N

HAL

open science

Text Compression Using Antidictionaries

Maxime Crochemore, Filippo Mignosi, Antonio Restivo, Sergio Salemi

» To cite this version:

Maxime Crochemore, Filippo Mignosi, Antonio Restivo, Sergio Salemi. Text Compression Using
Antidictionaries. International Conference on Automata, Languages an Programming (Prague, 1999),
1999, France. pp.261-270, 10.1007/3-540-48523-6_23 . hal-00619991

HAL Id: hal-00619991
https://hal.science/hal-00619991
Submitted on 20 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00619991
https://hal.archives-ouvertes.fr

Text Compression Using Antidictionaries”

M. Crochemore!, F. Mignosi*, A. Restivo*, S. Salemi*

June 10, 1998

Abstract

We give a new text compression scheme based on Forbidden Words
(”antidictionary”). We prove that our algorithms attain the entropy for
equilibrated binary sources. One of the main advantage of this approach
is that it produces very fast decompressors. A second advantage is a
synchronization property that is helpful to search compressed data and
to parallelize the compressor. Our algorithms can also be presented as
“compilers” that create compressors dedicated to any previously fixed
source. The techniques used in this paper are from Information Theory
and Finite Automata; as a consequence, this paper shows that Formal
Language Theory (in particular Finite Automata Theory) can be useful
in Data Compression.

Keywords: data compression, information theory, finite automaton,
forbidden word, pattern matching.

1 Introduction

We present a simple text compression method called DCA (Data Compression
with Antidictionaries) that uses some “negative” information about the text,
which is described in terms of antidictionaries. Contrary to other methods
that make use, as a main tool, of dictionaries, i.e., particular sets of words
occurring as factors in the text (cf. [6], [13], [17], [19] and [20]), our method
takes advantage from words that do not occur as factor in the text, i.e., that
are forbidden. Such sets of words are called here antidictionaries.

Let w be a text on the binary alphabet {0, 1} and let AD be an antidictionary
for w. By reading the text w from left to right, if at a certain moment the current
prefix v of the text admits as suffix a word u’ such that v = vz € AD with
z € {0,1}, i.e., u is forbidden, then surely the letter following v in the text
cannot be z and, since the alphabet is binary, it is the letter y # x. In other

*Web page at URL http://www-igm.univ-mlv.fr/~mac/DCA.html
Institut Gaspard-Monge
tUniversita di Palermo

terms, we know in advance the next letter y, that turns out to be redundant or
predictable. The main idea of our method is to eliminate redundant letters in
order to achieve compression. The decoding algorithm recovers the text w by
predicting the letter following the current prefix v of w already decompressed.

The method here proposed presents some analogies with ideas discussed by
C. Shannon at the very beginning of Information Theory. In [18] Shannon
designed psychological experiments in order to evaluate the entropy of English.
One of such experiments was about the human ability to reconstruct an english
text where some characters were erased. Actually our compression methods
erases some characters and the decompression reconstruct them.

We prove that the compression rate of our compressor reaches the entropy
almost surely, provided that the source is equilibrated and produced from a
finite antidictionary. This type of source approximates a large class of sources,
and consequently, a variant of the basic scheme gives an optimal compression
for them. The idea of using antidictionaries is founded on the fact that there
exists a topological invariant for Dynamical Systems based on forbidden words
and independent of the entropy [4].

The use of the antidictionary AD in coding and decoding algorithms requires
that AD must be structured in order to answer to the following query on a word
v: does there exists a word u = vz, € {0,1}, in AD such that v’ is a suffix
of v7 In the case of positive answer the output should also include the letter y
defined by y # z. One of the main features of our method is that we are able
to implement efficiently finite antidictionaries in terms of finite automata. This
leads to efficient and fast compression and decompression algorithms, which can
be realized by sequential transducers (generalized sequential machines). This is
especially relevant for fixed sources. It is then comparable to the fastest com-
pression methods because the basic operation at compression and decompression
time is just table lookup.

A central notion of the present method is that of minimal forbidden words,
which allows to reduce the size of antidictionaries. This notion has also some
interesting combinatorial properties. Our compression method includes algo-
rithms to compute antidictionaries, algorithms that are based on the above
combinatorial properties and that are described in details in [8] and [9].

The compression method shares also an interesting synchronization property,
in the case of finite antidictionaries. It states that the encoding of a block of
data does not depend on the left and right contexts except for a limited-size
prefix of the encoded block. This is helpful to search compressed data, which 1s
not a common feature of other compression methods. The same property allows
to design efficient parallel compression algorithms.

The paper is organized as follows.

In Section 2 we give the definition of Forbidden Words and of antidictionar-
ies. We describe DCA, our text compression and decompression algorithms
(binary oriented) assuming that the antidictionary is given and that we can

perform special kinds of queries on this antidictionary.

