
HAL Id: hal-00619991
https://hal.science/hal-00619991

Submitted on 20 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Text Compression Using Antidictionaries
Maxime Crochemore, Filippo Mignosi, Antonio Restivo, Sergio Salemi

To cite this version:
Maxime Crochemore, Filippo Mignosi, Antonio Restivo, Sergio Salemi. Text Compression Using
Antidictionaries. International Conference on Automata, Languages an Programming (Prague, 1999),
1999, France. pp.261-270, �10.1007/3-540-48523-6_23�. �hal-00619991�

https://hal.science/hal-00619991
https://hal.archives-ouvertes.fr

Text Compression Using Antidictionaries�M. Crochemorey, F. Mignosiz, A. Restivoz, S. SalemizJune 10, 1998AbstractWe give a new text compression scheme based on Forbidden Words("antidictionary"). We prove that our algorithms attain the entropy forequilibrated binary sources. One of the main advantage of this approachis that it produces very fast decompressors. A second advantage is asynchronization property that is helpful to search compressed data andto parallelize the compressor. Our algorithms can also be presented as\compilers" that create compressors dedicated to any previously �xedsource. The techniques used in this paper are from Information Theoryand Finite Automata; as a consequence, this paper shows that FormalLanguage Theory (in particular Finite Automata Theory) can be usefulin Data Compression.Keywords: data compression, information theory, �nite automaton,forbidden word, pattern matching.1 IntroductionWe present a simple text compression method called DCA (Data Compressionwith Antidictionaries) that uses some \negative" information about the text,which is described in terms of antidictionaries. Contrary to other methodsthat make use, as a main tool, of dictionaries, i.e., particular sets of wordsoccurring as factors in the text (cf. [6], [13], [17], [19] and [20]), our methodtakes advantage from words that do not occur as factor in the text, i.e., thatare forbidden. Such sets of words are called here antidictionaries.Let w be a text on the binary alphabet f0; 1g and let AD be an antidictionaryfor w. By reading the text w from left to right, if at a certain moment the currentpre�x v of the text admits as su�x a word u0 such that u = u0x 2 AD withx 2 f0; 1g, i.e., u is forbidden, then surely the letter following v in the textcannot be x and, since the alphabet is binary, it is the letter y 6= x. In other�Web page at URL http://www-igm.univ-mlv.fr/�mac/DCA.htmlyInstitut Gaspard-MongezUniversit�a di Palermo 1

terms, we know in advance the next letter y, that turns out to be redundant orpredictable. The main idea of our method is to eliminate redundant letters inorder to achieve compression. The decoding algorithm recovers the text w bypredicting the letter following the current pre�x v of w already decompressed.The method here proposed presents some analogies with ideas discussed byC. Shannon at the very beginning of Information Theory. In [18] Shannondesigned psychological experiments in order to evaluate the entropy of English.One of such experiments was about the human ability to reconstruct an englishtext where some characters were erased. Actually our compression methodserases some characters and the decompression reconstruct them.We prove that the compression rate of our compressor reaches the entropyalmost surely, provided that the source is equilibrated and produced from a�nite antidictionary. This type of source approximates a large class of sources,and consequently, a variant of the basic scheme gives an optimal compressionfor them. The idea of using antidictionaries is founded on the fact that thereexists a topological invariant for Dynamical Systems based on forbidden wordsand independent of the entropy [4].The use of the antidictionary AD in coding and decoding algorithms requiresthat AD must be structured in order to answer to the following query on a wordv: does there exists a word u = u0x, x 2 f0; 1g, in AD such that u0 is a su�xof v? In the case of positive answer the output should also include the letter yde�ned by y 6= x. One of the main features of our method is that we are ableto implement e�ciently �nite antidictionaries in terms of �nite automata. Thisleads to e�cient and fast compression and decompression algorithms, which canbe realized by sequential transducers (generalized sequential machines). This isespecially relevant for �xed sources. It is then comparable to the fastest com-pression methods because the basic operation at compression and decompressiontime is just table lookup.A central notion of the present method is that of minimal forbidden words,which allows to reduce the size of antidictionaries. This notion has also someinteresting combinatorial properties. Our compression method includes algo-rithms to compute antidictionaries, algorithms that are based on the abovecombinatorial properties and that are described in details in [8] and [9].The compression method shares also an interesting synchronization property,in the case of �nite antidictionaries. It states that the encoding of a block ofdata does not depend on the left and right contexts except for a limited-sizepre�x of the encoded block. This is helpful to search compressed data, which isnot a common feature of other compression methods. The same property allowsto design e�cient parallel compression algorithms.The paper is organized as follows.In Section 2 we give the de�nition of Forbidden Words and of antidictionar-ies. We describe DCA, our text compression and decompression algorithms(binary oriented) assuming that the antidictionary is given and that we can2

