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Abstract

The classical algorithm for computing the similarity between two
sequences [36, 39] uses a dynamic programming matrix, and compares two
strings of size m in O(n?) time. We address the challenge of computing
the similarity of two strings in sub-quadratic time, for metrics which use
a scoring matrix of unrestricted weights. Our algorithm applies to both
local and global alignment computations.

The speed-up is achieved by dividing the dynamic programming matrix
into variable sized blocks, as induced by Lempel-Ziv parsing of both
strings, and utilizing the inherent periodic nature of both strings. This
leads to an O(n?/logn) algorithm for an input of constant alphabet size.

For most texts, the time complexity is actually O(hn>/logn) where h < 1
is the entropy of the text.
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1 Introduction

The rapid progress in large-scale DNA sequencing opens a new level of
computational challenges involved in storing, organizing and analyzing the
wealth of biological information. One of the most interesting new fields that the
availability of the complete genomes has created is that of genome comparison
(the genome is all of the DNA sequence passed from one generation to the next).
Comparing complete genomes can give deep insights about the relationship
between organisms, as well as shedding light on the function of specific genes in
each single genome. The challenge of comparing complete genomes necessitates
the creation of additional, more efficient computational tools.

One of the most common problems in biological comparative analysis is that
of aligning two long bio-sequences in order to measure their similarity. In the
global alignment problem [19], [29], the similarity between two strings A and
B is measured. In the local alignment problem [39], the objective is to find
substrings of A which are similar to substrings of B. Both alignment problems
can be solved in O(n?) time by dynamic programming [19], [39].

In this paper data compression techniques are employed to speed up the
alignment of two strings. The compression mechanism enables the algorithm
to adapt to the data and to utilize its repetitions. The periodic nature of the
sequence is quantified via its entropy, denoted 0 < h < 1. Entropy is a measure
of how ”compressible” a sequence is [5],[7], and is small when there is a lot of
order (i.e, the sequence is repetitive and therefore more compressible) and large
when there is a lot of disorder (see section 2.2).

We present an O(n?/logn) algorithm for computing both global and local
similarity between two strings over a constant alphabet. The algorithm is even
faster when the sequence is compressible. In fact, for most texts, the complexity
of our algorithm is actually O(hn?/logn).

Note that the algorithm presented is the first sub-quadratic local alignment
algorithm.

After the optimal scores are computed, an alignment trace corresponding to the
optimal score can be recovered in time complexity which is linear with the size
of the trace, for both the global alignment and the local alignment problems.

The algorithms described in this paper are the first to approach fully compressed
(both source and target strings are compressed) string alignment. The methods
given in this paper can also be used by applications where both input strings
are stored or transmitted in the form of LZ78 or LZW compressed sequence,
thus providing an efficient solution to the problem of how to compare the two
strings without having to decompress them first.

The only previously known sub-quadratic global alignment string comparison
algorithm, by Masek and Paterson [31], is based on the Four Russians paradigm.
The "Four Russians” algorithm divides the dynamic programming table into
uniform sized (logn by logn) blocks, and uses table lookup to obtain an



O(n?/logn) time complexity, based on two assumptions. One is that the
sequence elements come from a constant alphabet. The other, which they denote
the ”discreteness” condition, is that the weights (of substitutions and indels) are
all rational numbers.

Our algorithms present a new approach and are better than the above algorithm
in two aspects.

e The algorithms presented here are faster for compressible sequences. For
such sequences, the complexity of our algorithms is O(hn?/logn), where
h <1 is the entropy of the sequence.

e Our algorithms are general enough to support scoring schemes with real
number weights.

For many scoring schemes, the rational number weights supported by
Masek and Paterson’s algorithm do not suffice. For example, the entries
of PAM similarity matrices, as well as BLOSUM evolutionary distance
matrices, are defined to be real numbers, computed as log-odds ratios -
and therefore could be irrational.

The paper by Masek and Paterson is concluded with the following
statement: ”The most important problem remaining is finding a better
algorithm for the finite (in our terms constant) alphabet case without
the discreteness condition”. Here, more than twenty years later, this
important open question will finally be answered!