In Section 3 we describe a data structure for finite antidictionaries that
allows to answer in efficient way to the queries needed by our compression
and decompression algorithms; we show how to implement it given a finite
antidictionary. The compression is also described in terms of transducers, which
is valid only in the case of rational antidictionaries. We end the section by
proving the synchronizion property.

In Section 4 we evaluate the compression rate of our compression algorithm
relative to a given antidictionary.

In Section 5 we show how to construct antidictionaries for single words and
sources. As a consequence we obtain a family of linear time optimal algorithms
for text compression that are universal for equilibrated sources generated from
antidictionaries.

We report in Section 6 experimental results made with a dynamic prototype
of DCA. It shows that the compression rate is similar to those of most common
COMPressors.

We consider possible generalizations in the conclusion (Section 7).

2 Forbidden Words and the Basic Algorithms

Let us first introduce the main ideas of our algorithm. Let w be a finite binary
word and let F(w) be the set of factors of w.

For instance, if w = 01001010010
F(w) = {e,0,1,00,01,10,001,010, 100, 101, .. .}
where ¢ denotes the empty word.

Let us take some words in the complement of F(w), i.e., let us take some
words that are not factors of w and that we call forbidden. The set of such
words AD is called an antidictionary of the language F(w). Antidictionaries
can be finite as well infinite.

For instance, if w = 01001010010 the words 11, 000, and 10101 are forbid-
den and the set AD = {000,10101, 11} is an antidictionary of F(w).

The compression algorithm treats the input word in an online manner. At
a certain moment in this process we have read the word v prefix of w. If there
exists a word u — w'z, x € {0,1}, in the antidictionary AD such that v’ is a
suffix of v, then surely the letter following v cannot be z, i.e., the next letter
is y, y # . In other words, we know in advance the next letter y that turns
out to be “redundant” or predictable. Remark that this argument works only
in the case of binary alphabets.

The main idea in the algorithm we describe is to eliminate redundant letters
in order to achieve compression.

In what follows we first describe the compression algorithm, ENCODER and
then the decompression algorithm, DECODER. The word to be compressed is
noted w = ay - - - a, and its compressed version is denoted by v(w).

ENCODER (anti-dictionary AD, word w € {0,1}%)
1. veevy¢

2. for a « first to last letter of w

3. v v.a;

4. if for any suffix «’ of v, w'0,w'1 € AD

5 v = v.a;

6. return (|v|, ¥);

As an example, let us run the algorithm ENCODER on the string w =
01001010010 with the antidictionary AD = {000,10101 11}. The steps of
the treatment are described in the next array by the current values of the prefix
v; = ay - - -a; of w that has been just considered and of the output y(w). In the
case of positive answer to the query to the antidictionary AD, the array also
indicates the value of the corresponding forbidden word w. The number of times
the answer is positive in a run corresponds to the number of bits erased.

£ y(w) =¢

vy =0 y(w) =0

vy = 01 y(w) = 01 u=11€ AD
vz = 010 y(w) = 01

vq = 0100 y(w) =010 w=000€ AD
vs = 01001 y(w) =010 wu=11€ AD
vg = 010010 v(w) = 010

vy = 0100101 y(w) = 0101 w=11¢€ AD
vs = 01001010 v(w) = 0101 u = 10101 € AD
ve = 010010100 ~(w) = 0101 u =000 € AD
1o = 0100101001 ~y(w) = 0101 u =11 € AD
v11 = 01001010010 ~(w) = 0101

Remark that the function v is not injective. For instance 4(010010100) =
¥(0100101001) = 0101. In order to have an injective mapping we can consider
the function v'(w) = (Jw|,y(w)). In this case we can reconstruct the original
word w from both 4/(w) and the antidictionary.

The decoding algorithm works as follow. The compressed word is y(w) =
by -+ - by, and the length of w is n. The algorithm recovers the word w by pre-
dicting the letter following the current prefix v of w already decompressed. If
there exists a word u = w'z, # € {0, 1}, in the antidictionary AD such that v’
is a suffix of v, then, the output letter is y, y # x. Otherwise, the next letter is
read from the input ~.

DECODER (anti-dictionary AD, integer n, word v € {0, 1}*)
1. v ¢

2. while |v] < n

3 if for some v’ suffix of v and « € {0,1}, v’z € AD
4. V4=V - T

5. else

6 b < next letter of ~;

7 v v-b;

8. return (v);

The antidictionary A D must be structured in order to answer to the following
query on a word v: does there exist a word u = w'z, « € {0, 1}, in AD such that
u’ 1s a suffix of v? In case of a positive answer the output should also include
the letter y defined by y # =.