perform special kinds of queries on this antidictionary.In Section 3 we describe a data structure for �nite antidictionaries thatallows to answer in e�cient way to the queries needed by our compressionand decompression algorithms; we show how to implement it given a �niteantidictionary. The compression is also described in terms of transducers, whichis valid only in the case of rational antidictionaries. We end the section byproving the synchronizion property.In Section 4 we evaluate the compression rate of our compression algorithmrelative to a given antidictionary.In Section 5 we show how to construct antidictionaries for single words andsources. As a consequence we obtain a family of linear time optimal algorithmsfor text compression that are universal for equilibrated sources generated fromantidictionaries.We report in Section 6 experimental results made with a dynamic prototypeof DCA. It shows that the compression rate is similar to those of most commoncompressors.We consider possible generalizations in the conclusion (Section 7).2 Forbidden Words and the Basic AlgorithmsLet us �rst introduce the main ideas of our algorithm. Let w be a �nite binaryword and let F (w) be the set of factors of w.For instance, if w = 01001010010F (w) = f"; 0; 1; 00; 01; 10; 001; 010; 100; 101; : : :gwhere " denotes the empty word.Let us take some words in the complement of F (w), i.e., let us take somewords that are not factors of w and that we call forbidden. The set of suchwords AD is called an antidictionary of the language F (w). Antidictionariescan be �nite as well in�nite.For instance, if w = 01001010010 the words 11, 000, and 10101 are forbid-den and the set AD = f000; 10101; 11g is an antidictionary of F (w).The compression algorithm treats the input word in an online manner. Ata certain moment in this process we have read the word v pre�x of w. If thereexists a word u = u0x, x 2 f0; 1g, in the antidictionary AD such that u0 is asu�x of v, then surely the letter following v cannot be x, i.e., the next letteris y, y 6= x. In other words, we know in advance the next letter y that turnsout to be \redundant" or predictable. Remark that this argument works onlyin the case of binary alphabets.The main idea in the algorithm we describe is to eliminate redundant lettersin order to achieve compression. 3

In what follows we �rst describe the compression algorithm, Encoder andthen the decompression algorithm, Decoder. The word to be compressed isnoted w = a1 � � �an and its compressed version is denoted by
(w).Encoder (anti-dictionary AD, word w 2 f0; 1g�)1. v ";
 ";2. for a �rst to last letter of w3. v v:a;4. if for any su�x u0 of v, u00; u01 62 AD5.

:a;6. return (jvj,
);As an example, let us run the algorithm Encoder on the string w =01001010010 with the antidictionary AD = f000; 10101; 11g. The steps ofthe treatment are described in the next array by the current values of the pre�xvi = a1 � � �ai of w that has been just considered and of the output
(w). In thecase of positive answer to the query to the antidictionary AD, the array alsoindicates the value of the corresponding forbidden word u. The number of timesthe answer is positive in a run corresponds to the number of bits erased."
(w) = "v1 = 0
(w) = 0v2 = 01
(w) = 01 u = 11 2 ADv3 = 010
(w) = 01v4 = 0100
(w) = 010 u = 000 2 ADv5 = 01001
(w) = 010 u = 11 2 ADv6 = 010010
(w) = 010v7 = 0100101
(w) = 0101 u = 11 2 ADv8 = 01001010
(w) = 0101 u = 10101 2 ADv9 = 010010100
(w) = 0101 u = 000 2 ADv10 = 0100101001
(w) = 0101 u = 11 2 ADv11 = 01001010010
(w) = 0101Remark that the function
 is not injective. For instance
(010010100) =
(0100101001) = 0101. In order to have an injective mapping we can considerthe function
0(w) = (jwj;
(w)). In this case we can reconstruct the originalword w from both
0(w) and the antidictionary.The decoding algorithm works as follow. The compressed word is
(w) =b1 � � �bh and the length of w is n. The algorithm recovers the word w by pre-dicting the letter following the current pre�x v of w already decompressed. Ifthere exists a word u = u0x, x 2 f0; 1g, in the antidictionary AD such that u0is a su�x of v, then, the output letter is y, y 6= x. Otherwise, the next letter isread from the input
. 4

Decoder (anti-dictionary AD, integer n, word
 2 f0; 1g�)1. v ";2. while jvj < n3. if for some u0 su�x of v and x 2 f0; 1g, u0x 2 AD4. v v � :x;5. else6. b next letter of
;7. v v � b;8. return (v);The antidictionaryADmust be structured in order to answer to the followingquery on a word v: does there exist a word u = u0x, x 2 f0; 1g, in AD such thatu0 is a su�x of v? In case of a positive answer the output should also includethe letter y de�ned by y 6= x.The method presented here brings to mind some ideas proposed by C. Shan-non at the very beginning of Information Theory. In [18] Shannon designedpsychological experiments in order to evaluate the entropy of English. One ofsuch experiments was about the human ability to reconstruct an english textwhere some characters were erased. Actually our compression methods erasessome characters and the decompression reconstruct them. For instance in pre-vious example the input string is01�00�1�01�0�0�1�0;where bars indicate the letters erased in the compression algorithm.In this approach the encoder must send to the decoder the length of theword jwj, the compressed word
(w) as well the antidictionary in the case thedecoder has not yet a copy of the antidictionary.In order to have a good compression rate we need to minimize in particularthe size of the antidictionary. Remark that if there exists a forbidden wordu = u0x, x 2 f0; 1g in the antidictionary such that u0 is also forbidden then ouralgorithm will never use this word u in the algorithms. So that we can erasethis word from the antidictionary without any loss for the compression of w.This argument leads to introduce the notion of minimal forbidden word withrespect to a factorial language L, notion that is discussed in the next section.3 Implementation of Finite AntidictionariesThe queries on the antidictionary required by the algorithm of the previoussection are realized as follows. We build the deterministic automaton acceptingthe words having no factor in the antidictionary. Then, while reading the textto encode, if a transition leads to a sink state, the output is the other letter.What remains to explain is how the automaton is built from the antidictionary.5

