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Re-Use Dynamic Programming for Sequence Alignment: An

Algorithmic Toolkit ∗

Maxime Crochemore † Gad M. Landau ‡ Baruch Schieber § Michal Ziv-Ukelson ¶

Abstract

The problem of comparing two sequences S and T to determine their similarity is one of the
fundamental problems in pattern matching. In this manuscript we will be primarily concerned
with sequences as our objects and with various string comparison metrics. Our goal is to survey
a methodology for utilizing repetitions in sequences in order to speed up the comparison process.
Within this framework we consider various methods of parsing the sequences in order to frame
their repetitions, and present a toolkit of various solutions whose time complexity depends both
on the chosen parsing method as well as on the string-comparison metric used for the alignment.

1 Preliminaries

Sequence alignment is traditionally based on the transformation of one sequence into the other
via operations of substitutions, insertions, and deletions (indels). The costs of the operations
are specified in a given scoring matrix δ. An optimal alignment is an alignment that yields the
best similarity score - a value computed as the sum of the costs of the operations applied in the
transformation. The alignment of two sequences A and B can classically be solved in O(n2) time
[43, 57, 61] and O(n) space [29] by dynamic programming. The dynamic programming solution to
the string comparison computation problem can be represented in terms of a weighted alignment
graph [28]. (See Figure 3. Note that all figures can be found in the Appendix.) An alignment
graph for A and B is a directed, acyclic, weighted graph containing (|A| + 1)(|B| + 1) nodes, each
labelled with a distinct pair (x,w) (0 ≤ x ≤ |A|, 0 ≤ w ≤ |B|). The nodes are organized in a
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matrix of (|A| + 1) rows and (|B| + 1) columns. The alignment graph contains a directed edge
with a weight of δ(−, bw+1) from each node (x,w) to (x,w + 1), and a weight of δ(ax+1,−) from
each node (x,w) to (x + 1, w). Node (x,w) has also a diagonal edge with a weight of δ(ax+1, bw+1)
to node (x + 1, w + 1). The weight of a given edge can be specified directly on the grid graph,
or as is frequently the case in biological applications, is given by a scoring matrix which specifies
the substitution cost for each pair of characters and the deletion cost for each character from the
alphabet. Best-scoring paths in the alignment graph represent optimal alignments of A and B. The
dynamic programming algorithm will set the value of vertex (x,w) in the graph to the total weight
of the highest scoring path which originates in vertex [0, 0] and ends in vertex [x,w], a weight which
is identical to the alignment score between the first x characters of A and the first w characters of
B.

The two widely used classes of scoring schemes are distance scoring, in which the objective is to
minimize the total alignment score, and similarity scoring, in which the objective is to maximize
the total alignment score. Within these classes, scoring schemes are further characterized by the
treatment of gap costs. A gap is the result of the deletion of one or more consecutive characters
in one of the sequences. Additive gap costs assign a constant weight to each of the consecutive
characters. For other gap functions which have been found useful for biological sequences, see [28].

Note that in sections 3.1 and 3.2 we will formalize the alignment problems at hand in terms of
distance minimization. (For the sake of simplicity, we will restrict our examples to the Edit Distance
measure [43].) In this respect the first and second subsections differ in style from subsection 3.3
and section 4, where the alignment problems will be formalized in terms of similarity maximization.
However, the distance and similarity perspectives are complementary, and any distance problem
can be translated into a similarity problem. Correspondingly, the distance-based solutions in this
manuscript can easily be translated to score maximization solutions, in order to apply to string
comparison metrics which measure similarity, rather than distance. All solutions described in this
manuscript assume a scoring scheme with additive gap costs.

2 A High-Level Overview of the Toolkit

Our goal is to develop a methodology for utilizing repetitions in sequences in order to speed up the
comparison process. Within this framework we consider various methods of parsing the sequences
in order to frame their repetitions (see Figures 5 to 7).

2.1 Stage One: Utilizing Repetitions in the Source Strings.

In Section 3 of this manuscript we present solutions to the Common Substring Alignment Problem,
(CSA for short), which is defined as follows. We are given a set of one or more strings S1, S2 . . . Sc

and a target string T and Y is a common substring of all source strings Si, that is Si = BiY Fi, and
Y may be repeated several times in any of the source strings (see Figures 1, 3 and 5). The goal is
to compute the similarity of all strings Si with T , without computing the part of Y over and over
again.

More generally, the common substring Y could be shared by different source strings competing
over similarity with a common target, or could appear repeatedly in the same source string. Also,
in a given application, we could of course be dealing with more than one repeated or shared sub-
component. It is assumed that the locations of the common subsequence Y in each source sequence
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Si are known. However, the part of the target T with which Y aligns, may vary according to each
Bi and Fi combination.

We refer the interested reader to [40] for a description of various applications which can be cast
as CSA problems. In this manuscript, we will survey the CSA algorithms as macros in a general
toolkit for utilizing various forms of repetitions in the graphs used for aligning two sequences.

Let n be the size of the compared sequences, Y denote the common substring, and let ℓ denote the
size of Y . Using the classical dynamic programming tables, each appearance of Y in a source string
would require the computation of all the values in a dynamic programming table of size O(nℓ).

The three solutions surveyed here are each composed of an encoding stage and an alignment stage.
During the first stage, a data structure is constructed which encodes the comparison of Y with
T . Then, during the alignment stage, for each comparison of a source Si with T , the pre-compiled
data structure is used to speed up the part of Y .

A clear distinction should be made between the off-line pre-processing work and the online encoding
stage. In some of the applications for which the CSA algorithms are intended, the source sequence
database is prepared off-line, while the target can be viewed as an “unknown” sequence which
is received online. The source strings can be pre-processed off-line and parsed into their optimal
common substring representation.(The CSA algorithms of Stage One assume that we arrive to the
problem after the strings have already been parsed, as opposed to the Stage Two algorithms which
will handle the parsing job as well.) Therefore, the CSA algorithms know well beforehand where,
in each Si, Y begins and ends. However, the comparison of Y and T cannot be computed until the
target is received. Therefore, the encoding stage, as well as the alignment stage - are both online
stages, and the tradeoff between the two must be cleverly minimized in order to maximize the
efficiency gain by the suggested two-stage scenario. Note that even though both stages are online,
they do not bear an equal weight on the time complexity of the algorithm. The efficiency gain is
based on the fact that the first stage is executed only once per target, and then the encoding results
are used, during the second stage, to speed up the alignment of each appearance of the common
subcomponent in any of the source strings. In Section 3 the solutions will be analyzed in terms
of encoding stage complexity and alignment stage complexity for a single common substring Y .
Clearly, the additional running time depends only on the length of the parts of the strings that are
not in any common substring.

