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1 IntrodutionThe rapid progress in large-sale DNA sequening opens a new level ofomputational hallenges involved in storing, organizing and analyzing thewealth of biologial information. One of the most interesting new �elds that theavailability of the omplete genomes has reated is that of genome omparison(the genome is all of the DNA sequene passed from one generation to the next).Comparing omplete genomes an give deep insights about the relationshipbetween organisms, as well as shedding light on the funtion of spei� genes ineah single genome. The hallenge of omparing omplete genomes neessitatesthe reation of additional, more eÆient omputational tools.One of the most ommon problems in biologial omparative analysis is thatof aligning two long bio-sequenes in order to measure their similarity. In theglobal alignment problem [19℄, [29℄, the similarity between two strings A andB is measured. In the loal alignment problem [39℄, the objetive is to �ndsubstrings of A whih are similar to substrings of B. Both alignment problemsan be solved in O(n2) time by dynami programming [19℄, [39℄.In this paper data ompression tehniques are employed to speed up thealignment of two strings. The ompression mehanism enables the algorithmto adapt to the data and to utilize its repetitions. The periodi nature of thesequene is quanti�ed via its entropy, denoted 0 � h � 1. Entropy is a measureof how "ompressible" a sequene is [5℄,[7℄, and is small when there is a lot oforder (i.e, the sequene is repetitive and therefore more ompressible) and largewhen there is a lot of disorder (see setion 2.2).We present an O(n2= logn) algorithm for omputing both global and loalsimilarity between two strings over a onstant alphabet. The algorithm is evenfaster when the sequene is ompressible. In fat, for most texts, the omplexityof our algorithm is atually O(hn2= logn).Note that the algorithm presented is the �rst sub-quadrati loal alignmentalgorithm.After the optimal sores are omputed, an alignment trae orresponding to theoptimal sore an be reovered in time omplexity whih is linear with the sizeof the trae, for both the global alignment and the loal alignment problems.The algorithms desribed in this paper are the �rst to approah fully ompressed(both soure and target strings are ompressed) string alignment. The methodsgiven in this paper an also be used by appliations where both input stringsare stored or transmitted in the form of LZ78 or LZW ompressed sequene,thus providing an eÆient solution to the problem of how to ompare the twostrings without having to deompress them �rst.The only previously known sub-quadrati global alignment string omparisonalgorithm, by Masek and Paterson [31℄, is based on the Four Russians paradigm.The "Four Russians" algorithm divides the dynami programming table intouniform sized (logn by logn) bloks, and uses table lookup to obtain an