The wanted automaton accepts a factorial language L. Recall that a lan-guage L is factorial if L satis�es the following property: for any words, u, v,uv 2 L) u 2 L and v 2 L.The complement language Lc = A�nL is a (two-sided) ideal of A�. Denotingby MF (L) the base of this ideal, we have Lc = A�MF (L)A�. The set MF (L) iscalled the set of minimal forbidden words for L. A word v 2 A� is forbidden forthe factorial language L if v =2 L, which is equivalent to say that v occurs in noword of L. In addition, v is minimal if it has no proper factor that is forbidden.One can note that the set MF (L) uniquely characterizes L, just becauseL = A� nA�MF (L)A�: (1)Indeed, there is a duality between factorial and anti-factorial languages, becausewe also have the equality:MF (L) = AL \ LA \ (A� n L): (2)As a consequence of both equalities (1) and (2) we get the following proposition.Proposition 1 For a factorial language L, languages L and MF (L) are simul-taneously rational, that is, L 2 Rat(A�) i� MF (L) 2 Rat(A�).The set MF (L) is an anti-factorial language or a factor code, which meansthat it satis�es: 8u; v 2 MF (L) u 6= v =) u is not a factor of v, property thatcomes from the minimality of words of MF (L).We introduce a few more de�nitions.De�nition 1 A word v 2 A� avoids the set M , M � A�, if no word of M is afactor of v, (i.e., if v =2 A�MA�). A language L avoids M if every word of Lavoid M .From the de�nition of MF (L), it readily comes that L is the largest (accord-ing to the subset relation) factorial language that avoids MF (L). This showsthat for any anti-factorial language M there exists a unique factorial languageL(M) for which M = MF (L). The next remark summarizes the relation be-tween factorial and anti-factorial languages.Remark 1 There is a one-to-one correspondence between factorial and anti-factorial languages. If L and M are factorial and anti-factorial languages re-spectively, both equalities hold: MF (L(M)) = M and L(MF (L)) = L.Finally, with a �nite anti-factorial language M we associate the �nite au-tomaton A(M) as described below. The automaton is deterministic and com-plete, and, as shown at the end of the section by Theorem 1, it accepts thelanguage L(M).The automaton A(M) is the tuple (Q;A; i; T; F) where6

m1 m2 3m0 m4 m5 m6 m7 89�����0 -0 -0-1 -0 -1 -0 -1@@@@R1Figure 1: Trie of the factor code f000; 10101; 11g. Squares represent terminalstates.� the set Q of states is fw j w is a pre�x of a word in Mg,� A is the current alphabet,� the initial state i is the empty word ",� the set T of terminal states is Q nM .States of A(M) that are words of M are sink states. The set F of transitions ispartitioned into the three (pairwise disjoint) sets F1, F2, and F3 de�ned by:� F1 = f(u; a; ua) j ua 2 Q; a 2 Ag (forward edges or tree edges),� F2 = f(u; a; v) j u 2 Q nM;a 2 A; ua =2 Q; v longest su�x of ua in Qg(backward edges),� F3 = f(u; a; u) j u 2M;a 2 Ag (loops on sink states).The transition function de�ned by the set F of arcs of A(M) is noted �.The next result is proved in [8].Theorem 1 For any anti-factorial language M , A(M) accepts the languageL(M).The above de�nition of A(M) turns into the algorithm below, called L-automaton, that builds the automaton from a �nite anti-factorial set of words.The input is the trie T that represents M . It is a tree-like automaton acceptingthe set M and, as such, it is noted (Q;A; i; T; �0).In view of Equality 1, the design of the algorithm remains to adapt theconstruction of a pattern matching machine (see [1] or [7]). The algorithm usesa function f called a failure function and de�ned on states of T as follows.States of the trie T are identi�ed with the pre�xes of words in M . For a stateau (a 2 A, u 2 A�), f(au) is �0(i; u), quantity that may happen to be u itself.Note that f(i) is unde�ned, which justi�es a speci�c treatment of the initialstate in the algorithm. 7