These advantages are based in the following facts. First, our algorithm does not
require any pre-computation of lookup-tables, and therefore can afford more
flexible weight values. Also, instead of dividing the dynamic programming
matrix into uniform sized blocks as did Masek and Paterson, we employ a
variable sized block partition, as induced by Lempel-Ziv factorization of both
source and target. The common denominator between blocks, maximized by the
compression technique, is then re-cycled and used for computing the relevant
information for each block in time which is linear with the length of its sides.
In this sense, the approach described in this paper can be viewed as another
example of speeding up dynamic programming by keeping and computing only
a relevant subset of important values, as demonstrated in [10], [11], [27] and

[37].

The remainder of this paper is organized as follows. Section 2 includes
preliminaries. In section 3 we describe the global alignment solution using fully
compressed string comparison. In section 4 we extend the solution to compute
the highest scoring regions of local alignment. Section 5 contains a discussion
of how to reduce the space complexity without impairing the time complexity,
when computing global alignment over ”discrete” scoring matrices.

A description of how to recover a path alignment trace in time linear with its
size will be given in the journal version of the paper.
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Figure 1: The alignment graph for comparing strings A = ”ctacgaga” and B =
"aacgacga”. The scoring scheme matrix § is shown in the lower left corner of the

figure. The highest scoring global alignment paths originate in vertex (0,0), end in
vertex (8,8) and have a total weight of 3. The highest scoring local alignment path has

a total weight of 5 and corresponds to the alignment of substrings a = "acgaga” and
b = acgacga”. A sub-graph G corresponding to the block for comparing substrings
a ="ag” and b ="acg” is shown in the lower-right corner of the figure. Also specified

are the values I for the entries of the input border for G (in white-shaded rectangles),
and the values O of the output border of G (in grey-shaded rectangles), as set during
a local alignment computation.

2 Preliminaries

2.1 Highest Scoring Paths in the Alignment Graph. The dynamic
programming solution to the string comparison computation problem can be
represented in terms of a weighted alignment graph [19] (See Figure 1). The
weight of a given edge can be specified directly in the grid graph, or as is
frequently the case in biological applications, is given by a penalty matrix,
denoted &, which specifies the substitution cost for each pair of characters
and the deletion cost for each character from the alphabet. Typically, in the
biological domain, § is negative for all operations except replacement of similar
symbols, and the objective is to maximize the alignment score.

The classical dynamic programming algorithm for global alignment will set the



value at each vertex (i, j) of the alignment graph, row by row in a left to right
order, to the score between the first 7 characters of A and the first j characters
of B, using the following recurrence. V (i,5) = maxz[V (i,j — 1) + (¢, B;),

V(i—1,7)+0(4;,¢€),
V(i—1,7-1)+0(A;, Bj)]

Smith and Waterman [39] showed that essentially the same O(]A||B]|) dynamic
programming solution can be used for local alignment, provided that the score
of the alignment of two empty strings is defined as 0, and only pairs whose
alignment scores are above 0 are of interest. The Smith-Waterman algorithm
for local alignment will compute the following recurrence, which includes 0 as
an additional option, and thus restricts the scores to non-negative values.

S(i,j) = max[0,5(i,j — 1) + é(e, Bj),
S(Z - ]-7.7) + 6(Ai7€)7
S(i—1,j— 1) +6(A;, Bj)]

The score for the most similar substrings is found in the highest scoring nodes
in the alignment graph.

2.2 A Block Partition of the Alignment Graph based on LZ78
Factorization. The traditional aim of text compression is efficient use of
resources such as storage and bandwidth. Here, we will compress the sequences
in order to speed up the alignment process. Note that this approach, denoted
7acceleration by text-compression”, has been recently applied to a related
problem - that of ezact string matching [22], [30], [38].

It should also be mentioned that another related problem - that of exact string
matching in compressed text without decoding it, which is often referred to
as ”compressed pattern matching”, has been studied extensively [3], [13] [34].
Along these lines, string search in compressed text was developed for the
compression paradigm of LZ78 [45], and its subsequent variant LZW [43], as
described in [23], [35]. A more challenging problem is that of ”fully compressed”
pattern matching when both the pattern and text strings are compressed [16],
[17].

For the LZ78-LZW paradigm, compressed matching has been extended and
generalized to that of approzimate pattern matching (finding all occurrences of
a short sequence within a long one allowing up to k changes) in [21], [33].