O(n2= logn) time omplexity, based on two assumptions. One is that thesequene elements ome from a onstant alphabet. The other, whih they denotethe "disreteness" ondition, is that the weights (of substitutions and indels) areall rational numbers.Our algorithms present a new approah and are better than the above algorithmin two aspets.� The algorithms presented here are faster for ompressible sequenes. Forsuh sequenes, the omplexity of our algorithms is O(hn2= logn), whereh � 1 is the entropy of the sequene.� Our algorithms are general enough to support soring shemes with realnumber weights.For many soring shemes, the rational number weights supported byMasek and Paterson's algorithm do not suÆe. For example, the entriesof PAM similarity matries, as well as BLOSUM evolutionary distanematries, are de�ned to be real numbers, omputed as log-odds ratios -and therefore ould be irrational.The paper by Masek and Paterson is onluded with the followingstatement: "The most important problem remaining is �nding a betteralgorithm for the �nite (in our terms onstant) alphabet ase withoutthe disreteness ondition". Here, more than twenty years later, thisimportant open question will �nally be answered!These advantages are based in the following fats. First, our algorithm does notrequire any pre-omputation of lookup-tables, and therefore an a�ord moreexible weight values. Also, instead of dividing the dynami programmingmatrix into uniform sized bloks as did Masek and Paterson, we employ avariable sized blok partition, as indued by Lempel-Ziv fatorization of bothsoure and target. The ommon denominator between bloks, maximized by theompression tehnique, is then re-yled and used for omputing the relevantinformation for eah blok in time whih is linear with the length of its sides.In this sense, the approah desribed in this paper an be viewed as anotherexample of speeding up dynami programming by keeping and omputing onlya relevant subset of important values, as demonstrated in [10℄, [11℄, [27℄ and[37℄.The remainder of this paper is organized as follows. Setion 2 inludespreliminaries. In setion 3 we desribe the global alignment solution using fullyompressed string omparison. In setion 4 we extend the solution to omputethe highest soring regions of loal alignment. Setion 5 ontains a disussionof how to redue the spae omplexity without impairing the time omplexity,when omputing global alignment over "disrete" soring matries.A desription of how to reover a path alignment trae in time linear with itssize will be given in the journal version of the paper.
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Figure 1: The alignment graph for omparing strings A = "tagaga" and B ="aagaga". The soring sheme matrix Æ is shown in the lower left orner of the�gure. The highest soring global alignment paths originate in vertex (0,0), end invertex (8,8) and have a total weight of 3. The highest soring loal alignment path hasa total weight of 5 and orresponds to the alignment of substrings a = "agaga" andb = agaga". A sub-graph G orresponding to the blok for omparing substringsa = "ag" and b = "ag" is shown in the lower-right orner of the �gure. Also spei�edare the values I for the entries of the input border for G (in white-shaded retangles),and the values O of the output border of G (in grey-shaded retangles), as set duringa loal alignment omputation.2 Preliminaries2.1 Highest Soring Paths in the Alignment Graph. The dynamiprogramming solution to the string omparison omputation problem an berepresented in terms of a weighted alignment graph [19℄ (See Figure 1). Theweight of a given edge an be spei�ed diretly in the grid graph, or as isfrequently the ase in biologial appliations, is given by a penalty matrix,denoted Æ, whih spei�es the substitution ost for eah pair of haratersand the deletion ost for eah harater from the alphabet. Typially, in thebiologial domain, Æ is negative for all operations exept replaement of similarsymbols, and the objetive is to maximize the alignment sore.The lassial dynami programming algorithm for global alignment will set the



value at eah vertex (i; j) of the alignment graph, row by row in a left to rightorder, to the sore between the �rst i haraters of A and the �rst j haratersof B, using the following reurrene. V (i; j) = max[V (i; j � 1) + Æ(�; Bj);V (i� 1; j) + Æ(Ai; �);V (i� 1; j � 1) + Æ(Ai; Bj)℄Smith and Waterman [39℄ showed that essentially the same O(jAjjBj) dynamiprogramming solution an be used for loal alignment, provided that the soreof the alignment of two empty strings is de�ned as 0, and only pairs whosealignment sores are above 0 are of interest. The Smith-Waterman algorithmfor loal alignment will ompute the following reurrene, whih inludes 0 asan additional option, and thus restrits the sores to non-negative values.S(i; j) = max[0; S(i; j � 1) + Æ(�; Bj);S(i� 1; j) + Æ(Ai; �);S(i� 1; j � 1) + Æ(Ai; Bj)℄The sore for the most similar substrings is found in the highest soring nodesin the alignment graph.2.2 A Blok Partition of the Alignment Graph based on LZ78Fatorization. The traditional aim of text ompression is eÆient use ofresoures suh as storage and bandwidth. Here, we will ompress the sequenesin order to speed up the alignment proess. Note that this approah, denoted"aeleration by text-ompression", has been reently applied to a relatedproblem - that of exat string mathing [22℄, [30℄, [38℄.It should also be mentioned that another related problem - that of exat stringmathing in ompressed text without deoding it, whih is often referred toas "ompressed pattern mathing", has been studied extensively [3℄, [13℄ [34℄.Along these lines, string searh in ompressed text was developed for theompression paradigm of LZ78 [45℄, and its subsequent variant LZW [43℄, asdesribed in [23℄, [35℄. A more hallenging problem is that of "fully ompressed"pattern mathing when both the pattern and text strings are ompressed [16℄,[17℄.For the LZ78-LZW paradigm, ompressed mathing has been extended andgeneralized to that of approximate pattern mathing (�nding all ourrenes ofa short sequene within a long one allowing up to k hanges) in [21℄, [33℄.The LZ ompression methods are based on the idea of self referene: whilethe text �le is sanned, substrings or phrases are identi�ed and stored in aditionary, and whenever, later in the proess, a phrase or onatenation ofphrases is enountered again, this is ompatly enoded by suitable pointers[28℄, [44℄, [45℄.Of the several existing versions of the method, we will use the ones whih are