The results presented in Section 3 include the following three solutions to the Common Substring
Alignment Problem, which appear in [40] and [41].

1. Algorithm CSA1: the basic CSA algorithm for unrestricted scoring matrices.

This solution, which is presented in Section 3.1, reduces the O(nℓ) alignment work, for each ap-
pearance of the common substring Y in a source string, to O(n) - at the cost of an O(n2) time
encoding stage, which is executed only once. This algorithm is general enough to support scoring
schemes which use a scoring matrix whose values are real numbers.

2. Algorithm CSA2: a more efficient CSA algorithm for discrete scoring schemes.

This solution, which described in Section 3.2, consists of an O(n) work alignment stage, which is
run for each appearance of the common substring Y in a source string, at the cost of O(nℓ) encoding
work, which is executed only once. This algorithm is intended for all scoring schemes which use a
scoring matrix whose values are rational numbers.

3. Algorithm CSA3: an even more efficient CSA algorithm for the LCS metric.

Let Ly be the length of the LCS of T and Y , denoted |LCS[T, Y ]|, and L be max{|LCS[T, Si]|}. This
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solution consists of an O(nLy) time encoding stage that is executed once per common substring, and
an O(L) time alignment stage that is executed once for each appearance of the common substring
in each source string. This algorithm, which is given in Section 3.3, is intended for the LCS scoring
scheme.

2.2 Stage Two: Utilizing Repetitions in Both the Source Strings and the Target
Strings.

In Section 4 of the manuscript we further advance by utilizing repetitions in both the source and
the target strings. Here, two parsing methods, which are associated with known string compression
algorithms, are used for defining the repetitions in the compared sequences. One is the parsing
associated with Lempel-Ziv Text Compression, and the other is Run-Length Encoding. Here,
the compression parsing is employed, not for the traditional objective of saving storage space or
bandwidth, but rather in order to speed up the alignment process. The advantage of compressing
both strings is that now the two stages (encoding and alignment) can be interleaved, as the blocks
of the compression-partitioned dynamic programming graph are traversed in left-to-right, bottom
down order and the output border values of each block are computed from the input border values.
Due to the incremental properties of the LZ-partitioned blocks and the simplicity of the run-length
blocks, the encoding time bottleneck is eliminated, and the solutions suggested in Stage 1 can be
extended to efficiently apply to more advanced scoring schemes.

This leads to the following results, which appear in [13] and are surveyed in Section 4.1.

1. A Sub Quadratic String Comparison algorithm for Unrestricted Scoring Matrices.

The classical algorithm for computing the similarity between two sequences, under string compari-
son metrics which use a scoring matrix of real number values [58, 61], uses a dynamic programming
matrix, and compares two strings of size n in O(n2) time. The only previously known sub-quadratic
global alignment string comparison algorithm, by Masek and Paterson [52], is based on the Four
Russians paradigm. The “Four Russians” algorithm divides the dynamic programming table into
uniform sized (log n by log n) blocks, and uses table lookup to obtain an O(n2/ log n) time com-
plexity string comparison algorithm, based on two assumptions. One is that the sequence elements
come from a constant alphabet. The other, which they denote the “discreteness” condition, is that
the weights (of substitutions and indels) are all rational numbers.

The algorithms described in [13] present a new approach and are better than the above algorithm
in two aspects. First, these algorithms are faster for compressible sequences. For such sequences,
the complexity of the [13] algorithms is O(hn2/ log n), where h ≤ 1 is the entropy of the sequence.

Second, [13] describes an algorithm that is general enough to support scoring schemes with real
number weights. For many scoring schemes, the rational number weights supported by Masek and
Paterson’s algorithm do not suffice. For example, the entries of PAM similarity matrices, as well
as BLOSUM evolutionary distance matrices, are defined to be real numbers, computed as log-odds
ratios - and therefore could be irrational.

The paper by Masek and Paterson concludes with the following statement: “The most important
problem remaining is finding a better algorithm for the finite (in our terms constant) alphabet case
without the discreteness condition”. In [13], more than twenty years later, this important open
question has finally been answered!

These advantages are based on the following facts. First, the new algorithm does not require any
pre-computation of lookup-tables, and therefore can afford more flexible weight values. Also, instead
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of dividing the dynamic programming matrix into uniform-sized blocks as did Masek and Paterson,
the algorithms described in [13] employ a variable-sized block partition, as induced by Lempel-Ziv
factorization of both source and target. The common denominator between blocks, maximized by
the compression technique, is then re-cycled and used for computing the relevant information for
each block in time which is linear with the length of its sides. In this sense, the approach surveyed
in section 4.1 can be viewed as another example of speeding up dynamic programming by keeping
and computing only a relevant subset of important values, as demonstrated in [19], [20], [40] and
[59]. A similar unbalanced strategy has been successfully used for square detection in strings [14]
to speed up the original algorithm based on a divide-and-conquer approach [47].

Note that the notion of “acceleration by text-compression” has been recently applied to a related
problem - that of exact string matching [35], [51], [60]. It should also be mentioned that another
related problem - that of exact string matching in compressed text without decoding it, which
is often referred to as “compressed pattern matching”, has been studied extensively [1], [21] [55].
Along these lines, string search in compressed text was developed for the compression paradigm
of LZ78 [45], and its subsequent variant LZW [63], as described in [36], [56]. A more challenging
problem is that of “fully compressed” pattern matching when both the pattern and text strings are
compressed [26], [27]. For the LZ78-LZW paradigm, compressed matching has been extended and
generalized to that of approximate pattern matching (finding all occurrences of a short sequence
within a long one allowing up to k changes) in [34], [48].

Here, the adaptable sub-quadratic string comparison algorithms presented in [13] will be described
in the context of employing algorithms from the CSA toolkit given in Section 3, as follows. Adapting
Algorithm CSA1 to work with the LZ-partitioned blocks leads to an O(n2/ log n) time and space
algorithm for an input of constant alphabet size. For most texts, the time and space complexity
is actually O(hn2/ log n) where h ≤ 1 is the entropy of the text. This algorithm applies to string
comparison metrics that utilize a scoring matrix of real value numbers.

Adapting Algorithm CSA2 to the LZ-parsing block partitioning framework leads to a reduction
of the space complexity to O(h2n2/(log n)2), while preserving the O(hn2/ log n) time complexity.
This algorithm applies to string comparison metrics that utilize a scoring matrix of rational value
numbers.

Note that, for the sake of presentation simplicity, we assume, throughout the description of the
global alignment and the local alignment solutions (subsections 4.2 and 4.3), that both input strings
A and B are of the same size n, and that both sequences share the same entropy h. For the case
of comparing string A of size m and entropy 0 < hA ≤ 1 with string B of size n and entropy
0 < hB ≤ 1, the results of subsections 4.2 and 4.3 are as follows.

