
HAL Id: hal-00619996
https://hal.science/hal-00619996

Submitted on 20 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Sub-quadratic Sequence Alignment Algorithm for
Unrestricted Cost Matrices

Maxime Crochemore, Gad M. Landau, Michal Ziv-Ukelson

To cite this version:
Maxime Crochemore, Gad M. Landau, Michal Ziv-Ukelson. A Sub-quadratic Sequence Alignment Al-
gorithm for Unrestricted Cost Matrices. Proceedings of the Thirteen Annual ACM-SIAM Symposium
on Discrete Algorithms, 2002, United States. pp.679-688. �hal-00619996�

https://hal.science/hal-00619996
https://hal.archives-ouvertes.fr


A Sub-quadrati
 Sequen
e Alignment Algorithmfor Unrestri
ted Cost Matri
esMaxime Cro
hemore �Institut Gaspard-MongeUniversit�e de Marne-la-Vall�ee Gad M. LandauyHaifa UniversityandPolyte
hni
 UniversityMi
hal Ziv-Ukelson zHaifa UniversityandIBM T.J.W Resear
h CenterAbstra
tThe 
lassi
al algorithm for 
omputing the similarity between twosequen
es [36, 39℄ uses a dynami
 programming matrix, and 
ompares twostrings of size n in O(n2) time. We address the 
hallenge of 
omputingthe similarity of two strings in sub-quadrati
 time, for metri
s whi
h usea s
oring matrix of unrestri
ted weights. Our algorithm applies to bothlo
al and global alignment 
omputations.The speed-up is a
hieved by dividing the dynami
 programming matrixinto variable sized blo
ks, as indu
ed by Lempel-Ziv parsing of bothstrings, and utilizing the inherent periodi
 nature of both strings. Thisleads to an O(n2= log n) algorithm for an input of 
onstant alphabet size.For most texts, the time 
omplexity is a
tually O(hn2= log n) where h � 1is the entropy of the text.�Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Cit�e Des
artes, Champs-sur-Marne, 77454 Marne-la-Vall�ee Cedex 2, Fran
e, email: ma
�univ-mlv.fr.yDepartment of Computer S
ien
e, Haifa University, Haifa 31905, Israel, phone: (972-4)824-0103, FAX: (972-4) 824-9331; Department of Computer and Information S
ien
e, Poly-te
hni
 University, Six MetroTe
h Center, Brooklyn, NY 11201-3840; email: landau�poly.edu;partially supported by NSF grant CCR-0104307, by NATO S
ien
e Programme grantPST.CLG.977017, by the Israel S
ien
e Foundation (grants 173/98 and 282/01), by the FIRSTFoundation of the Israel A
ademy of S
ien
e and Humanities, and by IBM Fa
ulty PartnershipAward.zDepartment of Computer S
ien
e, Haifa University, Haifa 31905, Israel; On Edu
ationLeave from the IBM T.J.W. Resear
h Center; email: mi
hal�
s.haifa.il; partially supportedby by the Israel S
ien
e Foundation (grants 173/98 and 282/01), and by the FIRST Foundationof the Israel A
ademy of S
ien
e and Humanities.



1 Introdu
tionThe rapid progress in large-s
ale DNA sequen
ing opens a new level of
omputational 
hallenges involved in storing, organizing and analyzing thewealth of biologi
al information. One of the most interesting new �elds that theavailability of the 
omplete genomes has 
reated is that of genome 
omparison(the genome is all of the DNA sequen
e passed from one generation to the next).Comparing 
omplete genomes 
an give deep insights about the relationshipbetween organisms, as well as shedding light on the fun
tion of spe
i�
 genes inea
h single genome. The 
hallenge of 
omparing 
omplete genomes ne
essitatesthe 
reation of additional, more eÆ
ient 
omputational tools.One of the most 
ommon problems in biologi
al 
omparative analysis is thatof aligning two long bio-sequen
es in order to measure their similarity. In theglobal alignment problem [19℄, [29℄, the similarity between two strings A andB is measured. In the lo
al alignment problem [39℄, the obje
tive is to �ndsubstrings of A whi
h are similar to substrings of B. Both alignment problems
an be solved in O(n2) time by dynami
 programming [19℄, [39℄.In this paper data 
ompression te
hniques are employed to speed up thealignment of two strings. The 
ompression me
hanism enables the algorithmto adapt to the data and to utilize its repetitions. The periodi
 nature of thesequen
e is quanti�ed via its entropy, denoted 0 � h � 1. Entropy is a measureof how "
ompressible" a sequen
e is [5℄,[7℄, and is small when there is a lot oforder (i.e, the sequen
e is repetitive and therefore more 
ompressible) and largewhen there is a lot of disorder (see se
tion 2.2).We present an O(n2= logn) algorithm for 
omputing both global and lo
alsimilarity between two strings over a 
onstant alphabet. The algorithm is evenfaster when the sequen
e is 
ompressible. In fa
t, for most texts, the 
omplexityof our algorithm is a
tually O(hn2= logn).Note that the algorithm presented is the �rst sub-quadrati
 lo
al alignmentalgorithm.After the optimal s
ores are 
omputed, an alignment tra
e 
orresponding to theoptimal s
ore 
an be re
overed in time 
omplexity whi
h is linear with the sizeof the tra
e, for both the global alignment and the lo
al alignment problems.The algorithms des
ribed in this paper are the �rst to approa
h fully 
ompressed(both sour
e and target strings are 
ompressed) string alignment. The methodsgiven in this paper 
an also be used by appli
ations where both input stringsare stored or transmitted in the form of LZ78 or LZW 
ompressed sequen
e,thus providing an eÆ
ient solution to the problem of how to 
ompare the twostrings without having to de
ompress them �rst.The only previously known sub-quadrati
 global alignment string 
omparisonalgorithm, by Masek and Paterson [31℄, is based on the Four Russians paradigm.The "Four Russians" algorithm divides the dynami
 programming table intouniform sized (logn by logn) blo
ks, and uses table lookup to obtain an