m1 m2 3m0 m4 m5 m6 m7 89�����0 -0 -0-1 -0 -1 -0 -1@@@@R1?1 ����	 1 60 HHHHHHHHHY 0� �	�0,1 � �	�0,1� �	�0,1Figure 2: Automaton accepting the words that avoid the set f000; 10101; 11g.Squares represent non-terminal states (sink states).L-automaton (trie T = (Q;A; i; T; �0))1. for each a 2 A2. if �0(i; a) de�ned3. set �(i; a) = �0(i; a);4. set f(�(i; a)) = i;5. else6. set �(i; a) = i;7. for each state p 2 Q n fig in width-�rst search and each a 2 A8. if �0(p; a) de�ned9. set �(p; a) = �0(p; a);10. set f(�(p; a)) = �(f(p); a);11. else if p 62 T12. set �(p; a) = �(f(p); a);13. else14. set �(p; a) = p;15. return (Q;A; i; Q n T; �);Example. Figure 1 displays the trie that accepts M = f000; 10101; 11g. It isan anti-factorial language. The automaton produced from the trie by algorithmL-automaton is shown in Figure 2. It accepts all the words avoiding M .Theorem 2 Let T be the trie of an anti-factorial language M . Algorithm L-automaton builds a complete deterministic automaton accepting L(M).Proof. The automaton produced by the algorithm has the same set of statesas the input trie. It is clear that the automaton is deterministic and complete.Let u 2 A+ and p = �(i; u). A simple induction on juj shows that the wordcorresponding to f(p) is the longest proper su�x of u that is a pre�x of someword in M . This notion comes up in the de�nition of the set of transitions F28

in the automaton A(M). Therefore, the rest of the proof just remains to checkthat instructions implement the de�nition of A(M). ./Theorem 3 Algorithm L-automaton runs in time O(jQj�jAj) on input T =(Q;A; i; T; �0) if transition functions are implemented by transition matrices.Proof. If transition functions � and �0 are implemented by transition matrices,access to or de�nition of �(p; a) or �0(p; a) (p state, a 2 A) are realized inconstant amount of time. The result follows immediately. ./The algorithm L-automaton can be adapted to test whether T representsan anti-factorial set, to generate the trie of the anti-factorial language associatedwith a set of words, or even to built the automaton associated with the anti-factorial language corresponding to any set of words.TransducersFrom the automaton A(M) we can easily construct a (�nite-state) transducerB(M) that realizes the compression algorithm Encoder, i.e., that computesthe function
.The input part of B(M) coincides with A(M) and the output is given asfollows: if a state of A(M) has two outgoing edges, then the output labels ofthese edges coincide with their input label; if a state of A(M) has only oneoutgoing edge, then the output label of this edge is the empty word.The transducer B(M) works as follows on an input string w. Consider the(unique) path in B(M) corresponding to w. The letters of w that correspondto an edge that is the unique outgoing edge of a given state are erased; otherletters are unchanged.We can then state the following theorem.Theorem 4 Algorithm Encoder is realized by a sequential transducer (gener-alized sequential machine).As to concern the algorithm Decoder, remark (see Section 2) that thefunction
 is not injective and that we need some additional information, forinstance the length of the original uncompressed word, in order to reconstructit without ambiguity. We show that Decoder can be realized by the sametransducer as above, by interchanging input and output labels (denote it byB0(M)), with a supplementary instruction to stop the decoding.Let Q = Q1 [Q2 be a partition of the set of states Q, where Qi is the setof states having i outpoing edges (i = 1; 2). For any q 2 Q1, de�ne p(q) =(q; q1; : : : ; qr) as the unique path in the tranducer for which qj 2 Q1 for j < rand qr 2 Q2. 9

Given an input word v = b1b2 : : : bm, there exists in B0(M) a unique pathi; q1; : : : ; qm0 such that qm0�1 2 Q2 and the transition from qm0�1 to q0m corre-spond to the input letter bmIf qm0 2 Q2, then the output word corresponding to this path in B0(M) isthe unique word w such that
(w) = v.If qm0 2 Q1, then we can stop the run of the decoding algorithm realizedby B0(M) in any state q 2 p(qm0), and, for di�erent states, we obtain di�erentdecoding. So, we need a supplementary information (for instance the length ofthe original uncompressed word) to perform the decoding. In this sense we cansay that B0(M) realizes sequentially the algorithm Decoder.The constructions and the results given above can be generalized also to thecase of rational antidictionaries, or, equivalently, when the set of words \pro-duced by the source" is a rational language. In these cases it is not, in a strictsense, necessary to introduce explicitely antidictionaries and all the methodscan be presented in terms of automata and tranducers, as above. Remark how-ever that the presentation given in Section 2 in terms of antidictionaries is moregeneral, since it includes the non rational case. Moreover, even in the �nitecase, the construction of automata and transducers from a �xed text, given inthe next section, makes an explicit use of the notion of minimal forbidden wordsand of antidictionaries.A Synchronization PropertyIn the sequel we prove a synchronization property of automata built from �-nite antidictionaries, as described above. This property also \characterizes" insome sense �nite antidictionaries. This property is a classical one and it is offundamental importance in practical applications.We start with a de�nition.De�nition 2 Given a deterministic �nite automaton A, we say that a wordw = a1 � � �an is synchronizing for A if, whenever w represents the label of twopaths (q1; a1; q2) � � � (qn; an; qn+1) and (q01; a1; q02) � � � (q0n; an; q0n+1) of length n,then the two ending states qn+1 and q0n+1 are equal.If L(A) is factorial, any word that does not belong to L(A) is synchronizing.Clearly in this case synchronizing words in L(A) are much more interesting.Remark also that, since A is deterministic, if w is synchronizing for A, thenany word w0 = wv that has w as pre�x is also synchronizing for A.De�nition 3 A deterministic �nite automaton A is local if there exists an in-teger n such that any words of length n is synchronizing. Automaton A is alsocalled n-local. 10