• O(mn(hA/ log m+hB/ log n)) time and space complexity for both global alignment and local
alignment, replaces the O(hn2/ log n) result.

• O(hAhBmn/ log m log n) space complexity for global alignment over “discrete” scoring ma-
trices, replaces the O(h2n2/(log n)2) result.

2. String Comparison of Run Length Compressed Strings.

A string S is run-length encoded if it is described as an ordered sequence of pairs (σ, i), often denoted
“σi,” each consisting of an alphabet symbol, σ, and an integer, i. Each pair corresponds to a run in
S, consisting of i consecutive occurrences of σ. For example, the string aabbbbbccc can be encoded
as a2b5c3. Such a run-length encoded string can be significantly shorter than the expanded string
representation after efficiently encoding the integers (see [17] for example). Run-length encoding
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serves as a popular image compression technique, since many classes of images (e.g., binary images
in facsimile transmission or for use in optical character recognition) typically contain large patches
of identically-valued pixels.

Let m and n be the lengths of two run-length encoded strings X and Y , of encoded lengths
m′ and n′, respectively. Previous algorithms for the problem compared two run-length encoded
strings using the Levenshtein Edit Distance [43] and the LCS similarity measure [30]. For the
LCS metric, Bunke and Csirik [11] presented an O(mn′ + nm′) time algorithm, while Apostolico,
Landau, and Skiena [5] described an O(m′n′ log(m′n′)) time algorithm. Mitchell [46] has obtained
an O((d + m′ + n′) log(d + m′ + n′)) time algorithm for a more general string matching problem
in run-length encoded strings, where d is the number of matches of compressed characters. Both
Arbell et al. [7] and Mäkinen et al. [49] independently obtained an O(m′n+n′m) time algorithm for
computing the edit distance between two run-length encoded strings for the Levenshtein distance
metric.

Mäkinen, Navarro and Ukkonen [49] posed as an open problem the challenge of extending these
results to more general scoring schemes, since in those applications which are related to image
compression, the change from a pixel value to the next is smooth. This open problem was answered
in [13], where it was shown that adapting Algorithm CSA1 to the block partitioning obtained by
run-length encoding yields an O(m′n + n′m) complexity algorithm for comparing two run-length
encoded strings of length m and n, compressed into m′ and n′ runs respectively. This result,
which is described in section 4.2, extends to all distance or similarity scoring schemes which use an
additive gap penalty.

We also observed that additional methods to achieve linear-time propagation across run-length
compressed blocks can be obtained by employing algorithm CSA2 or alternatively by adapting the
queue algorithms described in [18, 24, 31]. In [50], Mäkinen et al. obtained the same bounds for
weighted edit distance, using different techniques.

3 Utilizing Repetitions in Source Strings: Common Substring
Alignment (CSA) Algorithms.

The alignment graph used for computing the distance between a source string Si = BiY Fi and
a target string T can be viewed as a concatenation of three sub-graphs, where the first graph
represents the distance between Bi and T , the second graph represents the distance between Y and
T , and the third graph represents the distance between Fi and T (see Figure 3). Let ℓ denote the
size of the subsequence Y which is common to all Si.

In this partitioned solution, the weights of the vertices in the last row of the first graph serve as
input to initialize the weights of the vertices in the first row of the second graph. The weights of
the last row of the second graph can be used to initialize the first row of the third graph. Therefore,
let G denote the second sub-graph for comparing Y and T . Let I denote the series of weights of
the vertices in the first row of G. Let O denote the series of weights of the vertices of the last row
of G. The motivation for breaking the solution into three sub-graphs is that the second sub-graph,
representing the distance between Y and T , is identical for all alignment graphs comparing any
of the strings Si with T (see Figure 5). More specifically, both the structure and the weights of
the edges of all alignment sub-graphs comparing Y with T are identical, but the weights to be
assigned to the vertices during the distance computation may vary according to the prefix Bi which
is specific to the source string. Therefore, an initial investment in the learning of this graph as an
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encoding stage, and in its representation in a more informative data structure, may pay off later
on.

The CSA solutions described in this section comply by the following 2-stage approach.

Encoding Stage: Given Y and T , encode G in a format which can be efficiently used by the alignment

stage.

Alignment Stage: Given the output of the encoding stage and input row I - compute the output

row O.

During the encoding stage, a data structure is constructed which encodes the comparison of Y with
T . Then, during the alignment stage, for each comparison of a source Si with T , the pre-compiled
data structure is used to speed up the part of aligning each appearance of the common substring
Y .

3.1 Algorithm CSA1: An O(n2) Encoding and O(n) Alignment CSA Algorithm
for Unrestricted Scoring Matrices

The algorithm described in this subsection consists of an O(n2) encoding stage and an O(n) align-
ment stage. Note that the time complexity of comparing a source string of size ℓ and a target
string of size n, using the classical dynamic programming algorithm, is O(nℓ). Therefore, there are
cases (n = Ω(ℓk) where k denotes the total number of appearances of the common substring Y in
the database) where, due to the encoding stage bottleneck, it is not beneficial or even wasteful to
employ this algorithm. In any case, this basic algorithm comes as a stepping stone in preparation
for the more efficient two dimensional Common Substring Alignment algorithms, to be presented
in section 4. In fact, in section 4 we will show that algorithm CSA1 does very well when both
source and target strings are compressed, in which case the alignment stage bottleneck associated
with this algorithm is eliminated.

The advantage of Algorithm CSA1 is in the generality of the scoring schemes to which it applies:
it supports any additive gap scheme which utilizes a scoring matrix of real values.

The Encoding Stage

The following DIST matrix is computed (see Figure 8).

Definition 1 DIST [i, j], for j = 0 . . . n, i = 0 . . . j, stores the weight of the shortest path from the
vertex in column i of the first row of the graph G to the vertex in column j of the last row of the
graph G.

A similar encoding of an alignment graph has been used in [4, 8, 10, 33, 59].

A DIST matrix for an n × ℓ sized graph G (encodes the comparison of T versus Y ) can be
constructed in O(n2 + nℓ) time by using the algorithm of [59] (note that ℓ could be greater than
n). For the LCS and Edit Distance metrics, DIST can also be constructed in O(n2 + nℓ) time by
employing [38]. Apostolico et al. [3] show how to construct DIST in O(n2) time. Alternatively,
one could use the algorithm from [4] to construct DIST in O(n2 log n) time.

The Alignment Stage
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Given input row I and sub-graph G, the weight of output row vertex Oj can be computed as
follows.