The method presented here brings to mind some ideas proposed by C. Shan-
non at the very beginning of Information Theory. In [18] Shannon designed
psychological experiments in order to evaluate the entropy of English. One of
such experiments was about the human ability to reconstruct an english text
where some characters were erased. Actually our compression methods erases
some characters and the decompression reconstruct them. For instance in pre-
vious example the input string is

01001010010,
where bars indicate the letters erased in the compression algorithm.

In this approach the encoder must send to the decoder the length of the
word |w], the compressed word y(w) as well the antidictionary in the case the
decoder has not yet a copy of the antidictionary.

In order to have a good compression rate we need to minimize in particular
the size of the antidictionary. Remark that if there exists a forbidden word
u=u'z, x € {0,1} in the antidictionary such that v’ is also forbidden then our
algorithm will never use this word u in the algorithms. So that we can erase
this word from the antidictionary without any loss for the compression of w.

This argument leads to introduce the notion of minimal forbidden word with
respect to a factorial language L, notion that is discussed in the next section.

3 Implementation of Finite Antidictionaries

The queries on the antidictionary required by the algorithm of the previous
section are realized as follows. We build the deterministic automaton accepting
the words having no factor in the antidictionary. Then, while reading the text
to encode, if a transition leads to a sink state, the output is the other letter.
What remains to explain is how the automaton is built from the antidictionary.

The wanted automaton accepts a factorial language L. Recall that a lan-
guage L is factorial if L satisfies the following property: for any words, u, v,
uw €L =u€&lLandvelL.

The complement language L¢ = A*\ L is a (two-sided) ideal of A*. Denoting
by MF(L) the base of this ideal, we have L = A*MF(L)A*. The set MF (L) is
called the set of minimal forbidden words for L. A word v € A is forbidden for
the factorial language L if v ¢ L, which is equivalent to say that v occurs in no
word of L. In addition, v is minimal if it has no proper factor that is forbidden.

One can note that the set MF (L) uniquely characterizes L, just because
L=A"\A"MF(L)A". (1)

Indeed, there is a duality between factorial and anti-factorial languages, because
we also have the equality:

MF(L) = AL LAN (A*\ L). 2)

As a consequence of both equalities (1) and (2) we get the following proposition.

Proposition 1 For a factorial language L, languages L and MF (L) are simul-
taneously rational, that is, L € Rat(A*) iff MF(L) € Rat(A™).

The set MF (L) is an anti-factorial language or a factor code, which means
that it satisfies: Yu,v € MF(L) v # v = u is not a factor of v, property that
comes from the minimality of words of MF(L).

We introduce a few more definitions.

Definition 1 A word v € A* avoids the set M, M C A*, if no word of M is a
factor of v, (i.e., if v & A*MA*). A language L avoids M if every word of L
avoird M .

From the definition of MF (L), it readily comes that L is the largest (accord-
ing to the subset relation) factorial language that avoids MF(L). This shows
that for any anti-factorial language M there exists a unique factorial language
L(M) for which M = MF(L). The next remark summarizes the relation be-
tween factorial and anti-factorial languages.

Remark 1 There s a one-to-one correspondence between factorial and anti-
factorial languages. If L and M are factorial and anti-factorial languages re-
spectively, both equalities hold: MF(L(M)) = M and L(MF(L)) = L.

Finally, with a finite anti-factorial language M we associate the finite au-
tomaton A(M) as described below. The automaton is deterministic and com-
plete, and, as shown at the end of the section by Theorem 1, it accepts the
language L(M).

The automaton A(M) is the tuple (@, A,4, T, F) where

Figure 1: Trie of the factor code {000,10101,11}. Squares represent terminal
states.

o the set) of states is {w | w is a prefix of a word in M},
e A is the current alphabet,
e the initial state ¢ is the empty word ¢,

o the set T of terminal states is @ \ M.

States of A(M) that are words of M are sink states. The set F' of transitions is
partitioned into the three (pairwise disjoint) sets Fy, Fa, and Fs defined by:

o Iy = {(u,a,ua) | ua € Q,a € A} (forward edges or tree edges),

o Fy = {(u,a,v) |u € Q\ M,a € Ajua ¢ @, v longest suffix of ua in @}
(backward edges),

o F5={(u,a,u)|ue M,a € A} (loops on sink states).

The transition function defined by the set F' of arcs of A(M) is noted §.

The next result is proved in [8].

Theorem 1 For any anti-factorial language M, A(M) accepts the language
L(M).

The above definition of A(M) turns into the algorithm below, called L-
AUTOMATON, that builds the automaton from a finite anti-factorial set of words.
The input is the trie 7 that represents M. It is a tree-like automaton accepting
the set M and, as such, it is noted (@, A4,4,7,4").

In view of Equality 1, the design of the algorithm remains to adapt the
construction of a pattern matching machine (see [1] or [7]). The algorithm uses
a function f called a failure function and defined on states of 7 as follows.
States of the trie T are identified with the prefixes of words in M. For a state
au (a € A, u € A*), f(au) is §'(4,u), quantity that may happen to be w itself.
Note that f(¢) is undefined, which justifies a specific treatment of the initial
state in the algorithm.