The LZ compression methods are based on the idea of self reference: while
the text file is scanned, substrings or phrases are identified and stored in a
dictionary, and whenever, later in the process, a phrase or concatenation of
phrases is encountered again, this is compactly encoded by suitable pointers
28], [44], [43].

Of the several existing versions of the method, we will use the ones which are



denoted LZ78 family [43], [45]. The main feature which distinguishes LZ78
factorization from previous LZ compression algorithms is in the choice of code
words. Instead of allowing pointers to reference any string that has appeared
previously, the text seen so far is parsed into phrases, where each phrase is the
longest matching phrase seen previously plus one character. For example, the
string ”S = aacgacg” is divided into fours phrases: a, ac, g, acg. Each phrase
is encoded as an index to its prefix, plus the extra character. The new phrase
is then added to the list of phrases that may be referenced.

LZ78-Partitioned
Alignment Graph

Trie for A Trie for B
©@ OO
alaciglacgla i
g 090 B¢
@ al |32. 3/4 g %/.
® g ’
@ S 3/2 ."-.__lis/zt---- T
al [/ [ ~ 11
____________________________ EN
a’c N a ¢ a\" 9 2 e S

3
;

)

9y diagonal top %
left prefix (3,2) prefix (3,4) Graph G

prefix (5/2) for Block (5,4)

Figure 2: The block partition of the alignment graph, and the tries corresponding
to LZ-78 parsing of strings A = "ctacgaga” and B = "aacgacga”. Note that for the
block G in this example, o = ”ag”, 8 = "acg”, ¢, = 2, {. = 3,7 =5 and j = 4.
(The new cell of G, which does not appear in any of the prefix blocks, is the rightmost
cell at the bottom row of G, and can be distinguished by its white color.) This figure
continues Figure 1.

Since each phrase is distinct, the following upper bound applies to the possible
number of phrases obtained by LZ78 factorization.

THEOREM 2.1. (Z1v AND LEMPEL 1976 [28].) Given a sequence S of size n
over a constant alphabet. The maximal number of distinct phrases in S is

O(logn)'




Even though the upper bound above applies to any possible sequence over a
constant alphabet, it has been shown that in many cases we can do better than
that.

Intuitively, the LZ78 algorithm compresses the sequence because it is able to
discover some repeated patterns. Therefore, in order to compute a tighter
upper bound on the number of phrases obtained by LZ78 factorization for
”compressible” sequences, the repetitive nature of the sequence needs to be
quantified. One of the fundamental ideas in information theory is that of
entropy, denoted 0 < h < 1, which is a measure of the amount of disorder
or randomness, or inversely, the amount of order or redundancy in a sequence.
Entropy is small when there is a lot of order (i.e, the sequence is repetitive) and
large when there is a lot of disorder. The entropy of a sequence should ideally
reflect the ratio between the size of the sequence after it has been compressed,
and the length of the uncompressed sequence.

The number of distinct phrases obtained by LZ78 factorization has been shown
to be O(hn/logn) for most texts [5], [7], [28], [45]. Note that for any other text
over a constant alphabet, the upper bound above still applies by setting h to 1.

3 The Global Alignment Solution

3.1 Definitions and Basic Observations. The alignment graph will be
partitioned as follows. Strings A and B will be parsed using LZ78 factorization.
This induces a partition of the alignment graph for comparing A with B into
variable sized blocks (see Figure 2). Each block will correspond to a comparison
of an LZ phrase of A with an LZ phrase of B.

Let za denote a phrase in A obtained by extending a previous phrase x of A
with character a, and yb denote a phrase in B, obtained by extending a previous
phrase of B with character b.

From now on we will focus on the computations necessary for a single block of
the alignment graph.

Consider the block G which corresponds to the comparison of za and yb. We
define input border I - as the left and top borders of G, and output border O - as
the bottom and right borders of G. (The node entries on the input border are
numbered in a clockwise direction, and the node entries on the output border
are numbered in a counter-clockwise direction.)

Rather than filling in the values of each vertex in G, as does the classical dynamic
programming algorithm - the only values computed for each block will be those
on its I/O borders (see Figures 1, 5A ). Intuitively, this is the reason behind
the efficiency gain.

Let £, -denote the number of rows in G, ¢, = |za|. Let ¢, -denote the number
of columns in G, (. = |yb|. Let t = ¢, + {.. Clearly, |I| =|0| =t.

We define the following three prefiz blocks of G.