Remark that if A is n-local then it is m-local for any m � n.Given a �nite antifactorial language M , let A(M) be the automaton associ-ated with M as described in Section 4. Recall that it has no sink state, that allstates are terminal, and that L(A(M)) is factorial.Theorem 5 Let M be a �nite antifactorial antidictionary and let n be thelength of the longest word in M . Then automaton A(M) associated to M is(n � 1)-local.Proof. Let u = a1 � � �an�1 be a word of length n�1. We have to prove that u issynchronizing. Suppose that there exist two paths (q1; a1; q2) � � � (qn�1; an�1; qn)and (q01; a1; q02) � � � (q0n�1; an�1; q0n) of length n � 1 labeled by u. We have toprove that the two ending states qn and q0n are equal. Recall that states of Aare words, and, more precisely they are the proper pre�xes of words in M . Asimple induction on i, 1 � i � n shows that qi (respectively q0i) \is" the longestsu�x of the word q1a1 � � �ai (respectively q01a1 � � �ai) that is also a \state", i.e.,a proper pre�x of a word in M . Hence qn (respectively q0n) is the longest su�xof the word q1u (respectively q01u) that is also a proper pre�x of a word in M .Since all proper pre�xes of words in M have length at most n� 1, both qn andq0n have length at most n�1. Since u has length n�1, both they are the longestsu�x of u that is also a proper pre�x of a word in M , i.e., they are equal. ./The previous theorem admits a \converse" that we state without proof andthat shows that locality characterizes in some sense �nite antidictionaries (cf.Propositions 2.8 and 2.14 of [3]).Theorem 6 If automaton A is local and L(A) is a factorial language then thereexists a �nite antifactorial language M such that L(A) = L(M).Let M be an antifactorial antidictionary and let n be the length of thelongest word in M . Let also w = w1uvw2 2 L(M) with juj = n � 1 and let
(w) = y1y2y3 be the word produced by our encoder of Section 2 with inputM and w. The word y1 is the word produced by our encoder after processingw1u, the word y2 is the word produced by our encoder after processing v andthe word y3 is the word produced by our encoder after processing w2.The proof of next theorem is an an easy consequence of previous de�nitionsand of the statement of Theorem 5.Theorem 7 The word y2 depends only on the word uv and it does not dependon the contexts of it, w1 and w2.The property stated in the theorem has an interesting consequence for thedesign of pattern matching algorithms on words compressed by the algorithmEncoder. It implies that, to search the compressed word for a pattern, it is notnecessary to decode the whole word. Just a limited left context of an occurrence11

of the pattern needs to be processed (cf. [10]). This is not a common featureof other compression methods. They have to split the input to get the sameadvantage, but this may weaken the e�ciency of the �nal compression algorithm.The same property allows the design of highly parallizable compression al-gorithms. The idea is that the compression can be performed independentlyand in parallel on any block of data. If the text to be compressed is parsed intoblocks of data in such a way that each block overlaps the next block by a lengthnot smaller than the length of the longest word in the antidictionary, then it ispossible to run the whole compression process.4 E�ciencyIn this section we evaluate the e�ciency of our compression algorithm relativelyto a source corresponding to the �nite antidictionary M .Indeed, the antidictionary M de�nes naturally a source S(M) in the follow-ing way. Let A(M) be the automaton constructed in the previous section andthat recognizes the language L(M), and let us eliminate the sink states andedges going to them. Since there is no possibility of misunderstanding, we de-note the resulting automaton by A(M) again. To avoid trivial cases we supposethat in this automaton all the states have at least one outgoing edge. Recallthat, since our algorithms work on binary alphabets, all the states have at mosttwo outgoing edges.For any state ofA(M) with only one outgoing edge we give to this edge prob-ability 1. For any state of A(M) with two outgoing edge we give to these edgesprobability 1=2. This de�nes a deterministic (or uni�lar, cf. [2]) Markov source,denoted S(M). A binary Markov source with this probability distribution iscalled an equilibrated source.Remark that our compression algorithm is de�ned exactly for all the words\emitted" by S(M).In what follows we suppose that the graph of the source S, i.e., the graphof automaton A(M) is strongly connected. The results that we prove can beextended to the general case by using standard techniques of Markov Chains(cf. [2] and [14]).Recall (cf. Theorem 6.4.2 of [2]) that the entropy H(S) of a deterministicmarkov source S is H(S) = ��ni;j=1�i
i;j log2(
i;j);where (
i;j) is the stochastic matrix of S and (�1; � � � ; �n) is the stationarydistribution of S.We �rst start with two preliminary lemmas.12