O(n2= logn) time 
omplexity, based on two assumptions. One is that thesequen
e elements 
ome from a 
onstant alphabet. The other, whi
h they denotethe "dis
reteness" 
ondition, is that the weights (of substitutions and indels) areall rational numbers.Our algorithms present a new approa
h and are better than the above algorithmin two aspe
ts.� The algorithms presented here are faster for 
ompressible sequen
es. Forsu
h sequen
es, the 
omplexity of our algorithms is O(hn2= logn), whereh � 1 is the entropy of the sequen
e.� Our algorithms are general enough to support s
oring s
hemes with realnumber weights.For many s
oring s
hemes, the rational number weights supported byMasek and Paterson's algorithm do not suÆ
e. For example, the entriesof PAM similarity matri
es, as well as BLOSUM evolutionary distan
ematri
es, are de�ned to be real numbers, 
omputed as log-odds ratios -and therefore 
ould be irrational.The paper by Masek and Paterson is 
on
luded with the followingstatement: "The most important problem remaining is �nding a betteralgorithm for the �nite (in our terms 
onstant) alphabet 
ase withoutthe dis
reteness 
ondition". Here, more than twenty years later, thisimportant open question will �nally be answered!These advantages are based in the following fa
ts. First, our algorithm does notrequire any pre-
omputation of lookup-tables, and therefore 
an a�ord more
exible weight values. Also, instead of dividing the dynami
 programmingmatrix into uniform sized blo
ks as did Masek and Paterson, we employ avariable sized blo
k partition, as indu
ed by Lempel-Ziv fa
torization of bothsour
e and target. The 
ommon denominator between blo
ks, maximized by the
ompression te
hnique, is then re-
y
led and used for 
omputing the relevantinformation for ea
h blo
k in time whi
h is linear with the length of its sides.In this sense, the approa
h des
ribed in this paper 
an be viewed as anotherexample of speeding up dynami
 programming by keeping and 
omputing onlya relevant subset of important values, as demonstrated in [10℄, [11℄, [27℄ and[37℄.The remainder of this paper is organized as follows. Se
tion 2 in
ludespreliminaries. In se
tion 3 we des
ribe the global alignment solution using fully
ompressed string 
omparison. In se
tion 4 we extend the solution to 
omputethe highest s
oring regions of lo
al alignment. Se
tion 5 
ontains a dis
ussionof how to redu
e the spa
e 
omplexity without impairing the time 
omplexity,when 
omputing global alignment over "dis
rete" s
oring matri
es.A des
ription of how to re
over a path alignment tra
e in time linear with itssize will be given in the journal version of the paper.
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Figure 1: The alignment graph for 
omparing strings A = "
ta
gaga" and B ="aa
ga
ga". The s
oring s
heme matrix Æ is shown in the lower left 
orner of the�gure. The highest s
oring global alignment paths originate in vertex (0,0), end invertex (8,8) and have a total weight of 3. The highest s
oring lo
al alignment path hasa total weight of 5 and 
orresponds to the alignment of substrings a = "a
gaga" andb = a
ga
ga". A sub-graph G 
orresponding to the blo
k for 
omparing substringsa = "ag" and b = "a
g" is shown in the lower-right 
orner of the �gure. Also spe
i�edare the values I for the entries of the input border for G (in white-shaded re
tangles),and the values O of the output border of G (in grey-shaded re
tangles), as set duringa lo
al alignment 
omputation.2 Preliminaries2.1 Highest S
oring Paths in the Alignment Graph. The dynami
programming solution to the string 
omparison 
omputation problem 
an berepresented in terms of a weighted alignment graph [19℄ (See Figure 1). Theweight of a given edge 
an be spe
i�ed dire
tly in the grid graph, or as isfrequently the 
ase in biologi
al appli
ations, is given by a penalty matrix,denoted Æ, whi
h spe
i�es the substitution 
ost for ea
h pair of 
hara
tersand the deletion 
ost for ea
h 
hara
ter from the alphabet. Typi
ally, in thebiologi
al domain, Æ is negative for all operations ex
ept repla
ement of similarsymbols, and the obje
tive is to maximize the alignment s
ore.The 
lassi
al dynami
 programming algorithm for global alignment will set the