1. The left prefix of G -denotes the block comparing phrase za of A and
phrase y of B.

2. The diagonal prefix of G -denotes the block comparing phrase x of A and
phrase y of B.

3. The top prefixz of G -denotes the the block comparing phrase x of A and
phrase yb of B.

Observation 1 When traversing the blocks of an LZ78 parsed alignment graph
in a left-to-right, top-to-bottom order. The blocks for the left prefix, diagonal
prefix and top prefix of G are encountered prior to block G.

Note that the graph for the left prefix of G is identical to the subgraph of G
containing all columns but the last one. More specifically, both the structure and
the weights of the edges of these two graphs are identical, but the weights to be
assigned to the vertices during the similarity computation may vary according
to the input border values. Similarly, for the top prefix and diagonal prefix
graphs. The only new cell in GG, which does not appear in any of its prefix block
graphs, is the cell for comparing a and b.

3.2 /O Propagation Across G. The work for each block will consist of
two stages (a similar approach is shown in [6, 20, 26, 27]).

1. encoding : Study the structure of G and represent it in an efficient way.

2. propagation : Given I and the encoding of (G, constructed in the previous stage,
compute O for G.

The structure of G will be encoded by computing weights of optimal paths
connecting each entry of its input border with each entry of its output border.
The following DIST matrix will be used (see Figure 3).

DEFINITION 3.1. DIST(i, j] stores the weight of the optimal path from entry i
of the input border of G to entry j of its output border.

DIST matrices have also been used in [4], [6], [20], [27] and [37].

Given input row I and the DIST for G, the weight of output row vertex O;
can be computed as follows.

0; = méa({[r + DIST[r, 5]}

O; is the maximum of column j of the following OUT matrix, which merges the
information from input row I and DIST. (See Figure 3).

DEFINITION 3.2. OUTYi,j] = I; + DIST]i, j].

Aggarwal and Park [2] and Schmidt [37] observed that DIST matrices are
Monge arrays [32].



DIST matrix

I =1 0o -1 -2 -3 A A
I =2 -1 -1 -2 -1 =3 A
I, =3 -2 0 0 1 -1 =3
I3 =2 N =2 =2 0 -2 =2
Ips=1 AN N =2 0o -1 -1
Is =3 A A A =2 -1 0
OUT matrix
1 0 -1 -2 —o0 —x
1 1 0 1 -1 —o©
1 3 3 4 2 0
—12 0 0 2 0 0
—-13 —-13 -1 1 0 0
—14 —-14 —-14 1 2 3

Oo O, O2 O3 (on Os5
1 3 3 4 2 3

column numbers
0 1 2 3 4 5

”

Figure 3: The DIST matrix which corresponds to the subsequences ”acg”, "ag”, the
OUT matrix obtained by adding the values of I to the rows of DIST, and the O
containing the row maxima of QUT. This figure continues Figures 1 and 2.

DEFINITION 3.3. A matriz M[0...m,0...n] is Monge if either condition 1 or
2 below holds for all a,b=0...m; ¢,d=0...n:

1. convex condition: M]a,c]+ Mb,d] < M[b,c]+ MJa,d] for all a < b
and c < d.

2. concave condition: Ma,c] + M[b,d] > MIb,c] + Mla,d] for all a < b
and c < d.

Since DIST is Monge - so is OUT, which is a DIST with constants added to
its rows.

An important property of Monge arrays is that of being totally monotone.

DEFINITION 3.4. A matriz M[0...m,0...n] is totally monotone if either
condition 1 or 2 below holds for all a,b=0...m; ¢,d=0...n:



1. convex condition: M]a,c] > M[b,c] = Mla,d] > M[b,d] for alla < b
and c < d.

2. concave condition: M[a,c] < M[b,c] = MJa,d] < M[b,d] for alla < b
and c < d.

Note that the Monge property implies total monotonicity, but the converse is
not true. Therefore, both DIST and OUT are totally monotone by the concave
condition.

Aggarwal et al [1] gave a recursive algorithm, nicknamed SM AWK in the
literature, which can compute in O(n) time all row and column maxima of
an n X n totally monotone matrix, by querying only O(n) elements of the array.
Hence, one could use SM AW K to compute the output row O by querying only
O(n) elements of OUT. Clearly, if both the full DIST and all entries of I are
available, then computing an element of OUT is O(1) work.