Lemma 1 The entropy of an equilibrated source S is given by H(S) = �i2D�iwhere D is the set of all states that have two outgoing edges.Proof. By de�nition H(S) = ��ni;j=1�i
i;j log2(
i;j):If i is a state with only one outgoing edge, by de�nition this edge must haveprobability 1. Then �j�i
i;j log2(
i;j) reduces to �i log2(1), that is equal to 0.Hence H(S) = ��i2D�nj=1�i
i;j log2(
i;j):Since from each i 2 D there are exactly two outgoing edges having eachprobability 1=2, one hasH(S) = ��i2D2�i(1=2) log2(1=2) = �i2D�ias stated. ./Lemma 2 Let w = a1 � � �am be a word in L(M) and let q1 � � � qm+1 be thesequence of states in the path determined by w in A(M) starting from the initialstate. The length of
(w) is equal to the number of states qi, i = 1; : : : ;m, thatbelong to D, where D is the set of all states that have two outgoing edges.Proof. The statement is straightforward from the description of the compres-sion algorithm and the implementation of the antidictionary with automatonA(M). ./Next lemma reports a well known \large deviation" result (cf. Theorem 1.4.3of [12]).Let q= q1; � � �qm be the sequence of m states of a path of A(M) and letLm;i(q) be the frequency of state qi in this sequence, i.e., Lm;i(q) = mi=m,where mi is the number of occurrences of qi in the sequences q. Let alsoXm(�) = f q j q has m states and maxi jLm;i(q) � �ij � �g;where q represents a sequence of m states of a path in A(M).In other words, Xm(�) is the set of all sequences of states representing pathin A(M) that \deviate" at least of � in at least one state qi from the theoreticalfrequency �i.Lemma 3 For any � > 0, the set Xm(�) satis�es the equalitylim 1m log2Pr(Xm(�)) = �c(�);where c(�) is a positive constant depending on �.13

We now state and prove the main theorem of this section. We prove thatfor any � the probability that the compression rate � (v) = j
(v)j=jvj of a stringof length n is greater than H(S(M)) + �, goes exponentially to zero. Hence, asa corollary, almost surely the compression rate of an in�nite sequence emittedby S(M) reaches the entropy H(S(M)), that is the best possible result.Let Km(�) be the set of words w of length m such that the compression rate� (v) = j
(v)j=jvj is greater than H(S(M)) + �.Theorem 8 For any � > 0 there exist a real number r(�), 0 < r(�) < 1, and aninteger m(�) such that for any m > m(�), Pr(Km(�)) � r(�)m:Proof. Let w be a word of length m in the language L(M) and let q1; � � � ; qm+1be the sequence of states in the path determined by w in A(M) starting fromthe initial state. Let q= (q1; � � � ; qm) be the sequence of the �rst m states. Weknow, by Lemma 2, that the length of
(w) is equal to the number of states qi,i = 1 � � �m, in q that belong to D, where D is the set of all states having twooutgoing edges.If w belog to Km(�), i.e., if the compression rate � (v) = j
(v)j=jvj is greaterthan H(S(M)) + �, then there must exists an index j such that Lm;j(q) >�j + �=d, where d is the cardinality of the set D. In fact, if for all j, Lm;j(q) ��j + �=jDj then, by de�nitions and by Lemma 1,� (v) = �j2DLm;j(q) � �j2D�j + � = H(S(M)) + �;a contradiction. Therefore the sequence of states q belongs to Xm(�=d).Hence Pr(Km(�)) � Pr(Xm(�=d)).By Lemma 3, there exists an integer m(�) such that for any m > m(�) onehas 1m log2Pr(Xm(�d)) � �12c(�d):Then Pr(Km(�)) � 2�(1=2)c(�=d)m. If we set r(�) = 2�(1=2)c(�=d), the statementof the theorem follows. ./Corollary 1 The compression rate � (x) of an in�nite sequence x emitted bythe source S(M) reaches the entropy H(S(M)) almost surely.5 How to build AntidictionariesIn practical applications the antidictionary is not a priori given but it must bederived either from the text to be compressed or from a family of texts belongingto the same source to which the text to be compressed is supposed to belong.There exist several criteria to build e�cient antidictionaries that depend ondi�erent aspects or parameters that one wishes to optimize in the compressionprocess. Each criterium gives rise to di�erent algorithms and implementations.14

We present a simple construction to build �nite antidictionaries. It is thebase on which several variations are developed. It can be used to build an-tidictionaries for �xed sources. In this case our scheme can be considered asa compressor generator (compressor compiler). In the design of a compressorgenerator, or compressor compiler, statistic considerations play an importantrole, as discussed in Section 6 (cf. [11]).Algorithm Build-AD below builds the set of minimal forbidden words oflength k (k > 0) of the word w. It takes as input an automaton accepting thewords that have the same factors of length k (or less) than w, i.e., acceptingthe languageL = fx 2 f0; 1g� j (u 2 F (x) and juj � k)) u 2 F (w)g:The preprocessing of the automaton is done by the algorithm Build-Factwhose central operation is described by the function Next. The automatonis represented by both a trie and its failure function f . If p is a node of thetrie associated with the word av, v 2 f0; 1g� and a 2 f0; 1g, f(p) is the nodeassociated with v. This is a standard technique used in the construction of su�xtrees (see [7] for example). It is used here in algorithm Build-AD (line 4) totest the minimality of forbidden words according to the equality 2.Build-Fact (word w 2 f0; 1g�, integer k > 0)1. i new state; Q fig;2. level(i) 0;3. p i;4. while not end of string w5. a next letter of w;6. p Next(p; a; k);7. return trie (Q; i;Q; �), function f ;Next (state p, letter a, integer k > 0)1. if �(p; a) de�ned2. return �(p; a);3. else if level(p) = k4. return Next(f(p); a; k);5. else6. q new state; Q Q [fqg;7. level(q) level(p) + 1;8. �(p; a) q;9. if (p = i) f(q) i; else f(q) Next(f(p); a; k);10. return q; 15