Figure 2: Automaton accepting the words that avoid the set {000,10101, 11}.
Squares represent non-terminal states (sink states).

L-AUTOMATON (trie T = (Q, A,4,T,48'))
1. for each a € A
2. if 6'(4,a) defined
3. set 8(i,a) = &'(i,a);
4. set f(6(i,a)) =1,
5. else
6. set 8(1,a) = 1
7. for each state p € @ \ {i} in width-first search and each a € A
8. if 6'(p, a) defined
9. set 8(p,a) = 8'(p, a);
10 et £(8(p,a)) = 6(1(p), a)
11. elseifpgT
12. set 8(p,a) = 6(f(p), a);
13. else
14. set 8(p,a) = p;
15. return (@, A,1,Q\T,6);

Example. Figure 1 displays the trie that accepts M = {000,10101,11}. Tt is
an anti-factorial language. The automaton produced from the trie by algorithm
L-AauTOMATON is shown in Figure 2. It accepts all the words avoiding M.

Theorem 2 Let T be the trie of an anti-factorial language M. Algorithm L-
AUTOMATON builds a complete deterministic automaton accepting L(M).

Proof. The automaton produced by the algorithm has the same set of states
as the input trie. It is clear that the automaton is deterministic and complete.

Let u € At and p = é(i,u). A simple induction on |u| shows that the word
corresponding to f(p) is the longest proper suffix of « that is a prefix of some
word in M. This notion comes up in the definition of the set of transitions Fs

in the automaton A(M). Therefore, the rest of the proof just remains to check
that instructions implement the definition of A(M). >

Theorem 3 Algorithm L-AUTOMATON runs in time O(|Q| x |A]) on input T =
(Q, A, 4, T,¢") if transition functions are implemented by transition matrices.

Proof. If transition functions § and ¢’ are implemented by transition matrices,
access to or definition of d(p,a) or §(p,a) (p state, a € A) are realized in
constant amount of time. The result follows immediately. B>

The algorithm L-AUTOMATON can be adapted to test whether 7 represents
an anti-factorial set, to generate the trie of the anti-factorial language associated
with a set of words, or even to built the automaton associated with the anti-
factorial language corresponding to any set of words.

Transducers

From the automaton A(M) we can easily construct a (finite-state) transducer
B(M) that realizes the compression algorithm ENCODER, i.e., that computes
the function ~.

The input part of B(M) coincides with A(M) and the output is given as
follows: if a state of A(M) has two outgoing edges, then the output labels of
these edges coincide with their input label; if a state of A(M) has only one
outgoing edge, then the output label of this edge is the empty word.

The transducer B(M) works as follows on an input string w. Consider the
(unique) path in B(M) corresponding to w. The letters of w that correspond
to an edge that is the unique outgoing edge of a given state are erased; other
letters are unchanged.

We can then state the following theorem.

Theorem 4 Algorithm ENCODER is realized by a sequential transducer (gener-
alized sequential machine).

As to concern the algorithm DECODER, remark (see Section 2) that the
function v is not injective and that we need some additional information, for
instance the length of the original uncompressed word, in order to reconstruct
it without ambiguity. We show that DECODER can be realized by the same
transducer as above, by interchanging input and output labels (denote it by
B'(M)), with a supplementary instruction to stop the decoding.

Let @ = Q1 U Q> be a partition of the set of states (), where @Q; is the set
of states having ¢ outpoing edges (i = 1,2). For any ¢ € (), define p(q) =
(¢,91,...,¢r) as the unique path in the tranducer for which ¢; € @ for j < r
and ¢, € Q2.

Given an input word v = bybs...b,,, there exists in B'(M) a unique path
i,q1, .., qm such that ¢,/ _1 € Q2 and the transition from ¢m/_1 to ¢, corre-
spond to the input letter b,,

If ¢ € @2, then the output word corresponding to this path in B/(M) is
the unique word w such that y(w) = v.

If gr € @1, then we can stop the run of the decoding algorithm realized
by B/(M) in any state ¢ € p(gm’), and, for different states, we obtain different
decoding. So, we need a supplementary information (for instance the length of
the original uncompressed word) to perform the decoding. In this sense we can
say that B’'(M) realizes sequentially the algorithm DECODER.

The constructions and the results given above can be generalized also to the
case of rational antidictionaries, or, equivalently, when the set of words “pro-
duced by the source” is a rational language. In these cases it is not, in a strict
sense, necessary to introduce explicitely antidictionaries and all the methods
can be presented in terms of automata and tranducers, as above. Remark how-
ever that the presentation given in Section 2 in terms of antidictionaries is more
general, since it includes the non rational case. Moreover, even in the finite
case, the construction of automata and transducers from a fixed text, given in
the next section, makes an explicit use of the notion of minimal forbidden words
and of antidictionaries.