value at ea
h vertex (i; j) of the alignment graph, row by row in a left to rightorder, to the s
ore between the �rst i 
hara
ters of A and the �rst j 
hara
tersof B, using the following re
urren
e. V (i; j) = max[V (i; j � 1) + Æ(�; Bj);V (i� 1; j) + Æ(Ai; �);V (i� 1; j � 1) + Æ(Ai; Bj)℄Smith and Waterman [39℄ showed that essentially the same O(jAjjBj) dynami
programming solution 
an be used for lo
al alignment, provided that the s
oreof the alignment of two empty strings is de�ned as 0, and only pairs whosealignment s
ores are above 0 are of interest. The Smith-Waterman algorithmfor lo
al alignment will 
ompute the following re
urren
e, whi
h in
ludes 0 asan additional option, and thus restri
ts the s
ores to non-negative values.S(i; j) = max[0; S(i; j � 1) + Æ(�; Bj);S(i� 1; j) + Æ(Ai; �);S(i� 1; j � 1) + Æ(Ai; Bj)℄The s
ore for the most similar substrings is found in the highest s
oring nodesin the alignment graph.2.2 A Blo
k Partition of the Alignment Graph based on LZ78Fa
torization. The traditional aim of text 
ompression is eÆ
ient use ofresour
es su
h as storage and bandwidth. Here, we will 
ompress the sequen
esin order to speed up the alignment pro
ess. Note that this approa
h, denoted"a

eleration by text-
ompression", has been re
ently applied to a relatedproblem - that of exa
t string mat
hing [22℄, [30℄, [38℄.It should also be mentioned that another related problem - that of exa
t stringmat
hing in 
ompressed text without de
oding it, whi
h is often referred toas "
ompressed pattern mat
hing", has been studied extensively [3℄, [13℄ [34℄.Along these lines, string sear
h in 
ompressed text was developed for the
ompression paradigm of LZ78 [45℄, and its subsequent variant LZW [43℄, asdes
ribed in [23℄, [35℄. A more 
hallenging problem is that of "fully 
ompressed"pattern mat
hing when both the pattern and text strings are 
ompressed [16℄,[17℄.For the LZ78-LZW paradigm, 
ompressed mat
hing has been extended andgeneralized to that of approximate pattern mat
hing (�nding all o

urren
es ofa short sequen
e within a long one allowing up to k 
hanges) in [21℄, [33℄.The LZ 
ompression methods are based on the idea of self referen
e: whilethe text �le is s
anned, substrings or phrases are identi�ed and stored in adi
tionary, and whenever, later in the pro
ess, a phrase or 
on
atenation ofphrases is en
ountered again, this is 
ompa
tly en
oded by suitable pointers[28℄, [44℄, [45℄.Of the several existing versions of the method, we will use the ones whi
h are



denoted LZ78 family [43℄, [45℄. The main feature whi
h distinguishes LZ78fa
torization from previous LZ 
ompression algorithms is in the 
hoi
e of 
odewords. Instead of allowing pointers to referen
e any string that has appearedpreviously, the text seen so far is parsed into phrases, where ea
h phrase is thelongest mat
hing phrase seen previously plus one 
hara
ter. For example, thestring "S = aa
ga
g" is divided into fours phrases: a, a
, g, a
g. Ea
h phraseis en
oded as an index to its pre�x, plus the extra 
hara
ter. The new phraseis then added to the list of phrases that may be referen
ed.
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Figure 2: The blo
k partition of the alignment graph, and the tries 
orrespondingto LZ-78 parsing of strings A = "
ta
gaga" and B = "aa
ga
ga". Note that for theblo
k G in this example, � = "ag", � = "a
g", `r = 2, `
 = 3, i = 5 and j = 4.(The new 
ell of G, whi
h does not appear in any of the pre�x blo
ks, is the rightmost
ell at the bottom row of G, and 
an be distinguished by its white 
olor.) This �gure
ontinues Figure 1.Sin
e ea
h phrase is distin
t, the following upper bound applies to the possiblenumber of phrases obtained by LZ78 fa
torization.Theorem 2.1. (Ziv and Lempel 1976 [28℄.) Given a sequen
e S of size nover a 
onstant alphabet. The maximal number of distin
t phrases in S isO( nlogn ).