Oj =
j

min
r=0

{Ir + DIST [r, j]}

This computation entails selecting a minimum among up to n sums for each of the n output sources.
(Figure 4 demonstrates an example of an output entry computation.) The above formulation was
first presented in [33]. It is, in essence, a static version of the 1D dynamic programming problem
[22]:

E[j] =
j

min
i=0

{D[i] + w(i, j)}

in which all values of D[i] are specified before any value of E[j] is computed, and the values of
function w(i, j) are precomputed for all integers j = 0 . . . n, i = 0 . . . j.

Value Oj is the minimum in column j of the following OUT matrix, which merges the information
from input row I and DIST . (See Figure 8).

Definition 2 OUT [i, j] = Ii + DIST [i, j] for j = 0 . . . n, i = 0 . . . j.

Aggarwal and Park [8] and Schmidt [59] observed that DIST matrices are Monge arrays [54].

Definition 3 A matrix M [0 . . .m, 0 . . . n] is Monge if either condition 1 or 2 below holds for all
i = 0 . . .m; j = 0 . . . n:

Condition 1: M [a, d] − M [a, c] ≥ M [b, d] − M [b, c] for all a < b and c < d.

Condition 2: M [a, d] − M [a, c] ≤ M [b, d] − M [b, c] for all a < b and c < d.

We use the crossing paths contradiction [59] to show that our version of DIST obeys Monge
Condition 1. Consider the four optimal (lowest scoring) paths from vertices a, b in the first row of
G to vertices c, d in the last row of G, as shown in Figure 2.

Path t - corresponds to DIST [a, c].

Path w - corresponds to DIST [a, d].

Path z - corresponds to DIST [b, c].

Path y - corresponds to DIST [b, d].

Note that Path w and Path z must intersect at some column of the Dynamic Programming Graph
before or at column c. Let C denote the weight of the prefix of Path w from its origin up to the
intersection point, and let D denote the weight of the suffix of Path w from the intersection point
on. Let A denote the weight of the prefix of Path z from its origin up to the intersection point,
and B denote the weight of the suffix of Path z from the intersection point on. Let |t|, |w|, |y| and
|z| denote the weights of paths t, w, y and z, correspondingly.

Since path t is optimal, |t| ≤ C + B ⇒ |w| − |t| ≥ |w| − C − B = D − B.

Since path y is optimal, |y| ≤ A + D ⇒ |y| − |z| ≤ A + D − |z| = D − B.

Therefore,

|w| − |t| = DIST [a, d] − DIST [a, c] ≥ DIST [b, d] − DIST [b, c] = |y| − |z|.

8



Since DIST is Monge by Condition 1, so is OUT , which is a DIST with constants added to its
rows. An important property of Monge arrays is that of being totally monotone.

Definition 4 A matrix M [0 . . . m, 0 . . . n] is totally monotone if either condition 1 or 2 below
holds for all a, b = 0 . . . m; c, d = 0 . . . n:

1. M [a, c] ≥ M [b, c] =⇒ M [a, d] ≥ M [b, d] for all a < b and c < d.

2. M [a, c] ≤ M [b, c] =⇒ M [a, d] ≤ M [b, d] for all a < b and c < d.

Note that the Monge property implies total monotonicity, but the converse is not true.

The recursive algorithm of Aggarwal et al [6], nicknamed SMAWK in the literature, can be used
to compute in O(n) time all the column minima of an n× n totally monotone matrix, by querying
only O(n) elements of the array. Hence, one could use SMAWK to compute the output row O
by querying only O(n) elements of OUT . Clearly, if both the full DIST and all entries of I are
available, then accessing an element of OUT is O(1) work.

One obstacle which comes up during this implementation is that DIST is not rectangular. Only
the values in the upper triangle are defined. However, this can be resolved by setting the undefined
values in the lower triangle to ∞.

Time and Space Complexity Analysis of Algorithm CSA1. DIST is constructed during
the encoding stage in O(n2) time and space. The alignment stage is done in O(n) time and space,
for each appearance of the common substring Y in a source sequence.

3.2 Algorithm CSA2: An O(nℓ) Encoding and O(n) Alignment CSA Algorithm
for Discrete Scoring Schemes

The second CSA algorithm comes as an answer to the following challenge: can the encoding stage
complexity be reduced, without increasing the time complexity of the alignment stage? In order to
make the CSA approach beneficial in all cases, our objective is to invest no more than O(nℓ) work
in encoding an n × ℓ-sized common substring block. We present a more efficient, non-recursive
algorithm which applies to all ”discrete” scoring schemes, i.e. any additive gap scoring schemes
which use a scoring matrix whose entries are rational numbers. Algorithm CSA2 obtains its strength
advantage from the fact that it utilizes the Monge property, while the basic Algorithm CSA1 which
was described in the previous subsection utilizes only the weaker Total Monotonicity property. This,
combined with the discreteness properties of the allowed scoring schemes, yields a reduction of the
encoding stage complexity from O(n2) down to O(nℓ). Since O(nℓ) is the default time complexity
for applying classical dynamic programming to any O(nℓ)-sized instance on the common sub-graph,
this algorithm is a winner under any common substring parsing configuration.

The Encoding Stage

The encoding stage of Algorithm CSA2 gains its efficiency by utilizing the fact that the number of
relevant changes, from one column of both OUT and DIST to the next, is constant [39, 40, 59].
This property allows for a representation of DIST via an O(n) number of “relevant” points.

The DELTA matrix is defined as follows.

Definition 5 DELTA[i, j] = OUT [i, j] − OUT [i, j − 1] = DIST [i, j] − DIST [i, j − 1] for j =
1 . . . n, i = 0 . . . j − 1.
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The range of possible values for DELTA[i, j] depends on the scoring scheme which is used for the
string comparison, and is actually the upper bound for the value difference between two consecutive
elements in the dynamic programming table. (For an example of a DELTA matrix, see Figure 9.)

We will use the term ψ to denote the range bound for DELTA[i, j] values. As an example, if the
similarity metric used is LCS, the only possible values for DELTA will be either 1 or 0, and ψ
assumes a value of 1. For the Edit Distance metric, on the other hand, ψ is 2, since DELTA can
only assume one of the 3 values: -1, 0, 1 [62]. Our algorithm applies to all scoring scheme metrics
for which ψ is a constant. It can be shown [52] that ψ is a constant for all scoring schemes which
use a scoring matrix whose values are rational numbers.

Note that the following two observations apply to any column in DELTA.

Observation 1

Since DIST is a Monge array, each column in DELTA is a series of monotonically non-increasing
values.

Observation 2

Since the range of distinct values which DELTA may assume is bounded by a constant (ψ), the
number of “steps” (row indices in which the series of column entries increases in value) in each
column of DELTA is constant.

As a result, DIST can be represented via an O(ψn) size set of relevant “step” points collected from
all columns of DELTA (see Figure 9).