denoted LZ78 family [43℄, [45℄. The main feature whih distinguishes LZ78fatorization from previous LZ ompression algorithms is in the hoie of odewords. Instead of allowing pointers to referene any string that has appearedpreviously, the text seen so far is parsed into phrases, where eah phrase is thelongest mathing phrase seen previously plus one harater. For example, thestring "S = aagag" is divided into fours phrases: a, a, g, ag. Eah phraseis enoded as an index to its pre�x, plus the extra harater. The new phraseis then added to the list of phrases that may be referened.
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Figure 2: The blok partition of the alignment graph, and the tries orrespondingto LZ-78 parsing of strings A = "tagaga" and B = "aagaga". Note that for theblok G in this example, � = "ag", � = "ag", `r = 2, ` = 3, i = 5 and j = 4.(The new ell of G, whih does not appear in any of the pre�x bloks, is the rightmostell at the bottom row of G, and an be distinguished by its white olor.) This �gureontinues Figure 1.Sine eah phrase is distint, the following upper bound applies to the possiblenumber of phrases obtained by LZ78 fatorization.Theorem 2.1. (Ziv and Lempel 1976 [28℄.) Given a sequene S of size nover a onstant alphabet. The maximal number of distint phrases in S isO( nlogn ).



Even though the upper bound above applies to any possible sequene over aonstant alphabet, it has been shown that in many ases we an do better thanthat.Intuitively, the LZ78 algorithm ompresses the sequene beause it is able todisover some repeated patterns. Therefore, in order to ompute a tighterupper bound on the number of phrases obtained by LZ78 fatorization for"ompressible" sequenes, the repetitive nature of the sequene needs to bequanti�ed. One of the fundamental ideas in information theory is that ofentropy, denoted 0 � h � 1, whih is a measure of the amount of disorderor randomness, or inversely, the amount of order or redundany in a sequene.Entropy is small when there is a lot of order (i.e, the sequene is repetitive) andlarge when there is a lot of disorder. The entropy of a sequene should ideallyreet the ratio between the size of the sequene after it has been ompressed,and the length of the unompressed sequene.The number of distint phrases obtained by LZ78 fatorization has been shownto be O(hn= logn) for most texts [5℄, [7℄, [28℄, [45℄. Note that for any other textover a onstant alphabet, the upper bound above still applies by setting h to 1.3 The Global Alignment Solution3.1 De�nitions and Basi Observations. The alignment graph will bepartitioned as follows. Strings A and B will be parsed using LZ78 fatorization.This indues a partition of the alignment graph for omparing A with B intovariable sized bloks (see Figure 2). Eah blok will orrespond to a omparisonof an LZ phrase of A with an LZ phrase of B.Let xa denote a phrase in A obtained by extending a previous phrase x of Awith harater a, and yb denote a phrase in B, obtained by extending a previousphrase of B with harater b.From now on we will fous on the omputations neessary for a single blok ofthe alignment graph.Consider the blok G whih orresponds to the omparison of xa and yb. Wede�ne input border I - as the left and top borders of G, and output border O - asthe bottom and right borders of G. (The node entries on the input border arenumbered in a lokwise diretion, and the node entries on the output borderare numbered in a ounter-lokwise diretion.)Rather than �lling in the values of eah vertex inG, as does the lassial dynamiprogramming algorithm - the only values omputed for eah blok will be thoseon its I=O borders (see Figures 1, 5A ). Intuitively, this is the reason behindthe eÆieny gain.Let `r -denote the number of rows in G, `r = jxaj. Let ` -denote the numberof olumns in G, ` = jybj. Let t = `r + `. Clearly, jI j = jOj = t.We de�ne the following three prefix bloks of G.