A Synchronization Property

In the sequel we prove a synchronization property of automata built from fi-
nite antidictionaries, as described above. This property also “characterizes” in
some sense finite antidictionaries. This property is a classical one and it is of
fundamental importance in practical applications.

We start with a definition.

Definition 2 Given a deterministic finite automaton A, we say that a word
W = aj - -a, 15 synchronizing for A if, whenever w represents the label of two

paths (g1, a1,q2) -+ (qn, @n, qnt1) and (q1,a1,q5) (@, an, 4nq1) of length n,
then the two ending states q,41 and q;,, are equal.

If L(A) is factorial, any word that does not belong to L(.A) is synchronizing.
Clearly in this case synchronizing words in L(A) are much more interesting.

Remark also that, since A is deterministic, if w is synchronizing for A4, then
any word w’ = wv that has w as prefix is also synchronizing for A.

Definition 3 A deterministic finite automaton A is local if there exists an in-
teger n such that any words of length n is synchronizing. Automaton A is also
called n-local.

10

Remark that if A is n-local then it is m-local for any m > n.

Given a finite antifactorial language M, let A(M) be the automaton associ-
ated with M as described in Section 4. Recall that it has no sink state, that all
states are terminal, and that L(A(M)) is factorial.

Theorem 5 Let M be a finite antifactorial antidictionary and let n be the
length of the longest word in M. Then automaton A(M) associated to M is
(n —1)-local.

Proof. Let u = a; - - -an—1 be a word of length n—1. We have to prove that u is
synchronizing. Suppose that there exist two paths (q1,a1,92) - (¢n-1, -1, dn)
and (¢}, a1,45) - (¢h_1, an—1,¢,) of length n — 1 labeled by u. We have to
prove that the two ending states ¢, and ¢/, are equal. Recall that states of A
are words, and, more precisely they are the proper prefixes of words in M. A
simple induction on ¢, 1 < i < n shows that ¢; (respectively ¢}) “is” the longest
suffix of the word qua; - - - a; (respectively ¢fay - --a;) that is also a “state”, i.e.,
a proper prefix of a word in M. Hence ¢, (respectively ¢/,) is the longest suffix
of the word qyu (respectively ¢ju) that is also a proper prefix of a word in M.
Since all proper prefixes of words in M have length at most n — 1, both ¢, and
q., have length at most n—1. Since u has length n—1, both they are the longest
suffix of u that is also a proper prefix of a word in M, i.e., they are equal.

The previous theorem admits a “converse” that we state without proof and
that shows that locality characterizes in some sense finite antidictionaries (cf.
Propositions 2.8 and 2.14 of [3]).

Theorem 6 If automaton A is local and L(A) is a factorial language then there
exists a finite antifactorial language M such that L(A) = L(M).

Let M be an antifactorial antidictionary and let n be the length of the
longest word in M. Let also w = wjuvws € L(M) with |u| = n — 1 and let
y(w) = y1y2y3 be the word produced by our encoder of Section 2 with input
M and w. The word y; is the word produced by our encoder after processing
wiu, the word ys 1s the word produced by our encoder after processing v and
the word ys3 is the word produced by our encoder after processing ws.

The proof of next theorem is an an easy consequence of previous definitions
and of the statement of Theorem 5.

Theorem 7 The word ys depends only on the word uv and it does not depend
on the contexts of it, w1 and wo.

The property stated in the theorem has an interesting consequence for the
design of pattern matching algorithms on words compressed by the algorithm
ENcoDER. It implies that, to search the compressed word for a pattern, it is not
necessary to decode the whole word. Just a limited left context of an occurrence

11

of the pattern needs to be processed (cf. [10]). This is not a common feature
of other compression methods. They have to split the input to get the same
advantage, but this may weaken the efficiency of the final compression algorithm.

The same property allows the design of highly parallizable compression al-
gorithms. The idea is that the compression can be performed independently
and in parallel on any block of data. If the text to be compressed is parsed into
blocks of data in such a way that each block overlaps the next block by a length
not smaller than the length of the longest word in the antidictionary, then it is
possible to run the whole compression process.

4 Efficiency

In this section we evaluate the efficiency of our compression algorithm relatively
to a source corresponding to the finite antidictionary M.

Indeed, the antidictionary M defines naturally a source S(M) in the follow-
ing way. Let A(M) be the automaton constructed in the previous section and
that recognizes the language L(M), and let us eliminate the sink states and
edges going to them. Since there is no possibility of misunderstanding, we de-
note the resulting automaton by A(M) again. To avoid trivial cases we suppose
that in this automaton all the states have at least one outgoing edge. Recall
that, since our algorithms work on binary alphabets, all the states have at most
two outgoing edges.