Definition 6 Let Borderline[α, j], for α = 0 . . . ψ and j = 0 . . . n, denote a row index of a “step”
of size 1 in the series of monotonically non-increasing values of column j of DELTA. (A step of
size k is represented by k different Borderline Points).

Clearly, DELTA has up to ψn Borderline Points.

Observation 3

For any two rows x1, x2 where x1 ≤ Borderline[α, j] < x2 for any α = 0 . . . ψ, for some column j
of DELTA,

OUT [x2, j] − OUT [x2, j − 1] < OUT [x1, j] − OUT [x1, j − 1]

During the encoding stage, the O(nℓ) time complexity algorithm of [[59], section 6] is used to
compute the Borderline Points of DELTA. For the LCS metric, DELTA can also be constructed
in O(nLy) time, where Ly = |LCS[T, Y ]| ≤ ℓ, by employing the algorithms of [39].

The Alignment Stage

We now present an algorithm which uses the pre-compiled Borderline Points and input row I to
compute output row O. The new algorithm computes the column minima of OUT , in left-to-right
order, by executing n iterations. It employs the candidate list concept ([18], [24], [31], [53]), as
follows.

Definition 7 The candidate list, at iteration j of the algorithm, is a subset of the rows of column
j of OUT that includes only those rows which are candidates to contain future OUT column minima.

The candidate list is updated from one iteration of the alignment stage algorithm to the next. It
is sorted by increasing OUT value and increasing row index. At iteration j of the alignment stage
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algorithm, the candidate of smallest row index in the list bears the minimal value at column j of
OUT .

A high-level outline of the alignment stage algorithm is given below.

Procedure Alignment Stage
input: The set of Borderline Points for the DELTA matrix, and input row I.

output: The output row O.

for j := 0 to |T | do
1 Append candidate j, which represents to row j of OUT , to the candidate list.
2 Update the contents of the candidate list.
3 Report output entry Oj .

The list contents are updated at each iteration by removing rows which are no longer candidates to
produce future column minima. We will denote such rows as extinct, according to total monotonicity
condition 1.

Definition 8 A row x1 is extinct at iteration j of the candidate list algorithm, for 0 < j ≤ n, if
{∃ x2 > x1 | OUT [x2, j] ≤ OUT [x1, j]}.

Hence, for any distinct output value achieved during the computation of Oj , we only need to keep
one representative - that of the greatest candidate to achieve this value. All other candidates which
generate the same output value in iteration j become extinct.

More specifically, a candidate becomes extinct, by Definition 8, as a result of two possible events.

Event 1. A Bordeline[α, j]. Let x1, x2 denote two rows which appear sequentially on the candidate
list at iteration j, where x1 ≤ Bordeline[α, j] < x2. For any two rows x1, x2 where x1 ≤
Borderline[α, j] < x2.

OUT [x2, j] − OUT [x2, j − 1] < OUT [x1, j] − OUT [x1, j − 1]

The candidate list is sorted by increasing OUT value and increasing row index. Therefore,
by Observation 3, a Bordeline[α, j] could result in x2 reaching an identical value to x1 at
column j of OUT . The difference in the OUT value between any two active candidates of
index > Bordeline[α, j] is not affected by the Bordeline[α, j] event. The difference in the
OUT value between any two active candidates of index ≤ Bordeline[α, j] is also unaffected
by the Bordeline[α, j] event. The only two candidates which may now generate the same
value at iteration j, as a direct result of the Bordeline[α, j] event, are the candidate x1 which
is of highest index below Bordeline[α, j], and the candidate x2 which is of lowest row index
above Bordeline[α, j], since the difference in the OUT values between these two candidates
decreases by one. As a result, row x1 will be removed from the list (row 5 in column 8 of the
OUT matrix of Figure 10).

Event 2. At iteration j, row j is appended to the list. At this point, j is the highest row index
in the list, and therefore all the elements with an OUT value which is higher than or equal
to that of candidate j will be removed from the list (row 2 in column 3 and rows 1 and 3 in
column 4 of the OUT matrix of Figure 10).

Note that two technical challenges need to be met, in order to implement a list manipulation engine,
which updates the contents of the candidate list in linear time.
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1. Computing the OUT value of a candidate.

The values of OUT are needed for two purposes. One is the comparison of two adjacent
candidates. The other is for reporting the OUT value Oj . Since OUT is quadratic in size,
it is not possible to compute the OUT value for each candidate on the list in each column
of OUT in linear time. Instead, Algorithm CSA2 keeps track of the differences only in
OUT values between the members of the candidate list. Column j of the candidate list is
computed incrementally from column j − 1 of the candidate list by applying the relevant
borderline points. The differences in OUT values between two candidates will only change
in the positions updated by the borderline points. Since the number of borderline points per
column is constant, in [40] we are able to show how to compute all the necessary OUT values
in linear time.

2. Efficiently accessing the rows to be removed from the candidate list.

Since not all rows of OUT appear in the candidate list, finding the row to be removed as a
result of a Borderline Point is not trivial (see Event 1). However, this can be solved if the
candidate list is implemented by employing the incremental tree set union algorithm described
in [[23], pp. 216], for the special case in which the union tree is a path.

Time and Complexity Analysis of Algorithm CSA2.

In the encoding stage the Borderline Points are computed in O(nℓ) time and O(n) space using [59].

In [40] it is proven that the alignment stage of Algorithm CSA2 computes output row O, from
input row I and the Borderline Points for the comparison of Y with T , in O(n) time and space.

Note that during the encoding stage, the borderline points for the comparison of the prefix Y j
1 with

T , can be incrementally computed in O(n) time from the borderline points for the comparison of
Y j−1

1 with T , using [59]. Hence, for source sequences with two or more common factors, the time
complexity of the encoding stage is further reduced to O(nD), where D is the number of nodes in
the dictionary trie for the common factors.

3.3 Algorithm CSA3: An O(nL) Encoding and O(L) Alignment CSA Algorithm
for the LCS metric.

The third CSA algorithm comes as an answer to the following challenge: can a more efficient
common substring alignment algorithm, which exploits the sparsity inherent to the LCS metric,
be designed for the LCS metric?

This algorithm consists of an O(nLy) encoding stage, and an O(L) alignment stage, where Ly de-
notes the length of the LCS of T and Y , denoted by |LCS[T, Y ]|, and L denotes max{|LCS[T, Si]|}.
When the problem is sparse (Ly << |Y |, L << n), the time bounds of Algorithm CSA3 are better
than those of Algorithms CSA1 and CSA2. Even when the data is dense, the time bounds of this
algorithm are not worse than the previous two algorithms.

Algorithm CSA3 exploits sparsity, based on the following two observations.

1. The LCS I and O vectors are both monotone staircases with at most L+1 unit steps (see Figure
11).

2. Each row in the LCS DIST is a monotone staircase with with at most L + 1 unit steps (see
Figure 12).
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In [41] it is proven that the O(L) steps of I are sufficient for the computation of the O(L) steps of
O. This allows the two vectors to be compressed into their “step” representation.