For various solutions to related problems, which also utilize Monge and Total
Monotonicity properties, we refer the interested reader to [8], [9], [14], [15], [24]
and [27]. In order to efficiently utilize these properties here, we need to address
the following two problems.

1. How to efficiently compute DIST and represent it in a format which allows
direct access to its entries. This will be done in section 3.2.2.

2. SMAWK is intended for a full, rectangular matrix. However, both
DIST and its corresponding OUT are not rectangular. Since paths in an
alignment graph can only assume a left-to-right, top-to-bottom direction,
connections between some input border vertices and some output border
vertices are impossible. Therefore, the matrices are missing both a lower
left triangle and upper right triangle (see Figure 3).

3.2.1 Addressing the Rectangle Problem. The undefined entries of OUT
can be complemented in constant time each, as follows.

1. The missing upper right triangle entries can be completed by setting the value
of any entry OUTi, j] in this triangle to —oc.

2. Let k denote maximal absolute value of a score in §. The missing lower left
triangle entries can be completed by setting the value of any OUTYi, j] in this
triangle to —(n +i + 1) * k.

LEMMA 3.1. Complementing the undefined entries as described above preserves
the concave total monotonicity condition of OUT, and does not introduce new
TOW-MATIMQ.

Proof. 1. Upper Right Triangle: All similarity scores in the alignment
graph are finite. Therefore, no new column maxima are introduced. Suppose



OUTa,c] < OUT[b,¢c], a < b, and OUT[a,c] has been set to —co. Due to
the shape of the redefined upper-right triangle, once a —oo value in row a is
encountered, all future values in row a are also —oo. The future values of row
b could either be finite or —oo. Therefore, OUT[a,d] < OUT[b,d] for all d > c.

2. Lower Left Triangle: The worst score appearing in the alignment graph
is lower bounded by —nk. Since i is always greater than or equal to zero, the
complemented values in the lower left triangle are upper-bounded by —(n+1) %k
and no new column maxima are introduced. Also, for any complemented entry
OUTb, ] in the lower left triangle, OUT[b,c] < OUT]a,c] for all a < b, and
therefore the concave total monotonicity condition holds.

3.2.2 Incremental Update of the new DIST Information for G. In
this section we will show how to efficiently compute the new DIST info for G,
using the DIST representations previously computed for its prefix blocks, plus
the information of its new cell.

When processing a new block G, we will compute the scores of t new optimal
paths, leading from the input border to the new vertex (¢,,£.) in the lowest,
rightmost corner of G. These values correspond to column ¢, of the DIST
matrix for GG, and can be computed as follows.

Entry [¢] in column ¢, of the DIST for G contains the weight of the optimal
path from entry 4 in the input border of G to vertex (£,,¢.). This path must
go through one of the three vertices (¢, — 1,¢.), (¢, — 1,¢. — 1) or (£, £. — 1).
Therefore, the weight of the optimal path from entry i in the input border of G
to (€y,¢.) is equal to the maximum among the following three values:

1. Entry [4] of column £, —1 of the DIST for the left prefix of G, plus the weight
of the horizontal edge leading into (¢, ¢.).

2. Entry [é] of column £, — 1 of the DIST for the diagonal prefix of G, plus the
weight of the diagonal edge leading into (¢, ¢.).

3. Entry [i] of column /. of the DIST for the top prefix of G, plus the weight
of the vertical edge leading into (¢, £.).

3.2.3 Maintaining Direct Access to DIST Columns. In order to
compute an entry of OUT in constant time during the execution of SM AWK,
direct access to DIST entries is necessary. This is not straightforward, since as
shown in the previous section, for each block only one new DIST column has
been computed and stored. All other columns besides column ¢, of the DIST
for G need to be obtained from G’s prefix ancestor blocks.

Therefore, before the execution of SM AW K begins, a vector with pointers to
all ¢ + 1 columns of the DIST for G is constructed (see Figure 4). This vector
is no longer needed after the computations for G have been completed, and its
space can be freed.
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Figure 4: A table containing an entry for each block of the alignment graph. Entry
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points to the start of its new DIST column. Also shown is the vector which contains
pointers to all columns of the DIST for block (5,4), as obtained from its ancestor
prefix blocks. This figure continues Figures 1, 2 and 3.