1. The left prefix of G -denotes the blok omparing phrase xa of A andphrase y of B.2. The diagonal prefix of G -denotes the blok omparing phrase x of A andphrase y of B.3. The top prefix of G -denotes the the blok omparing phrase x of A andphrase yb of B.Observation 1When traversing the bloks of an LZ78 parsed alignment graphin a left-to-right, top-to-bottom order. The bloks for the left pre�x, diagonalpre�x and top pre�x of G are enountered prior to blok G.Note that the graph for the left pre�x of G is idential to the subgraph of Gontaining all olumns but the last one. More spei�ally, both the struture andthe weights of the edges of these two graphs are idential, but the weights to beassigned to the verties during the similarity omputation may vary aordingto the input border values. Similarly, for the top pre�x and diagonal pre�xgraphs. The only new ell in G, whih does not appear in any of its pre�x blokgraphs, is the ell for omparing a and b.3.2 I=O Propagation Aross G. The work for eah blok will onsist oftwo stages (a similar approah is shown in [6, 20, 26, 27℄).1. enoding : Study the struture of G and represent it in an eÆient way.2. propagation : Given I and the enoding of G, onstruted in the previous stage,ompute O for G.The struture of G will be enoded by omputing weights of optimal pathsonneting eah entry of its input border with eah entry of its output border.The following DIST matrix will be used (see Figure 3).Definition 3.1. DIST [i; j℄ stores the weight of the optimal path from entry iof the input border of G to entry j of its output border.DIST matries have also been used in [4℄, [6℄, [20℄, [27℄ and [37℄.Given input row I and the DIST for G, the weight of output row vertex Ojan be omputed as follows.Oj = jmaxr=0 fIr +DIST [r; j℄gOj is the maximum of olumn j of the following OUT matrix, whih merges theinformation from input row I and DIST . (See Figure 3).Definition 3.2. OUT [i; j℄ = Ii +DIST [i; j℄.Aggarwal and Park [2℄ and Shmidt [37℄ observed that DIST matries areMonge arrays [32℄.



DIST matrixI0 = 1 0 �1 �2 �3 4 4I1 = 2 �1 �1 �2 �1 �3 4I2 = 3 �2 0 0 1 �1 �3I3 = 2 4 �2 �2 0 �2 �2I4 = 1 4 4 �2 0 �1 �1I5 = 3 4 4 4 �2 �1 0OUT matrix1 0 �1 �2 �1 �11 1 0 1 �1 �11 3 3 4 2 0�12 0 0 2 0 0�13 �13 �1 1 0 0�14 �14 �14 1 2 3O0 O1 O2 O3 O4 O51 3 3 4 2 3olumn numbers0 1 2 3 4 5Figure 3: The DIST matrix whih orresponds to the subsequenes "ag", "ag", theOUT matrix obtained by adding the values of I to the rows of DIST , and the Oontaining the row maxima of OUT . This �gure ontinues Figures 1 and 2.Definition 3.3. A matrix M [0 : : :m; 0 : : : n℄ is Monge if either ondition 1 or2 below holds for all a; b = 0 : : :m; ; d = 0 : : : n:1. onvex ondition: M [a; ℄ +M [b; d℄ � M [b; ℄ +M [a; d℄ for all a < band  < d.2. onave ondition: M [a; ℄ +M [b; d℄ � M [b; ℄ +M [a; d℄ for all a < band  < d.Sine DIST is Monge - so is OUT , whih is a DIST with onstants added toits rows.An important property of Monge arrays is that of being totally monotone.Definition 3.4. A matrix M [0 : : :m; 0 : : : n℄ is totally monotone if eitherondition 1 or 2 below holds for all a; b = 0 : : :m; ; d = 0 : : : n:



1. onvex ondition: M [a; ℄ �M [b; ℄ =)M [a; d℄ �M [b; d℄ for all a < band  < d.2. onave ondition: M [a; ℄ �M [b; ℄ =)M [a; d℄ �M [b; d℄ for all a < band  < d.Note that the Monge property implies total monotoniity, but the onverse isnot true. Therefore, both DIST and OUT are totally monotone by the onaveondition.Aggarwal et al [1℄ gave a reursive algorithm, niknamed SMAWK in theliterature, whih an ompute in O(n) time all row and olumn maxima ofan n�n totally monotone matrix, by querying only O(n) elements of the array.Hene, one ould use SMAWK to ompute the output row O by querying onlyO(n) elements of OUT . Clearly, if both the full DIST and all entries of I areavailable, then omputing an element of OUT is O(1) work.For various solutions to related problems, whih also utilize Monge and TotalMonotoniity properties, we refer the interested reader to [8℄, [9℄, [14℄, [15℄, [24℄and [27℄. In order to eÆiently utilize these properties here, we need to addressthe following two problems.1. How to eÆiently omputeDIST and represent it in a format whih allowsdiret aess to its entries. This will be done in setion 3.2.2.2. SMAWK is intended for a full, retangular matrix. However, bothDIST and its orresponding OUT are not retangular. Sine paths in analignment graph an only assume a left-to-right, top-to-bottom diretion,onnetions between some input border verties and some output borderverties are impossible. Therefore, the matries are missing both a lowerleft triangle and upper right triangle (see Figure 3).3.2.1 Addressing the Retangle Problem. The unde�ned entries of OUTan be omplemented in onstant time eah, as follows.1. The missing upper right triangle entries an be ompleted by setting the valueof any entry OUT [i; j℄ in this triangle to �1.2. Let k denote maximal absolute value of a sore in Æ. The missing lower lefttriangle entries an be ompleted by setting the value of any OUT [i; j℄ in thistriangle to �(n+ i+ 1) � k.Lemma 3.1. Complementing the unde�ned entries as desribed above preservesthe onave total monotoniity ondition of OUT , and does not introdue newrow-maxima.Proof. 1. Upper Right Triangle: All similarity sores in the alignmentgraph are �nite. Therefore, no new olumn maxima are introdued. Suppose