The Encoding Stage

In [41] we show how the DIST matrix, which is traditionally used to encode the comparison of Y
and T , can be replaced with a smaller matrix (see Figure 12), which is in essence the compressed,
“step” representation of the rows of the original DIST . This “step” compressed DIST can be
computed in O(nLy) time using the Consecutive Suffix Alignments algorithms described in [39].

The Alignment Stage

Algorithm CSA3 propagates the steps of I across the “step” compressed DIST matrix. In [41] it
is shown that the OUT matrix which can be obtained from combining the steps of I with the steps
of DIST preserves the Total Monotonicity condition, thus enabling an efficient adaptation of the
matrix searching algorithm of Aggarwal et al. [6]. This adaptation is then used to compute the
O(L) steps of O from the O(L) steps of I in O(L) time.

4 Utilizing Repetitions in Source Strings as well as Target Strings.

In this section we expand re-use Dynamic Programming to handle repetitions in both source and
target strings. The repetitions are defined via two known parsing algorithms: one is the parsing
associated with LZ78 compression. The other is run-length encoding. The results are obtained by
adapting and expanding CSA algorithms from the toolkit given in the previous section.

In order to avoid confusion, we remind the reader that throughout this section the alignment
problem will be re-formalized in terms of similarity maximization rather than distance minimization.
(This, in spite of the fact that in the previous Section 3 algorithms CSA1 and CSA2 were presented
using an edit-distance minimization formalism.) Therefore, in both subsections 4.1 and 4.2, we use
the term ”optimal path” to denote a highest scoring path.

4.1 A Block Partitioning of the Alignment Graph based on LZ78 Parsing

The classical algorithm for computing the similarity between two sequences [58, 61] uses a dynamic
programming matrix, and compares two strings of size n in O(n2) time. (For the sake of presentation
simplicity, we assume, throughout this section, that both input strings A and B are of the same size
n, and that both sequences share the same entropy h.) The speed-up is achieved by dividing the
dynamic programming matrix into variable sized blocks, as induced by Lempel-Ziv parsing of both
strings, and utilizing the inherent periodic nature of both strings. The compression mechanism
enables the algorithm to adapt to the data and to utilize its repetitions. In this section we will
describe an O(n2/ log n) algorithm for computing the optimal global alignment value of two strings,
of size n each, over a constant alphabet. The algorithm is even faster when the sequences are
compressible. In fact, for most texts, the complexity of our algorithm is actually O(hn2/ log n).
For global alignment over “discrete” scoring matrices, we explain how the space complexity can be
reduced to O(h2n2/(log n)2), without impairing the O(hn2/ log n) time complexity.

The LZ compression methods are based on the idea of self reference: while the text file is scanned,
substrings or phrases are identified and stored in a dictionary, and whenever, later in the process,
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a phrase or concatenation of phrases is encountered again, this is compactly encoded by suitable
pointers [42], [44], [45]. Of the several existing versions of the method, we will use the ones which
are denoted LZ78 family [63], [45]. The main feature which distinguishes LZ78 factorization from
previous LZ compression algorithms is in the choice of codewords. Instead of allowing pointers to
reference any string that has appeared previously, the text seen so far is parsed into phrases, where
each phrase is the longest matching phrase seen previously plus one character. For example, the
string “B = aacgacgat” is divided into five phrases: a, ac, g, acg, at. Each phrase is encoded as an
index to its prefix, plus the extra character (see Figure 14). The new phrase is then added to the
list of phrases that may be referenced.

Since each phrase is distinct from others, the following upper bound applies to the possible number
of phrases obtained by LZ78 factorization.

Theorem 4.1.1 (Lempel and Ziv 1976 [42]) Given a sequence S of size n over a constant al-
phabet. The maximal number of distinct phrases in S is O( n

log n
).

Even though the upper bound above applies to any possible sequence over a constant alphabet, it
has been shown that in many cases we can do better than that. Intuitively, the LZ78 algorithm
compresses the sequence because it is able to discover some repeated patterns. Therefore, in order
to compute a tighter upper bound on the number of phrases obtained by LZ78 factorization for
“compressible” sequences, the repetitive nature of the sequence needs to be quantified. One of
the fundamental ideas in information theory is that of entropy, denoted by the real number h,
0 < h ≤ 1, which measures the amount of disorder or randomness, or inversely, the amount of
order or redundancy in a sequence. Entropy is small when there is a lot of order (i.e, the sequence
is repetitive) and large when there is a lot of disorder. The entropy of a sequence should ideally
reflect the ratio between the size of the sequence after it has been compressed, and the length of the
uncompressed sequence. The number of distinct phrases obtained by LZ78 factorization has been
shown to be O(hn/ log n) for most texts [9], [15], [42], [45]. Note that for any text over a constant
alphabet, the upper bound above still applies by setting h to 1.

The alignment graph will be partitioned as follows. Strings A and B will be parsed separately using
LZ78 factorization. This induces a partition of the alignment graph for comparing A with B into
variable-sized blocks (see Figure 7). Each block will correspond to a comparison of an LZ phrase
of A with an LZ phrase of B.

Let xa denote a phrase in A obtained by extending a previous phrase x of A with character a, and
yb denote a phrase in B, obtained by extending a previous phrase of B with character b.

From now on we will focus on the computations necessary for a single block of the alignment graph.
Consider the block G which corresponds to the comparison of xa and yb. Extending the definitions
of section 3.1, we define input border I as the left and top borders of G, and output border O as
the bottom and right borders of G. (The node entries on the input border are numbered in a
clockwise direction, and the node entries on the output border are numbered in a counter-clockwise
direction.)

Let ℓr denote the number of rows in G, ℓr = |xa|. Let ℓc denote the number of columns in G,
ℓc = |yb|. Let t = ℓr + ℓc. Clearly, |I| = |O| = t.

We define the following three prefix blocks of G.

1. The left prefix of G denotes the block comparing phrase xa of A and phrase y of B.

2. The diagonal prefix of G denotes the block comparing phrase x of A and phrase y of B.
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3. The top prefix of G denotes the block comparing phrase x of A and phrase yb of B.

Observation 4

When traversing the blocks of an LZ78 parsed alignment graph in a left-to-right, top-to-bottom
order, the blocks for the left prefix, diagonal prefix and top prefix of G are encountered prior to
block G (see Figure 7). Note that the graph for the left prefix of G is identical to the subgraph of
G containing all columns but the last one. More specifically, both the structure and the weights of
edges of these two graphs are identical, but the weights to be assigned to the vertices during the
similarity computation may vary according to the input border values. Similarly, for the top prefix
and diagonal prefix graphs. The only new cell in G, which does not appear in any of its prefix block
graphs, is the cell in the bottom-rightmost corner of G, which is the cell for comparing a and b.