The pointers to all columns of the DIST for G are assembled as follows. Column
L. is set to the newly constructed vector for G. All columns of indices smaller
than £. are obtained via £, recursive calls to left prefix blocks of G. All columns

of indices greater than /. are obtained via £, recursive calls to top prefix blocks
of G.

3.2.4 Querying a Prefix Block and Obtaining its DIST Column in
Constant time. The LZ78 phrases form a trie (see Figure 2), and the string
to be compressed is encoded as a sequence of names of prefixes of the trie. Each
node in the trie contains the serial number of the phrase it represents. Since
each block corresponds to a comparison of a phrase from A with a phrase from
B, each block will be identified by a pair of numbers, composed of the serial
numbers for its corresponding phrases in the tries for A and B.

Another data structure to be constructed is a Block Table (see Figure 4),
containing an entry for each partitioned block of the alignment graph. The
entry for each block in the table points to the start of its new DIST column,
and can be directly accessed via the block’s phrase number index pair.

The left prefix of G can be identified in constant time as a pair of phrase
numbers, the first identical to the serial number of za, and the second
corresponding to the serial number of y, which is the direct ancestor of yb in the



trie for B. Similarly, the top prefix of G can be identified in constant time. Given
the pair of identification numbers for a block, a pointer to the corresponding
DIST column can then be directly obtained from the Block Table.

3.3 Time and Space Analysis

Assuming sequence size n and sequence entropy h < 1. The LZ78 factorization
algorithm will parse the strings and construct the tries for A and B in O(n)
time. The resulting number of phrases in both 4 and B is O(hn/logn). The
number of resulting blocks in the alignment graph is equal to the number of
phrases in A times number of phrases in B, and is therefore O(h?n?/(logn)?).
For each block G, the following information (1-3) is computed, in time and
space complexity linear with the size of its I/O borders:

1. Updating the Encoding Structure for G. The prefix blocks of G can be
accessed in constant time. The vectors of DIST column pointers for the prefix
blocks have already been freed. However, since each prefix block directly points
to its newly computed DIST column - all values needed for the computations
are still available. Since each entry of the new DIST column for G is set to the
maximum among up to three sums of pairs, the new DIST column for G can
be constructed in O(#) time and space.

2. Maintaining Direct Access to DIST columns. Since prefiz blocks and
their DIST columns can be accessed in constant time, the vector with pointers
to columns of the DIST for G can be set in O(t) time.

3. Propagation for (. Using the information computed for GG, and given the
I for G obtained from the O vectors for the block above G and the block to
its left, the values of O for G are computed via SM AW K Matrix Searching in
O(t) time.

Total Complexity. Since the work and space for each block is linear with
the size of its I/O borders, the total time and space complexity is linear
with the total size of the borders of the blocks. The block borders form
O(hn/logn) rows of size |B| each, and O(hn/logn) columns of size |A| each,
in the alignment graph (see Figure 2). Therefore, the total time and space
complexity is O(hn?/logn).

4 Extensions to Local Alignment

When computing the highest local alignment score, the added challenge is that
an optimal path could begin and end inside any block. Therefore, we will modify
O to consider the additional paths originating inside G.

Also, in addition to the DIST described in section 3, we compute for each block
G the following data structures (see Figures 5B, 5C).

1. E - is a vector of size t. E[i] contains the value of the highest scoring path
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Figure 5: A. The I/O path weight vectors computed for each block in the global
alignment solution. DISTTé, j] will be set to the highest scoring path connecting
vertex i in the input border with vertex j in the output border. B,C. The vectors of
optimal path weights considered for the local alignment computation.

which starts in vertex ¢ of the input border of G and ends inside G.

2. S - is a vector of size t. S[i] contains the value of the highest scoring path
which starts inside G and ends in vertex i of the output border of G.

3. C - is the value of the highest scoring path contained in G, that is - the
highest scoring path which originates inside G and ends inside G.

4. F - is the weight of the highest scoring path ending in G. This path could
either begin and end inside G (a C-path) or start outside G' and end inside G
(an I-path followed by an E-path).

The overall highest local alignment score for comparing A and B can be
computed as the maximum among the F' values of each block.

The two stages described in section 3.2 will be extended as follows.

4.1 Encoding. DIST is computed as described in section 3.2. In addition,
the values of E, S and C are computed as follows.