OUT [a; ℄ � OUT [b; ℄, a < b, and OUT [a; ℄ has been set to �1. Due tothe shape of the rede�ned upper-right triangle, one a �1 value in row a isenountered, all future values in row a are also �1. The future values of rowb ould either be �nite or �1. Therefore, OUT [a; d℄ � OUT [b; d℄ for all d > .2. Lower Left Triangle: The worst sore appearing in the alignment graphis lower bounded by �nk. Sine i is always greater than or equal to zero, theomplemented values in the lower left triangle are upper-bounded by �(n+1)�kand no new olumn maxima are introdued. Also, for any omplemented entryOUT [b; ℄ in the lower left triangle, OUT [b; ℄ < OUT [a; ℄ for all a < b, andtherefore the onave total monotoniity ondition holds.3.2.2 Inremental Update of the new DIST Information for G. Inthis setion we will show how to eÆiently ompute the new DIST info for G,using the DIST representations previously omputed for its pre�x bloks, plusthe information of its new ell.When proessing a new blok G, we will ompute the sores of t new optimalpaths, leading from the input border to the new vertex (`r; `) in the lowest,rightmost orner of G. These values orrespond to olumn ` of the DISTmatrix for G, and an be omputed as follows.Entry [i℄ in olumn ` of the DIST for G ontains the weight of the optimalpath from entry i in the input border of G to vertex (`r; `). This path mustgo through one of the three verties (`r � 1; `), (`r � 1; ` � 1) or (`r; ` � 1).Therefore, the weight of the optimal path from entry i in the input border of Gto (`r; `) is equal to the maximum among the following three values:1. Entry [i℄ of olumn `�1 of the DIST for the left pre�x of G, plus the weightof the horizontal edge leading into (`r; `).2. Entry [i℄ of olumn `� 1 of the DIST for the diagonal pre�x of G, plus theweight of the diagonal edge leading into (`r; `).3. Entry [i℄ of olumn ` of the DIST for the top pre�x of G, plus the weightof the vertial edge leading into (`r; `).3.2.3 Maintaining Diret Aess to DIST Columns. In order toompute an entry of OUT in onstant time during the exeution of SMAWK,diret aess to DIST entries is neessary. This is not straightforward, sine asshown in the previous setion, for eah blok only one new DIST olumn hasbeen omputed and stored. All other olumns besides olumn ` of the DISTfor G need to be obtained from G's pre�x anestor bloks.Therefore, before the exeution of SMAWK begins, a vetor with pointers toall t+ 1 olumns of the DIST for G is onstruted (see Figure 4). This vetoris no longer needed after the omputations for G have been ompleted, and itsspae an be freed.



0   1   2   3   4  

DIST(5,4)

0   
1   
2   
3   
4   
5   

-3   
-1   
1   
0   
0   
-2   

-3   
-1   
-2   
-1   
-1   

-3   
-2   
-1   

0   

-2   
-2   
0   
-2   
-2   

-1   
-1   
0   
-2   

 0   
-1   
-2   

a

g

a c

g

g

Trie for A Trie for B

0

13

0

31

2

4

2

t

4

g

Block Table

5

c

Figure 4: A table ontaining an entry for eah blok of the alignment graph. Entry(i; j) of the table orresponds to the blok whose substrings are represented by nodei in the trie for A and node j in the trie for B. The entry for eah blok in the tablepoints to the start of its new DIST olumn. Also shown is the vetor whih ontainspointers to all olumns of the DIST for blok (5; 4), as obtained from its anestorpre�x bloks. This �gure ontinues Figures 1, 2 and 3.The pointers to all olumns of theDIST forG are assembled as follows. Column` is set to the newly onstruted vetor for G. All olumns of indies smallerthan ` are obtained via ` reursive alls to left pre�x bloks of G. All olumnsof indies greater than ` are obtained via `r reursive alls to top pre�x bloksof G.3.2.4 Querying a Pre�x Blok and Obtaining its DIST Column inConstant time. The LZ78 phrases form a trie (see Figure 2), and the stringto be ompressed is enoded as a sequene of names of pre�xes of the trie. Eahnode in the trie ontains the serial number of the phrase it represents. Sineeah blok orresponds to a omparison of a phrase from A with a phrase fromB, eah blok will be identi�ed by a pair of numbers, omposed of the serialnumbers for its orresponding phrases in the tries for A and B.Another data struture to be onstruted is a Blok Table (see Figure 4),ontaining an entry for eah partitioned blok of the alignment graph. Theentry for eah blok in the table points to the start of its new DIST olumn,and an be diretly aessed via the blok's phrase number index pair.The left pre�x of G an be identi�ed in onstant time as a pair of phrasenumbers, the �rst idential to the serial number of xa, and the seondorresponding to the serial number of y, whih is the diret anestor of yb in the