Even though the upper bound above applies to any possible sequen
e over a
onstant alphabet, it has been shown that in many 
ases we 
an do better thanthat.Intuitively, the LZ78 algorithm 
ompresses the sequen
e be
ause it is able todis
over some repeated patterns. Therefore, in order to 
ompute a tighterupper bound on the number of phrases obtained by LZ78 fa
torization for"
ompressible" sequen
es, the repetitive nature of the sequen
e needs to bequanti�ed. One of the fundamental ideas in information theory is that ofentropy, denoted 0 � h � 1, whi
h is a measure of the amount of disorderor randomness, or inversely, the amount of order or redundan
y in a sequen
e.Entropy is small when there is a lot of order (i.e, the sequen
e is repetitive) andlarge when there is a lot of disorder. The entropy of a sequen
e should ideallyre
e
t the ratio between the size of the sequen
e after it has been 
ompressed,and the length of the un
ompressed sequen
e.The number of distin
t phrases obtained by LZ78 fa
torization has been shownto be O(hn= logn) for most texts [5℄, [7℄, [28℄, [45℄. Note that for any other textover a 
onstant alphabet, the upper bound above still applies by setting h to 1.3 The Global Alignment Solution3.1 De�nitions and Basi
 Observations. The alignment graph will bepartitioned as follows. Strings A and B will be parsed using LZ78 fa
torization.This indu
es a partition of the alignment graph for 
omparing A with B intovariable sized blo
ks (see Figure 2). Ea
h blo
k will 
orrespond to a 
omparisonof an LZ phrase of A with an LZ phrase of B.Let xa denote a phrase in A obtained by extending a previous phrase x of Awith 
hara
ter a, and yb denote a phrase in B, obtained by extending a previousphrase of B with 
hara
ter b.From now on we will fo
us on the 
omputations ne
essary for a single blo
k ofthe alignment graph.Consider the blo
k G whi
h 
orresponds to the 
omparison of xa and yb. Wede�ne input border I - as the left and top borders of G, and output border O - asthe bottom and right borders of G. (The node entries on the input border arenumbered in a 
lo
kwise dire
tion, and the node entries on the output borderare numbered in a 
ounter-
lo
kwise dire
tion.)Rather than �lling in the values of ea
h vertex inG, as does the 
lassi
al dynami
programming algorithm - the only values 
omputed for ea
h blo
k will be thoseon its I=O borders (see Figures 1, 5A ). Intuitively, this is the reason behindthe eÆ
ien
y gain.Let `r -denote the number of rows in G, `r = jxaj. Let `
 -denote the numberof 
olumns in G, `
 = jybj. Let t = `r + `
. Clearly, jI j = jOj = t.We de�ne the following three prefix blo
ks of G.



1. The left prefix of G -denotes the blo
k 
omparing phrase xa of A andphrase y of B.2. The diagonal prefix of G -denotes the blo
k 
omparing phrase x of A andphrase y of B.3. The top prefix of G -denotes the the blo
k 
omparing phrase x of A andphrase yb of B.Observation 1When traversing the blo
ks of an LZ78 parsed alignment graphin a left-to-right, top-to-bottom order. The blo
ks for the left pre�x, diagonalpre�x and top pre�x of G are en
ountered prior to blo
k G.Note that the graph for the left pre�x of G is identi
al to the subgraph of G
ontaining all 
olumns but the last one. More spe
i�
ally, both the stru
ture andthe weights of the edges of these two graphs are identi
al, but the weights to beassigned to the verti
es during the similarity 
omputation may vary a

ordingto the input border values. Similarly, for the top pre�x and diagonal pre�xgraphs. The only new 
ell in G, whi
h does not appear in any of its pre�x blo
kgraphs, is the 
ell for 
omparing a and b.3.2 I=O Propagation A
ross G. The work for ea
h blo
k will 
onsist oftwo stages (a similar approa
h is shown in [6, 20, 26, 27℄).1. en
oding : Study the stru
ture of G and represent it in an eÆ
ient way.2. propagation : Given I and the en
oding of G, 
onstru
ted in the previous stage,
ompute O for G.The stru
ture of G will be en
oded by 
omputing weights of optimal paths
onne
ting ea
h entry of its input border with ea
h entry of its output border.The following DIST matrix will be used (see Figure 3).Definition 3.1. DIST [i; j℄ stores the weight of the optimal path from entry iof the input border of G to entry j of its output border.DIST matri
es have also been used in [4℄, [6℄, [20℄, [27℄ and [37℄.Given input row I and the DIST for G, the weight of output row vertex Oj
an be 
omputed as follows.Oj = jmaxr=0 fIr +DIST [r; j℄gOj is the maximum of 
olumn j of the following OUT matrix, whi
h merges theinformation from input row I and DIST . (See Figure 3).Definition 3.2. OUT [i; j℄ = Ii +DIST [i; j℄.Aggarwal and Park [2℄ and S
hmidt [37℄ observed that DIST matri
es areMonge arrays [32℄.