Build-AD (trie (Q; i;Q; �), function f , integer k > 0)1. T ;; �0 �;2. for each p 2 Q, 0 < level(p) < k, in width-�rst order3. for a 0 then 14. if �(p; a) unde�ned and �(f(p); a) de�ned5. q new state; T T [fqg;6. �0(p; a) q;7. Q Q n fstates of Q from which no �0-path leads to Tg8. return trie (Q [T; i; T; �0);The above construction gives rise to a static compression scheme in whichwe need to read twice the text: the �rst time to construct the antidictionary Mand the second time to encode the text.Informally, the encoder sends a message z of the form (x; y; �(n)) to thedecoder, where x is a description of the antidictionary M , y is the text codedaccording to M , as described in Section 2, and �(n) is the usual binary code ofthe length n of the text. The decoder �rst reconstructs from x the antidictionaryand then decodes y according to the algorithm in Section 2. We can choose thelength k of the longest minimal forbidden word in the antidictionary such that,by coding the trie associated to M with standard techniques, one has thatjxj = o(n). Since the compression rate is the size jzj of z divided by the lengthn of the text, we have that jzj=n = jyj=n + o(n). Assuming that for n and klarge enough the source S(M), as in Section 4, approximates the source of thetext, then, by the results of Section 4, the compression rate is \optimal".Example 1Let w= a1a2 � � � be a binary in�nite word that is periodic (i.e., there existsinteger P > 0 such that for any index i the letter ai is equal to the letter ai+P),and let wn be the pre�x of w of length n.We want to compress the word wn following our simple scheme informallydescribed above. Since w has period P , then for any i > P , letter ai is uniquelydetermined by the P previous letters. Therefore, we de�ne the antidictionaryM = fua j u 2 F (w); juj = P � 1; and ua =2 F (w)g;where F (w) is the language of all factors of w. Then it is easy to prove thatfor any pre�x wn of w, the length of the text y coded using M is constantlyequal to P . Hence the compression rate for wn is jzj=n = O(�(n)) = O(log2(n)),which means that the method can achieve an exponential compression.It is possible to generalize the previous example to any binary in�nite word,w= a1a2 � � �, that is ultimately periodic (i.e., there exist integers M > 0, P > 0such that for any index i �M the letter ai is equal to the letter ai+P).16

Example 2This example is a bit more complex, and the compression rate is no more expo-nential in the size of the text.We start with the classical recursive de�nition of �nite Fibonacci words fn(cf. [5]). Let f1 = 0, f2 = 01 and let fn+1 = fnfn�1 for n � 2. In particular wehave f3 = 010, f4 = 01001 and f5 = 01001010. The in�nite Fibonacci word f isthe limit of the sequence of the �nite Fibonacci words, i.e., the unique in�niteword that have all the fn as pre�xes. It is know that the length jfnj is the n-th�bonacci number and, consequently, lim jfnj = �('n) where ' � 1:618 � � � isthe golden ratio.Let L(f) and L(fn) be the factorial languages composed respectively by allfactors of the Fibonacci in�nite word f and of the �nite Fibonacci word fn. It isknown (cf. [16]) that any factor of f of length 4m contains as factors all factorsof length m of the whole word f. In particular L(fn)\f0; 1gm = L(f)\f0; 1gmfor any m � jfnj=4. Consequently, the minimal forbidden words of f up tolength m are also the minimal forbidden words of fn up to length m for anym � jfnj=4.If we call gn to be the pre�x of length jfnj � 2 of fn for n � 2, it is known(cf. Example 2 of [4]) that all the minimal forbidden words of L(f) aref1g2i1 j i � 1g [f0g2i+10 j i � 1g;i.e., they are 11, 000, 10101, 00100100, � � � .We now compress the word f2n following our simple scheme informally de-scribed above. We choose as length k of the longest minimal forbidden wordthe number k = jfnj. By previous observationsM = (f1g2i1 j i � 1g [f0g2i+10 j i � 1g)\ f0; 1gk;and consequently it is not di�cult to prove that the size of a standard codingx of the trie associated to M is x = O(jfnj) = O('n) = o(jf2nj).It is possible to prove that the size of the compressed version y of f2n byusing our algorithm with the antidictionary M is jyj = O(jfnj).Therefore the global compression rate is O(jfnj=jf2nj) = O((1=')n). Thismeans that the compression ratio converges exponentially to zero as n goes upto in�nity.6 Improvements and experimental resultsIn the previous section we presented a static compression scheme in which weneed to read twice the text. Starting from the static scheme, several variationsand improvements can be proposed. These variations are all based on clevercombinations of two elements that can be introduced in our model:17