trie forB. Similarly, the top pre�x ofG an be identi�ed in onstant time. Giventhe pair of identi�ation numbers for a blok, a pointer to the orrespondingDIST olumn an then be diretly obtained from the Blok Table.3.3 Time and Spae AnalysisAssuming sequene size n and sequene entropy h � 1. The LZ78 fatorizationalgorithm will parse the strings and onstrut the tries for A and B in O(n)time. The resulting number of phrases in both A and B is O(hn= logn). Thenumber of resulting bloks in the alignment graph is equal to the number ofphrases in A times number of phrases in B, and is therefore O(h2n2=(logn)2).For eah blok G, the following information (1{3) is omputed, in time andspae omplexity linear with the size of its I=O borders:1. Updating the Enoding Struture for G. The pre�x bloks of G an beaessed in onstant time. The vetors of DIST olumn pointers for the pre�xbloks have already been freed. However, sine eah pre�x blok diretly pointsto its newly omputed DIST olumn - all values needed for the omputationsare still available. Sine eah entry of the new DIST olumn for G is set to themaximum among up to three sums of pairs, the new DIST olumn for G anbe onstruted in O(t) time and spae.2. Maintaining Diret Aess to DIST olumns. Sine prefix bloks andtheir DIST olumns an be aessed in onstant time, the vetor with pointersto olumns of the DIST for G an be set in O(t) time.3. Propagation for G. Using the information omputed for G, and given theI for G obtained from the O vetors for the blok above G and the blok toits left, the values of O for G are omputed via SMAWK Matrix Searhing inO(t) time.Total Complexity. Sine the work and spae for eah blok is linear withthe size of its I=O borders, the total time and spae omplexity is linearwith the total size of the borders of the bloks. The blok borders formO(hn= logn) rows of size jBj eah, and O(hn= logn) olumns of size jAj eah,in the alignment graph (see Figure 2). Therefore, the total time and spaeomplexity is O(hn2= logn).4 Extensions to Loal AlignmentWhen omputing the highest loal alignment sore, the added hallenge is thatan optimal path ould begin and end inside any blok. Therefore, we will modifyO to onsider the additional paths originating inside G.Also, in addition to the DIST desribed in setion 3, we ompute for eah blokG the following data strutures (see Figures 5B, 5C).1. E - is a vetor of size t. E[i℄ ontains the value of the highest soring path
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Figure 5: A. The I=O path weight vetors omputed for eah blok in the globalalignment solution. DIST [i; j℄ will be set to the highest soring path onnetingvertex i in the input border with vertex j in the output border. B,C. The vetors ofoptimal path weights onsidered for the loal alignment omputation.whih starts in vertex i of the input border of G and ends inside G.2. S - is a vetor of size t. S[i℄ ontains the value of the highest soring pathwhih starts inside G and ends in vertex i of the output border of G.3. C - is the value of the highest soring path ontained in G, that is - thehighest soring path whih originates inside G and ends inside G.4. F - is the weight of the highest soring path ending in G. This path ouldeither begin and end inside G (a C-path) or start outside G and end inside G(an I-path followed by an E-path).The overall highest loal alignment sore for omparing A and B an beomputed as the maximum among the F values of eah blok.The two stages desribed in setion 3.2 will be extended as follows.4.1 Enoding. DIST is omputed as desribed in setion 3.2. In addition,the values of E, S and C are omputed as follows.1. Computing the values of E. E[i℄ is omputed as the maximum betweenE[i℄ for the left pre�x of G, E[i℄ for the top pre�x of G, and DIST [i; `℄.2. Computing the values of S. The only new value omputed for Sis the Smith-Waterman sore for the new vertex (`r; `). Given the Smith-