DIST matrixI0 = 1 0 �1 �2 �3 4 4I1 = 2 �1 �1 �2 �1 �3 4I2 = 3 �2 0 0 1 �1 �3I3 = 2 4 �2 �2 0 �2 �2I4 = 1 4 4 �2 0 �1 �1I5 = 3 4 4 4 �2 �1 0OUT matrix1 0 �1 �2 �1 �11 1 0 1 �1 �11 3 3 4 2 0�12 0 0 2 0 0�13 �13 �1 1 0 0�14 �14 �14 1 2 3O0 O1 O2 O3 O4 O51 3 3 4 2 3
olumn numbers0 1 2 3 4 5Figure 3: The DIST matrix whi
h 
orresponds to the subsequen
es "a
g", "ag", theOUT matrix obtained by adding the values of I to the rows of DIST , and the O
ontaining the row maxima of OUT . This �gure 
ontinues Figures 1 and 2.Definition 3.3. A matrix M [0 : : :m; 0 : : : n℄ is Monge if either 
ondition 1 or2 below holds for all a; b = 0 : : :m; 
; d = 0 : : : n:1. 
onvex 
ondition: M [a; 
℄ +M [b; d℄ � M [b; 
℄ +M [a; d℄ for all a < band 
 < d.2. 
on
ave 
ondition: M [a; 
℄ +M [b; d℄ � M [b; 
℄ +M [a; d℄ for all a < band 
 < d.Sin
e DIST is Monge - so is OUT , whi
h is a DIST with 
onstants added toits rows.An important property of Monge arrays is that of being totally monotone.Definition 3.4. A matrix M [0 : : :m; 0 : : : n℄ is totally monotone if either
ondition 1 or 2 below holds for all a; b = 0 : : :m; 
; d = 0 : : : n:



1. 
onvex 
ondition: M [a; 
℄ �M [b; 
℄ =)M [a; d℄ �M [b; d℄ for all a < band 
 < d.2. 
on
ave 
ondition: M [a; 
℄ �M [b; 
℄ =)M [a; d℄ �M [b; d℄ for all a < band 
 < d.Note that the Monge property implies total monotoni
ity, but the 
onverse isnot true. Therefore, both DIST and OUT are totally monotone by the 
on
ave
ondition.Aggarwal et al [1℄ gave a re
ursive algorithm, ni
knamed SMAWK in theliterature, whi
h 
an 
ompute in O(n) time all row and 
olumn maxima ofan n�n totally monotone matrix, by querying only O(n) elements of the array.Hen
e, one 
ould use SMAWK to 
ompute the output row O by querying onlyO(n) elements of OUT . Clearly, if both the full DIST and all entries of I areavailable, then 
omputing an element of OUT is O(1) work.For various solutions to related problems, whi
h also utilize Monge and TotalMonotoni
ity properties, we refer the interested reader to [8℄, [9℄, [14℄, [15℄, [24℄and [27℄. In order to eÆ
iently utilize these properties here, we need to addressthe following two problems.1. How to eÆ
iently 
omputeDIST and represent it in a format whi
h allowsdire
t a

ess to its entries. This will be done in se
tion 3.2.2.2. SMAWK is intended for a full, re
tangular matrix. However, bothDIST and its 
orresponding OUT are not re
tangular. Sin
e paths in analignment graph 
an only assume a left-to-right, top-to-bottom dire
tion,
onne
tions between some input border verti
es and some output borderverti
es are impossible. Therefore, the matri
es are missing both a lowerleft triangle and upper right triangle (see Figure 3).3.2.1 Addressing the Re
tangle Problem. The unde�ned entries of OUT
an be 
omplemented in 
onstant time ea
h, as follows.1. The missing upper right triangle entries 
an be 
ompleted by setting the valueof any entry OUT [i; j℄ in this triangle to �1.2. Let k denote maximal absolute value of a s
ore in Æ. The missing lower lefttriangle entries 
an be 
ompleted by setting the value of any OUT [i; j℄ in thistriangle to �(n+ i+ 1) � k.Lemma 3.1. Complementing the unde�ned entries as des
ribed above preservesthe 
on
ave total monotoni
ity 
ondition of OUT , and does not introdu
e newrow-maxima.Proof. 1. Upper Right Triangle: All similarity s
ores in the alignmentgraph are �nite. Therefore, no new 
olumn maxima are introdu
ed. Suppose