a) statistic considerations,b) dynamic approaches.These are classical features that are sometimes included in other data compres-sion methods.Statistic considerations are used in the construction of antidictionaries. If aforbidden word is responsible of \erasing" few bits of the text in the compressionalgorithm of Section 2 and its \description" as an element of the antidictionaryis \expensive" then the compression rate improves if it is not included in theantidictionary. On the contrary, one can introduce in the antidictionary a wordthat is not forbidden but that occurs very rarely in the text. In this case, thecompression algorithm will produce some \mistakes". In order to have a losslesscompression, the encoder must take account of such mistakes and must also sendthem to the decoder. Typical \mistakes" occur in the case of antidictionariesbuilt for �xed sources and in the dynamic approach. Even with mistakes, assum-ing that the mistakes are rare with respect to the longest word (length) of theantidictionary, our compression scheme preserves the synchronization propertyfor �xed sources.In the dynamic approach we construct the antidictionary and we encode thetext at the same time. The antidictionary is constructed (also with statisticalconsideration) by taking account of (a part of) the text previously read.We have realized prototypes of the compression and decompression algo-rithms. They also implement the dynamic version of the method. They havebeen tested on the Calgary Corpus, and the next table reports the size of com-pressed �les. The total size of compressed data is equivalent to most commoncompressors such as pkzip. File compressed sizebib 35535book1 295966book2 214476geo 79633news 161004obj1 13094obj2 111295paper1 21058paper2 32282pic 70240progc 15736progl 20092progp 13988trans 22695Total 1,10709418

7 Conclusion and GeneralizationsWe have described DCA, a text compression method that uses some \negative"informations about the text, which are described in terms of antidictionaries.The advantages of the scheme are:� fast at decompressing data,� it is similar to a compressor generator (compressor compiler) for �xedsources,� fast at compressing data for �xed sources,� it has a synchronization property in the case of �nite antidictionaries thatleads to parallel compression and to search engines on compressed data.We are considering several generalizations:� compressor scheme and implementationof antidictionaries on more generalalphabets,� the use of lossy compression especially to deal with images,� the combination of DCA with other compression scheme. For instanceusing both dictionaries and antidictionaries like positive and negative setsof examples as in Learning Theory,� the design of chips dedicated to �xed sources.AcknowledgementsWe thanks F.M. Dekking for useful discussions.References[1] A. V. Aho and M. J. Corasick. E�cient string matching: an aid to bibli-ographic search. Comm. ACM 18:6 (1975) 333{340.[2] R. Ash. Information Theory. Tracts in mathematics, Interscience Publish-ers, J. Wiley & Sons, 1985.[3] M. P. B�eal. Codage Symbolique. Masson, 1993.[4] M.-P. B�eal, F. Mignosi, and A. Restivo. Minimal Forbidden Words andSymbolic Dynamics. in (STACS'96, C. Puech and R. Reischuk, eds., LNCS1046, Springer, 1996) 555{566.[5] J. Berstel. Fibonacci Words | a Survey. in (The Book of L, G. Rozenberg,A. Salomaa, eds., Springer Verlag, 1986).19

[6] T. C. Bell, J. G. Cleary, I. H. Witten. Text Compression. Prentice Hall,1990.[7] M. Crochemore, C. Hancart. Automata for matching patterns. in (Hand-book of Formal Languages, G. Rozenberg, A. Salomaa, eds.", Springer-Verlag", 1997, Volume 2, Linear Modeling: Background and Application)Chapter 9, 399{462.[8] M. Crochemore, F. Mignosi and A. Restivo. Minimal Forbidden Words andFactor Automata. Accepted at the conference MFCS'98.[9] M. Crochemore, F. Mignosi and A. Restivo. Automata and ForbiddenWords. Technical Report, IGM 98-5, Institut Gaspard-Monge, 1998. Sub-mitted to Information Processing Letters.[10] M. Crochemore, F. Mignosi, A. Restivo and S. Salemi. Search in Com-pressed Data. in preparation.[11] M. Crochemore, F. Mignosi, A. Restivo and S. Salemi. A CompressorCompiler. in preparation.[12] R. S. Ellis. Entropy, Large Deviations, and Statistical Mechanics. SpringerVerlag, 1985.[13] J. Gailly. Frequently Asked Questions in data compression, Internet. Avail-able at http://www.landfield.com/faqs/compression-faq/part1/preamble.html orftp://rtfm.mit.edu/pub/usenet/news.answers/compression-faq/.[14] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Van NostrandReinhold, 1960.[15] R. Krichevsky. Universal Compression and Retrieval. Kluver AcademicPublishers, 1994.[16] M. Morse and G. Hedlund. Symbolic Dynamics II: Sturmian trajectoires.Amer. J. Math. 62, 1-40, 1940.[17] M. Nelson and J. Gailly. The Data Compression Book. 2nd edition. M&TBooks, New York, NY 1996.[18] C. Shannon. Prediction and entropy of printed english. Bell System Tech-nical J., 50-64, January, 1951.[19] J. A. Storer. Data Compression: Methods and Theory. Computer SciencePress, Rockville, MD, 1988.[20] I. H. Witten, A. Mo�at and T. C. Bell. Managing Gigabytes. Van NostrandReinhold, 1994. 20