For any state of A(M) with only one outgoing edge we give to this edge prob-
ability 1. For any state of A(M) with two outgoing edge we give to these edges
probability 1/2. This defines a deterministic (or unifilar, cf. [2]) Markov source,
denoted S(M). A binary Markov source with this probability distribution is
called an equilibrated source.

Remark that our compression algorithm is defined exactly for all the words
“emitted” by S(M).

In what follows we suppose that the graph of the source S| i.e., the graph
of automaton A(M) is strongly connected. The results that we prove can be
extended to the general case by using standard techniques of Markov Chains

(cf. [2] and [14]).

Recall (cf. Theorem 6.4.2 of [2]) that the entropy H(S) of a deterministic
markov source S is

H(S) = =X}, _1piig loga(vi5),

where (7; ;) is the stochastic matrix of S and (u1,---, us) is the stationary
distribution of S.

We first start with two preliminary lemmas.

12

Lemma 1 The entropy of an equilibrated source S is given by H(S) = Xiep s
where D s the set of all states that have two outgoing edges.

Proof. By definition
H(S) = _EZj:Wi’Yi,j logs (i j)-

If 7 is a state with only one outgoing edge, by definition this edge must have
probability 1. Then X;u;7; ; logy(vi ;) reduces to p; log,(1), that is equal to 0.
Hence

H(S) = =Xiep X pivij logs(vi j)-

Since from each ¢ € D there are exactly two outgoing edges having each
probability 1/2, one has

H(S) = —Xiep2pi(1/2) logy(1/2) = Siep pd

as stated. B>

Lemma 2 Let w = ay---am be a word in L(M) and let q1 - qmy1 be the
sequence of states in the path determined by w in A(M) starting from the initial
state. The length of y(w) is equal to the number of states q;, 1 =1,...,m, that
belong to D, where D is the set of all states that have two outgoing edges.

Proof. The statement is straightforward from the description of the compres-
sion algorithm and the implementation of the antidictionary with automaton

A(M). B

Next lemmareports a well known “large deviation” result (cf. Theorem 1.4.3

of [12]).

Let q= ¢1, - gm be the sequence of m states of a path of A(M) and let
L., i(q) be the frequency of state ¢; in this sequence, i.e., Ly, ;(q) = m;/m,
where m; is the number of occurrences of ¢; in the sequences q. Let also

Xm(€) ={ a | q has m states and maz; |Lyi(q) — pi| > €},

where q represents a sequence of m states of a path in A(M).

In other words, X, (€) is the set of all sequences of states representing path
in A(M) that “deviate” at least of € in at least one state ¢; from the theoretical
frequency ;.

Lemma 3 For any ¢ > 0, the set X, (€) satisfies the equality

lim%logzPr(Xm(e)) = —c(e),

where c(€) is a positive constant depending on ¢.

13

We now state and prove the main theorem of this section. We prove that
for any € the probability that the compression rate 7(v) = |y(v)|/|v| of a string
of length n is greater than H(S(M)) + €, goes exponentially to zero. Hence, as
a corollary, almost surely the compression rate of an infinite sequence emitted
by S(M) reaches the entropy H(S(M)), that is the best possible result.

Let K, (€) be the set of words w of length m such that the compression rate

T(v) = |y(v)|/|v] is greater than H(S(M)) + e.

Theorem 8 For any € > 0 there exist a real number r(e
integer m(e€) such that for any m > m(e), Pr(Kn(e)) <

),

0<r(e) <1, and an
)"

(e

Proof. Let w be a word of length m in the language L(M) and let g1, - -, gm41
be the sequence of states in the path determined by w in A(M) starting from
the initial state. Let q= (¢1,-- -, ¢m) be the sequence of the first m states. We
know, by Lemma 2, that the length of y(w) is equal to the number of states ¢;,
t = 1---m, in q that belong to D, where D is the set of all states having two
outgoing edges.

If w belog to Ky, (€), i.e., if the compression rate (v) = |y(v)|/|v] is greater
than H(S(M)) + €, then there must exists an index j such that L., ;(q) >
w; + €/d, where d is the cardinality of the set D. In fact, if for all j, L, ;(q) <
i; + €/|D| then, by definitions and by Lemma 1,

7(v) = Xjenlm,j(q) < Tjeppj + €= H(S(M)) + ¢,
a contradiction. Therefore the sequence of states q belongs to X, (¢/d).
Hence Pr(Kpy,(€)) < Pr(Xm(e/d)).

By Lemma 3, there exists an integer m(e) such that for any m > Tm(e) one

has
logy Pr(Xm(5)) < ~5e(5)
)=

Then Pr(K,,(e)) < 2-0/2)ele/dm If we set r(e 2= (1/2)e(e/d) the statement
of the theorem follows. B>

Corollary 1 The compression rate T(x) of an infinite sequence x emitted by
the source S(M) reaches the entropy H(S(M)) almost surely.