4.2 Combining Algorithm CSA1 with LZ78 Block Partitioning.

Similarly to Algorithm CSA1, the work for each block consists of two stages.

The Encoding Stage

The structure of G is encoded by computing a DIST matrix containing weights of optimal paths
connecting each entry of its input border with each entry of its output border. Here we will use
the incremental properties of LZ78 parsing to implement the encoding for each block in time linear
with the size of its borders. Assuming that a Prefix Block can be accessed in constant time, the
new DIST information for G can be computed in O(t) time, by using the DIST representations
previously computed for its prefix blocks, plus the information of its new cell, as follows (see Figure
13). Only one new DIST column, column ℓc, needs to be computed for the encoding of G, and this
new column contains the weights of optimal paths from each input entry to the single new vertex
of G, which is vertex (ℓr, ℓc) in the lowest, rightmost corner of G. All the previous DIST columns
are obtained by pointers to left prefix blocks of G. All the following DIST columns are obtained
by pointers to top prefix blocks of G.

Furthermore, the new column of DIST is computed in O(t) time by using the 3 new edges in the
new cell of G and the 3 DIST columns computed for the top, diagonal and left prefix blocks of
G as follows. Entry [i] in column ℓc of the DIST for G contains the weight of the optimal path
from entry i in the input border of G to vertex (ℓr, ℓc). This path must go through one of the three
vertices (ℓr − 1, ℓc), (ℓr − 1, ℓc − 1) or (ℓr, ℓc − 1). Therefore, the weight of the optimal (highest
scoring) path from entry i in the input border of G to (ℓr, ℓc) is equal to the maximum among the
following three values:

1 Entry [i] of column ℓc − 1 of the DIST for the left prefix of G, plus the weight of the horizontal
edge leading into (ℓr, ℓc).

2 Entry [i] of column ℓc − 1 of the DIST for the diagonal prefix of G, plus the weight of the
diagonal edge leading into (ℓr, ℓc).

3 Entry [i] of column ℓc of the DIST for the top prefix of G, plus the weight of the vertical edge
leading into (ℓr, ℓc).

In order to demonstrate how a prefix block can be accessed in constant time, we refer the reader to
Figure 7. Here we have the tries for the phrases of A and B, as formed during the LZ78 parsing of
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the strings. Each of the partitioned blocks in the alignment graph for comparing strings A and B
corresponds to a unique node in the trie for A and a unique node in the trie for B. For example,
block 5/4 corresponds to node 5 in the trie for A (phrase ”ag”) and to node 4 in the trie for B
(phrase ”acg”). The tries can be used to access direct prefix blocks in constant time. For example,
to obtain the diagonal prefix block of G, we just have to backtrack up one edge in the trie for A
(this leads to node 3), and up one edge in the trie for B (this leads to node 2), and this way we
compute in constant time the id (3,2) of the diagonal prefix block of G. We refer the reader to [13]
for the engineering details of the encoding algorithm.

The Alignment Stage

Given I and the DIST for G which was computed in the encoding stage, the alignment stage
can be implemented in O(t) time, by using a variation of the alignment stage of Algorithm CSA1,
extended to support full propagation from the leftmost and upper boundaries to the bottom and
rightmost boundaries of G [13].

Time and Space Analysis of the CSA1/LZ78 Combination Algorithm.

Assuming sequence size n and sequence entropy h ≤ 1. The LZ78 factorization algorithm parses
the strings and constructs the tries for A and B in O(n) time. The resulting number of phrases
in both A and B is O(hn/ log n). Since the work and space for each block (both encoding and
propagation) is linear with the size of its I/O borders, the total time and space complexity is linear
with the total size of the borders of the blocks. The block borders form O(hn/ log n) rows of size
|B| each, and O(hn/ log n) columns of size |A| each, in the alignment graph. Therefore, the total
time and space complexity is O(hn2/ log n).

4.3 Combining Algorithm CSA2 with LZ78 Block Partitioning.

The number of blocks in the LZ78-partitioned alignment graph is equal to the number of phrases in
A times number of phrases in B, and is therefore O(h2n2/(log n)2), assuming that both sequences
share the same entropy h. When computing the optimal global alignment value with scoring
matrices that follow the “discreteness” condition, algorithm CSA2 from section 3.2 can be extended
to support full propagation from the leftmost and upper boundaries to the bottom and right most
boundaries of G. This extended propagation algorithm can then be used to compute the values
of the global alignment O for G, given the I for G and a minimal encoding of the DIST for G.
The advantage of this minimal encoding of DIST is that rather than saving an O(t) sized DIST
column per block, we only need to save a constant number of values per block. The encoding for the
new DIST column of each block can be computed and stored in constant time and space from the
information stored for the left, diagonal and top prefix blocks of G, using the technique described
in Section 6 of [59]. This reduces the space complexity to O(h2n2/(log n)2), while preserving the
O(hn2/ log n) time complexity.

4.4 Combining Algorithm CSA1 with Run Length Encoding Block Partitioning

In this solution, the alignment graph is also partitioned into blocks, where each block here consists
of two runs – one of X and one of Y . This results in the partition of the alignment graph into m′n′

blocks (see Figure 6.) The suggested algorithm also propagates accumulated scores from the left
and upper boundaries of each block, to its bottom and right boundaries.
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The Encoding Stage

We claim that this algorithm does not require any encoding stage, as any value of the DIST used
for encoding a run-length block can be computed in constant time during the propagation stage, as
follows. Consider the block R for comparing the run αi of X with the run βj of Y . An edge in R
could be assigned one of three possible weight values: D(diagonal), H(horizontal) and V (vertical).

Let ∆h and ∆w denote the difference in row index values and column index values respectively,
between entry i on the input border of R, and entry j on the output border of R.

We show how to compute DIST[i, j] (which is the cost of the best scoring path from entry i in the
input border of the block, to entry j in the output border of the block) in constant time, given ∆h

and ∆w for the input and output entries, and the values D, H and V .

• H + V ≤ D. Clearly, an optimal (highest scoring) path from i to j can use all possible
diagonal edges and only then the minimal number of remaining H and V edges necessary to
reach j.

Therefore, DIST[i, j] obtains one of three values:

1. If ∆w = ∆h, then DIST[i, j] = D × ∆h.

2. If ∆w > ∆h, then DIST[i, j] = D × ∆h + H × (∆w − ∆h).

3. If ∆w < ∆h, then DIST[i, j] = D × ∆w + V × (∆h − ∆w).

• H + V > D. In this case, an optimal path never uses any diagonal edge. The path includes
only the minimal number of H edges, and the minimal number of V edges necessary to reach
j from i. In this case, DIST[i, j] = H × ∆w + V × ∆h.