Waterman loal alignment sores for verties (`r � 1; ` � 1) obtained from thediagonal prefix, (`r; ` � 1) obtained from the left prefix and (`r � 1; `)obtained from the top prefix of G, and the weights of the 3 edges leading intovertex (`r; `), the Smith-Waterman sore for vertex (`r; `) an be omputedin O(1) time omplexity, using the reursion given in setion 2.1. The value forentry ` of S is set to this newly omputed Smith-Waterman sore for vertex(`r; `).The values of all other entries of S are then set as follows. The �rst ` valuesof S are opied from the �rst ` values of the S omputed for the left pre�x ofG. The last `r values are opied from the last `r values of the S vetor for thetop pre�x of G.3. Computing the value of C. C is omputed as the maximum between theC value for the left pre�x of G, the C value for the top pre�x of G, and thenewly omputed S[`℄ as desribed above.4.2 Propagation.1. Computing the values of O. Our objetive is to set O[i℄ to the weightof the highest soring path originating anywhere in the alignment graph andending in entry i of the output border. Vetor O will �rst be omputed fromthe I and DIST for G as desribed in setion 3.2. At this point entry O[i℄reets the weight of the optimal path starting anywhere outside G and endingin entry i of the output border. It needs to be updated with the weights of thehighest soring paths starting inside G. This is ahieved by resetting O[i℄ to themaximum between O[i℄ and S[i℄.2. Computing the values of F . F is omputed as max(Maxti=0fI [i℄ +E[i℄g; C)4.3 Time and Spae AnalysisEnoding. Sine, as shown in setion 3.2.3, eah pre�x blok of G an beaessed in onstant time, the values of the S and E vetors for G an beomputed and stored in O(t) time and spae, and the C value for G an beomputed in onstant time and spae.Propagation. Given the vetors omputed in the enoding stage - the valuesof O and F an be omputed in O(t) time eah as desribed above.The weight of the highest soring path in the alignment graph an then beomputed in an additional O(h2n2=(logn)2) time as the maximum value amongthe F values omputed for eah blok.Total Complexity Sine the work and spae for eah blok is linear withthe size of its I=O borders, the total time and spae omplexity for the loalalignment solution is O(hn2= logn).



5 Reduing the Spae ComplexityWhen omputing global alignment with soring matries whih follow the"disreteness" ondition (see Setion 1), the eÆient alignment stage algorithmdesribed in [27℄ an be extended to support full propagation from the leftmostand upper boundaries to the bottom and right most boundaries of G.This extended propagation algorithm an then be used to ompute the valuesof the global alignment O for G, given the I for G and a minimal enodingof the DIST for G. The advantage of this minimal enoding of DIST is thatrather than saving an O(t) sized DIST olumn per blok, we only need to savea onstant number of values per blok. The enoding for the new DIST olumnof eah blok an be omputed and stored in onstant time and spae from theinformation stored for the left, diagonal and top pre�x bloks of G, using thetehnique desribed in setion 6 of [37℄.This redues the spae omplexity to O(h2n2=(logn)2), while preserving theO(hn2= logn) time omplexity.6 ConlusionsThe results demonstrated in this paper are as follows.� The algorithm presented in this paper is the �rst O(hn2= logn) stringomparison algorithm.� This is the �rst sub-quadrati string omparison algorithm for generalsoring tables whose weights are not restrited to rational numbers.� We showed how to extend this result to a loal alignment O(hn2= logn)algorithm.� For global alignment over "disrete" soring matries, we explainedhow the spae omplexity an be redued to O(h2n2=(logn)2), withoutimpairing the O(hn2= logn) time omplexity.In addition to the sores omputed by dynami programming, it is often desiredto reover a meaningful trae of the optimal alignments. Optimal paths inthe alignment graph (paths whose total weight is maximum) represent optimalalignments of A and B.Without any added omplexity, the urrent algorithmi infrastruture an bemodi�ed to support the reovery of an optimal global alignment path trae, aswell as an optimal loal alignment trae as de�ned by Erikson and Sellers [12℄,in time omplexity whih is linear with the size of the trae.Due to lak of spae, the desription of how to reover the path alignment traesis reserved for the journal version of the paper.Aknowledgement
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