5 How to build Antidictionaries

In practical applications the antidictionary is not a prior: given but it must be
derived either from the text to be compressed or from a family of texts belonging
to the same source to which the text to be compressed is supposed to belong.

There exist several criteria to build efficient antidictionaries that depend on
different aspects or parameters that one wishes to optimize in the compression
process. Each criterium gives rise to different algorithms and implementations.

14

We present a simple construction to build finite antidictionaries. It is the
base on which several variations are developed. It can be used to build an-
tidictionaries for fixed sources. In this case our scheme can be considered as
a compressor generator (compressor compiler). In the design of a compressor
generator, or compressor compiler; statistic considerations play an important
role, as discussed in Section 6 (cf. [11]).

Algorithm BuiLD-AD below builds the set of minimal forbidden words of
length & (k > 0) of the word w. Tt takes as input an automaton accepting the
words that have the same factors of length & (or less) than w, i.e., accepting
the language

L={xe{0,1}"|(u € F(x) and |u| < k) = u € F(w)}.

The preprocessing of the automaton is done by the algorithm BuirLp-Fact
whose central operation is described by the function NEXT. The automaton
is represented by both a trie and its failure function f. If p 1s a node of the
trie associated with the word av, v € {0,1}* and a € {0,1}, f(p) is the node
associated with v. This is a standard technique used in the construction of suffix
trees (see [7] for example). Tt is used here in algorithm BUILD-AD (line 4) to
test the minimality of forbidden words according to the equality 2.

BuiLp-Fact (word w € {0, 1}*, integer k£ > 0)
i « new state; @ «+ {i};
level (i) + 0;
p i
while not end of string w
a + next letter of w;
p < NEXT(p, a, k);
return trie (@, ¢, Q,d), function f;

=~ O Ot i W N

NEXT (state p, letter a, integer k > 0)
1. if d(p, a) defined

2 return d(p, a);

3. elseif level(p) = k

4 return NEXT(f(p), a, k);

5. else

6. q + new state; @ + QU {q};
7 level(q) « level(p) + 1;

8 §(p,a) < g;

9 if (p=1) f(q) « i; else f(q) + NEXT(f(p), a, k);
10. return ¢;

15

BuiLp-AD (trie (@, , @,), function f, integer k > 0)

1. T« 0; 6 + d;

2. for each p € Q, 0 < level(p) < k, in width-first order

3 for a < 0 then 1

4. if 0(p, a) undefined and 6(f(p), a) defined

5. q < new state; T+ T U {q};

6 '(p,a) « ¢

7. @« @\ {states of @ from which no ¢’-path leads to T'}
8. return trie (QUT,{,T,6");

The above construction gives rise to a static compression scheme in which
we need to read twice the text: the first time to construct the antidictionary M
and the second time to encode the text.

Informally, the encoder sends a message z of the form (x,y,o(n)) to the
decoder, where x is a description of the antidictionary M, y 1s the text coded
according to M, as described in Section 2, and o (n) is the usual binary code of
the length n of the text. The decoder first reconstructs from « the antidictionary
and then decodes y according to the algorithm in Section 2. We can choose the
length & of the longest minimal forbidden word in the antidictionary such that,
by coding the trie associated to M with standard techniques, one has that
|#] = o(n). Since the compression rate is the size |z| of z divided by the length
n of the text, we have that |z|/n = |y|/n + o(n). Assuming that for n and k
large enough the source S(M), as in Section 4, approximates the source of the
text, then, by the results of Section 4, the compression rate is “optimal”.

Example 1

Let w= ajas--- be a binary infinite word that is periodic (i.e., there exists
integer P > 0 such that for any index ¢ the letter a; is equal to the letter a;4p),
and let w, be the prefix of w of length n.

We want to compress the word w,, following our simple scheme informally
described above. Since w has period P, then for any ¢ > P, letter a; is uniquely
determined by the P previous letters. Therefore, we define the antidictionary

M ={ua|ue F(w),|ul=P—1, and ua & F(w)},

where F(w) is the language of all factors of w. Then it is easy to prove that
for any prefix w, of w, the length of the text y coded using M is constantly
equal to P. Hence the compression rate for wy, is |z|/n = O(c(n)) = O(log,(n)),
which means that the method can achieve an exponential compression.

It is possible to generalize the previous example to any binary infinite word,
W= ajas - - -, that is ultimately periodic (i.e., there exist integers M > 0, P > 0
such that for any index ¢ > M the letter a; is equal to the letter a;1p).

16

Example 2

This example is a bit more complex, and the compression rate is no more expo-
nential in the size of the text.