Therefore, DIST[i, j] can be easily computed in constant time for any additive-gap scoring scheme
which uses a scoring matrix of real numbers.

The Alignment Stage

Given I and the DIST for G which was computed in the encoding stage, the alignment stage can
be implemented for each block in time linear with the size of its I/O borders, by using a variation
of the alignment stage of Algorithm CSA1, extended to support full propagation from the leftmost
and upper boundaries to the bottom and rightmost boundaries of R [13].

Time and Space Analysis of the CSA1/LZ78 Combination.

The O vector for each block is computed using SMAWK. Vector I for block R can be easily obtained
from the O vectors for the block above R and the block to its left, in time linear with the sides of
R. Therefore, any value OUT[i, j] = I[i] + DIST[i, j] can be computed in constant time.

Since the work for each block is linear with the size of its I/O borders, the total time complexity
is linear with the total size of the borders of the blocks, which is O(m′n + n′m).

Since all the relevant DIST entry values are computed “on the fly” and do not need to be stored,
Hirshberg’s method [29] can be applied to achieve an algorithm with a space complexity which is
linear with the size of the uncompressed strings.
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[50] Mäkinen, V., G. Navarro, and E. Ukkonen, Approximate Matching of Run-Length Compressed
Strings, Algorithmica, 35, 347–369 (2003).

20



[51] Manber, U., A text compression scheme that allows fast searching directly in the compressed
file, Proc. 5th Annual Symposium On Combinatorial Pattern Matching, LNCS 2089, 31–49
(2001).

[52] Masek, W.J., and M.S. Paterson, A faster algorithm for computing string edit distances. J.
Comput. Syst. Sci., 20, 18–31 (1980).

[53] Miller, W., and E.W. Myers, Sequence Comparison with Concave Weighting Functions, Bull.
Math. Biol., 50, 97–120 (1988).

[54] Monge, G., Deblai et Remblai, Memoires de l’Academie des Sciences, Paris (1781).

[55] Navarro, G., and M. Raffinot, A general practical approach to pattern matching over Ziv-
Lempel compressed text, Proc. 10th Annual Symposium On Combinatorial Pattern Matching,
LNCS 1645, 14–36 (1999).

[56] Navarro, G., and M. Raffinot. Boyer-Moore string matching over Ziv-Lempel compressed text,
Proc. 11th Annual Symposium On Combinatorial Pattern Matching, LNCS 1848, 166–180
(2000).

[57] Needleman, S.B., and C.D. Wunsch, A general method applicable to the search for similarities
in the amino acid sequence of of two proteins, J. Mol. Biol., 48, 443–453 (1970)

[58] Sankoff D., and J.B. Kruskal (editors), Time Warps, String Edits, and Macromolecules: the
Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA, (1983).

[59] Schmidt, J.P., All Highest Scoring Paths In Weighted Grid Graphs and Their Application To
Finding All Approximate Repeats In Strings, SIAM J. Comput, 27(4), 972–992 (1998).

[60] Shabita Y., T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, S. Arikawa,
Speeding up pattern matching by text compression, CIAC 2000, LNCS 1767, 306–315 (2000).

[61] Smith, T. F. and M. S. Waterman, Identification of common molecular subsequences, J. Molec-
ular Biol., 147, 195–197 (1981).

[62] Ukkonen, E., Finding Approximate Patterns in Strings, J. Algorithms, 6, 132–137 (1985).

[63] Welch, T.A., A Technique for High Performance Data Compression, IEEE Trans. on Comput-
ers, 17(6), 8–19 (1984).

21



An Appendix Including All Figures

T = ”BCBADBDCD” Y = ”BCBD”

S1 = ”BC BCBD C” B1 = ”BC” F1 = ”C”

S2 = ”E BCBD DBCBD A” B2a = ”E” F2a = ”DBCBD A”

B2b = ”EBCBD D” F2b = ”A”

Figure 1: An example of two different source strings S1, S2 sharing a common substring
Y , and a target string T .
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Figure 3: The Dynamic Programming graph for computing the distance between T =
”DCBADBDC”, and S2 = ”CBADCBDC”. S2 contains the common substring Y = ”DCBD”.
This figure continues the example of Figure 1.
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Figure 4: The computation of output entry O7 for T = ”DCBADBDC”, Bi = ”CBA”, and
Y = ”DCBD”. Let T z

u
, such that 1 ≤ u ≤ z ≤ n, denote the substring of T from index u (inclusive)

up to index z (inclusive). The minimal output at O7, min7
x=0{Ix + Edit[T 7

x+1, Y ]} = 2, is achieved
by the path originating at column 4 and receiving input I4 = 1. This figure continues the example
of Figures 1 and 3.
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Figure 5: Examples of two dynamic programming graphs for the alignment of two source sequences
S3 = ”BCBCBD” and S4 = ”CABCBDCBCBD”, sharing the common substring Y = ”BCBD”,
with target string T = ”BCBADBDCD”. Note that Y is repeated twice in S4. The target sequence
is T = ”BCBADBDCD”.
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Figure 8: The DIST and OUT matrices which
correspond to the sequences T = ”DCBADBDC”,
Y = ”DCBD” and the input row I for Bi = ”CBA”.
This figure continues the example of Figures 3 and 4.
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Figure 9: An example of a DELTA matrix and its
Borderline Points. Note that for the Edit Distance
metric, which is used in this example, ψ = 2, and
therefore the number of Borderline Points for DELTA

is bounded by 2n. This figure continues the example
of Figures 3, 4 and 8.
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Figure 10: A trace of the contents of the candidate list, during iterations 0 to 8 of the Alignment Stage
Algorithm. The lightly shaded entries of OUT are values which have become extinct. This figure continues
the example of Figures 3, 4, 8 and 9.
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Figure 11: Due to the unit-step properties
of LCS, both I and O are monotonically non-
decreasing series, and their values go up by unit
steps. Therefore, the compressed Isteps and
Osteps vectors are constructed which store only
the steps of I and O, correspondingly.

  DIST[x,j] = LCS[T   ,Y]
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                                        0  1   2   3   4   k =  1..Ly   
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                                     2    2  3   5   7  -         
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                                     9    9   -   -    -   -

Figure 12: Each row of the LCS DIST is also
a monotonically non-decreasing series. Therefore,
the LCS DIST can be compressed into an O(nL)-
sized table which stores only the steps of the rows
of DIST .
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Figure 13: [13] Computing a single entry in the
new DIST column for the new cell of G in con-
stant time. This figure continues Figures 7 and
14.
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Figure 14: A demonstration of LZ78 parsing on
text ”B = aacgacgat”, and the corresponding dic-
tionary trie.
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