the reformula-
tion of the estimation of the SSNR by a GEVD instead
of two QR and a SVD is definitively faster since it allows
an impressive 383 speed up factor compared to previous
implementations. Moreover, the theoretical analysis of
the xDAWN algorithm addressed in this study decreases
the computational time even more. Indeed, the theoret-
ical method provides a speed up factor of 1765 com-
pared to ‘Ref. Old’ (equivalent to a speed up factor of
4.6 compared to ‘Ref’) leading to a sensor ranking in
less than 100ms on a standard PC (3GHz with Matlab
R2009b). Moreover, the use of the inverse matrix lemma
(“Theoretical 1”) as explained in Section 3 allows fur-
ther speed up the selection by a factor 1.8 compared to
explicit computation of the inverse matrix (“Theoretical
2”). It is worth mentioning that with the new theoret-
ical approach, only 85ms are necessary to rank the 32
sensors with an amount of about 20 minutes of data,
while with the old implementation more than 2 minutes
are required. This latter remark shows that it is now
possible to monitor the influence of each sensor in real
time which can be useful to provide a feedback to the
user.

5. CONCLUSION AND PERSPECTIVES

In this study a theoretical analysis of the xDAWN algo-
rithm has been addressed. The survey of the subjacent
model in the P300 brain computer interface leads first to
a more efficient implementation of the estimation of the
spatial filters thanks to a generalized eigenvalue decom-
position instead of two QR factorizations and a singular
value decomposition. Moreover, this analysis provides
an efficient implementation of the backward elimination
to select sensors in the P300 speller BCI. This approach
selects sensors such that the SSNR used as performance
score function is the highest after the spatial filtering
(xDAWN algorithm [9, 10]). The analysis of the model
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Figure 2: Comparison of the classification accuracy with 5 repetitions and 8 selected sensors.

in the P300 BCI leads to a theoretical prediction of this
performance score function. This new theoretical imple-
mentation allows to speed up the backward elimination
by a 4.6 factor compared to the classical direct estima-
tion. This result is crucial in a real-life BCI since sensor
selection is a very challenging aspect of BCI. Finally,
this result also allows to dynamically manage the rele-
vance of each sensor. For instance, to provide a real-time
feedback of the importance of each sensor to track non-
stationary process and could be used as an attentional
marker.
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