OUT [a; 
℄ � OUT [b; 
℄, a < b, and OUT [a; 
℄ has been set to �1. Due tothe shape of the rede�ned upper-right triangle, on
e a �1 value in row a isen
ountered, all future values in row a are also �1. The future values of rowb 
ould either be �nite or �1. Therefore, OUT [a; d℄ � OUT [b; d℄ for all d > 
.2. Lower Left Triangle: The worst s
ore appearing in the alignment graphis lower bounded by �nk. Sin
e i is always greater than or equal to zero, the
omplemented values in the lower left triangle are upper-bounded by �(n+1)�kand no new 
olumn maxima are introdu
ed. Also, for any 
omplemented entryOUT [b; 
℄ in the lower left triangle, OUT [b; 
℄ < OUT [a; 
℄ for all a < b, andtherefore the 
on
ave total monotoni
ity 
ondition holds.3.2.2 In
remental Update of the new DIST Information for G. Inthis se
tion we will show how to eÆ
iently 
ompute the new DIST info for G,using the DIST representations previously 
omputed for its pre�x blo
ks, plusthe information of its new 
ell.When pro
essing a new blo
k G, we will 
ompute the s
ores of t new optimalpaths, leading from the input border to the new vertex (`r; `
) in the lowest,rightmost 
orner of G. These values 
orrespond to 
olumn `
 of the DISTmatrix for G, and 
an be 
omputed as follows.Entry [i℄ in 
olumn `
 of the DIST for G 
ontains the weight of the optimalpath from entry i in the input border of G to vertex (`r; `
). This path mustgo through one of the three verti
es (`r � 1; `
), (`r � 1; `
 � 1) or (`r; `
 � 1).Therefore, the weight of the optimal path from entry i in the input border of Gto (`r; `
) is equal to the maximum among the following three values:1. Entry [i℄ of 
olumn `
�1 of the DIST for the left pre�x of G, plus the weightof the horizontal edge leading into (`r; `
).2. Entry [i℄ of 
olumn `
� 1 of the DIST for the diagonal pre�x of G, plus theweight of the diagonal edge leading into (`r; `
).3. Entry [i℄ of 
olumn `
 of the DIST for the top pre�x of G, plus the weightof the verti
al edge leading into (`r; `
).3.2.3 Maintaining Dire
t A

ess to DIST Columns. In order to
ompute an entry of OUT in 
onstant time during the exe
ution of SMAWK,dire
t a

ess to DIST entries is ne
essary. This is not straightforward, sin
e asshown in the previous se
tion, for ea
h blo
k only one new DIST 
olumn hasbeen 
omputed and stored. All other 
olumns besides 
olumn `
 of the DISTfor G need to be obtained from G's pre�x an
estor blo
ks.Therefore, before the exe
ution of SMAWK begins, a ve
tor with pointers toall t+ 1 
olumns of the DIST for G is 
onstru
ted (see Figure 4). This ve
toris no longer needed after the 
omputations for G have been 
ompleted, and itsspa
e 
an be freed.
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Figure 4: A table 
ontaining an entry for ea
h blo
k of the alignment graph. Entry(i; j) of the table 
orresponds to the blo
k whose substrings are represented by nodei in the trie for A and node j in the trie for B. The entry for ea
h blo
k in the tablepoints to the start of its new DIST 
olumn. Also shown is the ve
tor whi
h 
ontainspointers to all 
olumns of the DIST for blo
k (5; 4), as obtained from its an
estorpre�x blo
ks. This �gure 
ontinues Figures 1, 2 and 3.The pointers to all 
olumns of theDIST forG are assembled as follows. Column`
 is set to the newly 
onstru
ted ve
tor for G. All 
olumns of indi
es smallerthan `
 are obtained via `
 re
ursive 
alls to left pre�x blo
ks of G. All 
olumnsof indi
es greater than `
 are obtained via `r re
ursive 
alls to top pre�x blo
ksof G.3.2.4 Querying a Pre�x Blo
k and Obtaining its DIST Column inConstant time. The LZ78 phrases form a trie (see Figure 2), and the stringto be 
ompressed is en
oded as a sequen
e of names of pre�xes of the trie. Ea
hnode in the trie 
ontains the serial number of the phrase it represents. Sin
eea
h blo
k 
orresponds to a 
omparison of a phrase from A with a phrase fromB, ea
h blo
k will be identi�ed by a pair of numbers, 
omposed of the serialnumbers for its 
orresponding phrases in the tries for A and B.Another data stru
ture to be 
onstru
ted is a Blo
k Table (see Figure 4),
ontaining an entry for ea
h partitioned blo
k of the alignment graph. Theentry for ea
h blo
k in the table points to the start of its new DIST 
olumn,and 
an be dire
tly a