1. Computing the values of E. E[i] is computed as the maximum between
EJi] for the left prefix of G, E[i] for the top prefix of G, and DISTTi,(.].

2. Computing the values of S. The only new value computed for S
is the Smith-Waterman score for the new vertex (¢,,f.). Given the Smith-



Waterman local alignment scores for vertices (¢, — 1,¢, — 1) obtained from the
diagonal prefiz, (£.,f. — 1) obtained from the left prefiz and (¢, — 1,£.)
obtained from the top prefiz of G, and the weights of the 3 edges leading into
vertex (£, £.), the Smith-Waterman score for vertex (¢,,£.) can be computed
in O(1) time complexity, using the recursion given in section 2.1. The value for
entry £. of S is set to this newly computed Smith-Waterman score for vertex

(0r,0.).

The values of all other entries of S are then set as follows. The first ¢, values
of S are copied from the first £, values of the S computed for the left prefix of
G. The last £, values are copied from the last £, values of the S vector for the
top prefix of G.

3. Computing the value of C. (' is computed as the maximum between the
C value for the left prefix of G, the C' value for the top prefix of G, and the
newly computed S[¢.] as described above.

4.2 Propagation.

1. Computing the values of O. Our objective is to set O[i] to the weight
of the highest scoring path originating anywhere in the alignment graph and
ending in entry ¢ of the output border. Vector O will first be computed from
the I and DIST for G as described in section 3.2. At this point entry O[]
reflects the weight of the optimal path starting anywhere outside G and ending
in entry i of the output border. It needs to be updated with the weights of the
highest scoring paths starting inside G. This is achieved by resetting O[i] to the
maximum between O[] and S[i].

2. Computing the values of F. F is computed as maz(Mazt_,{I[i] +
E[il}, C)

4.3 Time and Space Analysis

Encoding. Since, as shown in section 3.2.3, each prefix block of G can be
accessed in constant time, the values of the S and F vectors for G can be
computed and stored in O(t) time and space, and the C' value for G can be
computed in constant time and space.

Propagation. Given the vectors computed in the encoding stage - the values
of O and F can be computed in O(t) time each as described above.

The weight of the highest scoring path in the alignment graph can then be
computed in an additional O(h?n?/(logn)?) time as the maximum value among
the F' values computed for each block.

Total Complexity Since the work and space for each block is linear with
the size of its I/O borders, the total time and space complexity for the local
alignment solution is O(hn?/logn).



5 Reducing the Space Complexity

When computing global alignment with scoring matrices which follow the
”discreteness” condition (see Section 1), the efficient alignment stage algorithm
described in [27] can be extended to support full propagation from the leftmost
and upper boundaries to the bottom and right most boundaries of G.

This extended propagation algorithm can then be used to compute the values
of the global alignment O for G, given the I for G and a minimal encoding
of the DIST for G. The advantage of this minimal encoding of DIST is that
rather than saving an O(t) sized DIST column per block, we only need to save
a constant number of values per block. The encoding for the new DIST column
of each block can be computed and stored in constant time and space from the
information stored for the left, diagonal and top prefix blocks of G, using the
technique described in section 6 of [37].

This reduces the space complexity to O(h?n?/(logn)?), while preserving the
O(hn?/logn) time complexity.

6 Conclusions

The results demonstrated in this paper are as follows.

e The algorithm presented in this paper is the first O(hn?/logn) string
comparison algorithm.

e This is the first sub-quadratic string comparison algorithm for general
scoring tables whose weights are not restricted to rational numbers.

e We showed how to extend this result to a local alignment O(hn?/logn)
algorithm.

e For global alignment over ”discrete” scoring matrices, we explained
how the space complexity can be reduced to O(h*n?/(logn)?), without
impairing the O(hn?/logn) time complexity.

In addition to the scores computed by dynamic programming, it is often desired
to recover a meaningful trace of the optimal alignments. Optimal paths in
the alignment graph (paths whose total weight is maximum) represent optimal
alignments of A and B.

Without any added complexity, the current algorithmic infrastructure can be
modified to support the recovery of an optimal global alignment path trace, as
well as an optimal local alignment trace as defined by Erickson and Sellers [12],
in time complexity which is linear with the size of the trace.

Due to lack of space, the description of how to recover the path alignment traces
is reserved for the journal version of the paper.
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