essed via the blo
k's phrase number index pair.The left pre�x of G 
an be identi�ed in 
onstant time as a pair of phrasenumbers, the �rst identi
al to the serial number of xa, and the se
ond
orresponding to the serial number of y, whi
h is the dire
t an
estor of yb in the



trie forB. Similarly, the top pre�x ofG 
an be identi�ed in 
onstant time. Giventhe pair of identi�
ation numbers for a blo
k, a pointer to the 
orrespondingDIST 
olumn 
an then be dire
tly obtained from the Blo
k Table.3.3 Time and Spa
e AnalysisAssuming sequen
e size n and sequen
e entropy h � 1. The LZ78 fa
torizationalgorithm will parse the strings and 
onstru
t the tries for A and B in O(n)time. The resulting number of phrases in both A and B is O(hn= logn). Thenumber of resulting blo
ks in the alignment graph is equal to the number ofphrases in A times number of phrases in B, and is therefore O(h2n2=(logn)2).For ea
h blo
k G, the following information (1{3) is 
omputed, in time andspa
e 
omplexity linear with the size of its I=O borders:1. Updating the En
oding Stru
ture for G. The pre�x blo
ks of G 
an bea

essed in 
onstant time. The ve
tors of DIST 
olumn pointers for the pre�xblo
ks have already been freed. However, sin
e ea
h pre�x blo
k dire
tly pointsto its newly 
omputed DIST 
olumn - all values needed for the 
omputationsare still available. Sin
e ea
h entry of the new DIST 
olumn for G is set to themaximum among up to three sums of pairs, the new DIST 
olumn for G 
anbe 
onstru
ted in O(t) time and spa
e.2. Maintaining Dire
t A

ess to DIST 
olumns. Sin
e prefix blo
ks andtheir DIST 
olumns 
an be a

essed in 
onstant time, the ve
tor with pointersto 
olumns of the DIST for G 
an be set in O(t) time.3. Propagation for G. Using the information 
omputed for G, and given theI for G obtained from the O ve
tors for the blo
k above G and the blo
k toits left, the values of O for G are 
omputed via SMAWK Matrix Sear
hing inO(t) time.Total Complexity. Sin
e the work and spa
e for ea
h blo
k is linear withthe size of its I=O borders, the total time and spa
e 
omplexity is linearwith the total size of the borders of the blo
ks. The blo
k borders formO(hn= logn) rows of size jBj ea
h, and O(hn= logn) 
olumns of size jAj ea
h,in the alignment graph (see Figure 2). Therefore, the total time and spa
e
omplexity is O(hn2= logn).4 Extensions to Lo
al AlignmentWhen 
omputing the highest lo
al alignment s
ore, the added 
hallenge is thatan optimal path 
ould begin and end inside any blo
k. Therefore, we will modifyO to 
onsider the additional paths originating inside G.Also, in addition to the DIST des
ribed in se
tion 3, we 
ompute for ea
h blo
kG the following data stru
tures (see Figures 5B, 5C).1. E - is a ve
tor of size t. E[i℄ 
ontains the value of the highest s
oring path
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Figure 5: A. The I=O path weight ve
tors 
omputed for ea
h blo
k in the globalalignment solution. DIST [i; j℄ will be set to the highest s
oring path 
onne
tingvertex i in the input border with vertex j in the output border. B,C. The ve
tors ofoptimal path weights 
onsidered for the lo
al alignment 
omputation.whi
h starts in vertex i of the input border of G and ends inside G.2. S - is a ve
tor of size t. S[i℄ 
ontains the value of the highest s
oring pathwhi
h starts inside G and ends in vertex i of the output border of G.3. C - is the value of the highest s
oring path 
ontained in G, that is - thehighest s
oring path whi
h originates inside G and ends inside G.4. F - is the weight of the highest s
oring path ending in G. This path 
ouldeither begin and end inside G (a C-path) or start outside G and end inside G(an I-path followed by an E-path).The overall highest lo
al alignment s
ore for 
omparing A and B 
an be
omputed as the maximum among the F values of ea
h blo
k.The two stages des
ribed in se
tion 3.2 will be extended as follows.4.1 En
oding. DIST is 
omputed as des
ribed in se
tion 3.2. In addition,the values of E, S and C are 
omputed as follows.1. Computing the values of E. E[i℄ is 
omputed as the maximum betweenE[i℄ for the left pre�x of G, E[i℄ for the top pre�x of G, and DIST [i; `
℄.2. Computing the values of S. The only new value 
omputed for Sis the Smith-Waterman s
ore for the new vertex (`r; `
). Given the Smith-



Waterman lo
al alignment s
ores for verti
es (`r � 1; `
 � 1) obtained from thediagonal prefix, (`r; `
 � 1) obtained from the left prefix and (`r � 1; `
)obtained from the top prefix of G, and the weights of the 3 edges leading intovertex (`r; `
), the Smith-Waterman s
ore for vertex (`r; `
) 
an be 
omputedin O(1) time 
omplexity, using the re
ursion given in se
tion 2.1. The value forentry `
 of S is set to this newly 
omputed Smith-Waterman s
ore for vertex(`r; `
).The values of all other entries of S are then set as follows. The �rst `
 valuesof S are 
opied from the �rst `
 values of the S 
omputed for the left pre�x ofG. The last `r values are 
opied from the last `r values of the S ve
tor for thetop pre�x of G.3. Computing the value of C. C is 
omputed as the maximum between theC value for the left pre�x of G, the C value for the top pre�x of G, and thenewly 
omputed S[`
℄ as des
ribed above.4.2 Propagation.1. Computing the values of O. Our obje
tive is to set O[i℄ to the weightof the highest s
oring path originating anywhere in the alignment graph andending in entry i of the output border. Ve
tor O will �rst be 
omputed fromthe I and DIST for G as des
ribed in se
tion 3.2. At this point entry O[i℄re
e
ts the weight of the optimal path starting anywhere outside G and endingin entry i of the output border. It needs to be updated with the weights of thehighest s
oring paths starting inside G. This is a
hieved by resetting O[i℄ to themaximum between O[i℄ and S[i℄.2. Computing the values of F . F is 
omputed as max(Maxti=0fI [i℄ +E[i℄g; C)4.3 Time and Spa
e AnalysisEn
oding. Sin
e, as shown in se
tion 3.2.3, ea
h pre�x blo
k of G 
an bea

essed in 
onstant time, the values of the S and E ve
tors for G 
an be
omputed and stored in O(t) time and spa
e, and the C value for G 
an be
omputed in 
onstant time and spa
e.Propagation. Given the ve
tors 
omputed in the en
oding stage - the valuesof O and F 
an be 
omputed in O(t) time ea
h as des
ribed above.The weight of the highest s
oring path in the alignment graph 
an then be
omputed in an additional O(h2n2=(logn)2) time as the maximum value amongthe F values 
omputed for ea
h blo
k.Total Complexity Sin
e the work and spa
e for ea
h blo
k is linear withthe size of its I=O borders, the total time and spa
e 
omplexity for the lo
alalignment solution is O(hn2= logn).



5 Redu
ing the Spa
e ComplexityWhen 
omputing global alignment with s
oring matri
es whi
h follow the"dis
reteness" 
ondition (see Se
tion 1), the eÆ
ient alignment stage algorithmdes
ribed in [27℄ 
an be extended to support full propagation from the leftmostand upper boundaries to the bottom and right most boundaries of G.This extended propagation algorithm 
an then be used to 
ompute the valuesof the global alignment O for G, given the I for G and a minimal en
odingof the DIST for G. The advantage of this minimal en
oding of DIST is thatrather than saving an O(t) sized DIST 
olumn per blo
k, we only need to savea 
onstant number of values per blo
k. The en
oding for the new DIST 
olumnof ea
h blo
k 
an be 
omputed and stored in 
onstant time and spa
e from theinformation stored for the left, diagonal and top pre�x blo
ks of G, using thete
hnique des
ribed in se
tion 6 of [37℄.This redu
es the spa
e 
omplexity to O(h2n2=(logn)2), while preserving theO(hn2= logn) time 
omplexity.6 Con
lusionsThe results demonstrated in this paper are as follows.� The algorithm presented in this paper is the �rst O(hn2= logn) string
omparison algorithm.� This is the �rst sub-quadrati
 string 
omparison algorithm for generals
oring tables whose weights are not restri
ted to rational numbers.� We showed how to extend this result to a lo
al alignment O(hn2= logn)algorithm.� For global alignment over "dis
rete" s
oring matri
es, we explainedhow the spa
e 
omplexity 
an be redu
ed to O(h2n2=(logn)2), withoutimpairing the O(hn2= logn) time 
omplexity.In addition to the s
ores 
omputed by dynami
 programming, it is often desiredto re
over a meaningful tra
e of the optimal alignments. Optimal paths inthe alignment graph (paths whose total weight is maximum) represent optimalalignments of A and B.Without any added 
omplexity, the 
urrent algorithmi
 infrastru
ture 
an bemodi�ed to support the re
overy of an optimal global alignment path tra
e, aswell as an optimal lo
al alignment tra
e as de�ned by Eri
kson and Sellers [12℄,in time 
omplexity whi
h is linear with the size of the tra
e.Due to la
k of spa
e, the des
ription of how to re
over the path alignment tra
esis reserved for the journal version of the paper.A
knowledgement
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