We start with the classical recursive definition of finite Fibonacci words f,
(cf. [5]). Let f1 =0, foa = 01 and let fr,11 = fpfn—1 for n > 2. In particular we
have fs = 010, f4 = 01001 and f5 = 01001010. The infinite Fibonacci word f 1s
the limit of the sequence of the finite Fibonacci words, i.e., the unique infinite
word that have all the f, as prefixes. It is know that the length |f,]| is the n-th
fibonacci number and, consequently, lim |f,| = ©(¢") where ¢ = 1.618---is
the golden ratio.

Let L(f) and L(f,) be the factorial languages composed respectively by all
factors of the Fibonacci infinite word f and of the finite Fibonacci word f,,. It is
known (cf. [16]) that any factor of f of length 4m contains as factors all factors
of length m of the whole word f. In particular L(f,)Nn{0,1}™ = L(f)n{o,1}™
for any m < |f.|/4. Consequently, the minimal forbidden words of f up to
length m are also the minimal forbidden words of f, up to length m for any

If we call g,, to be the prefix of length |f,| — 2 of f,, for n > 2, it is known
(cf. Example 2 of [4]) that all the minimal forbidden words of L(f) are

{1g2i1 | Z Z 1} U {0g2i+10 | Z Z 1},

i.e., they are 11, 000, 10101, 00100100, - - - .

We now compress the word fs, following our simple scheme informally de-
scribed above. We choose as length k of the longest minimal forbidden word
the number k = |f,|. By previous observations

M = ({1g2i1 | i > 1} U {0g2:410 | i > 1}) N {0, 1}F,
and consequently it is not difficult to prove that the size of a standard coding
z of the trie associated to M is x = O(|fa]) = O(¢™) = o(| f2n])-

It is possible to prove that the size of the compressed version y of fs, by
using our algorithm with the antidictionary M is |y| = O(|fa]).

Therefore the global compression rate is O(|fnl/|f2n]) = O((1/¢)™). This
means that the compression ratio converges exponentially to zero as n goes up
to infinity.

6 Improvements and experimental results

In the previous section we presented a static compression scheme in which we
need to read twice the text. Starting from the static scheme, several variations
and improvements can be proposed. These variations are all based on clever
combinations of two elements that can be introduced in our model:

17

a) statistic considerations,

b) dynamic approaches.

These are classical features that are sometimes included in other data compres-
sion methods.

Statistic considerations are used in the construction of antidictionaries. If a
forbidden word is responsible of “erasing” few bits of the text in the compression
algorithm of Section 2 and its “description” as an element of the antidictionary
1s “expensive” then the compression rate improves if it is not included in the
antidictionary. On the contrary, one can introduce in the antidictionary a word
that 1s not forbidden but that occurs very rarely in the text. In this case, the
compression algorithm will produce some “mistakes”. In order to have a lossless
compression, the encoder must take account of such mistakes and must also send
them to the decoder. Typical “mistakes” occur in the case of antidictionaries
built for fixed sources and in the dynamic approach. Even with mistakes, assum-
ing that the mistakes are rare with respect to the longest word (length) of the
antidictionary, our compression scheme preserves the synchronization property
for fixed sources.

In the dynamic approach we construct the antidictionary and we encode the
text at the same time. The antidictionary is constructed (also with statistical
consideration) by taking account of (a part of) the text previously read.

We have realized prototypes of the compression and decompression algo-
rithms. They also implement the dynamic version of the method. They have
been tested on the Calgary Corpus, and the next table reports the size of com-
pressed files. The total size of compressed data is equivalent to most common
compressors such as pkzip.

File compressed size
bib 35535
book1 295966
book?2 214476
geo 79633
news 161004
objl 13094
obj2 111295
paperl 21058
paper2 32282
pic 70240
progc 15736
progl 20092
progp 13988
trans 22695
Total 1,107094

18

7 Conclusion and Generalizations

We have described DCA, a text compression method that uses some “negative”
informations about the text, which are described in terms of antidictionaries.

The advantages of the scheme are:

e fast at decompressing data,

e it is similar to a compressor generator (compressor compiler) for fixed
sources,

e fast at compressing data for fixed sources,

e it has a synchronization property in the case of finite antidictionaries that
leads to parallel compression and to search engines on compressed data.

We are considering several generalizations:

e compressor scheme and implementation of antidictionaries on more general
alphabets,

e the use of lossy compression especially to deal with images,

e the combination of DCA with other compression scheme. For instance
using both dictionaries and antidictionaries like positive and negative sets
of examples as in Learning Theory,

e the design of chips dedicated to fixed sources.

Acknowledgements We thanks F.M. Dekking for useful discussions.

References

[1] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibli-
ographic search. Comm. ACM 18:6 (1975) 333-340.

[2] R. Ash. Information Theory. Tracts in mathematics, Interscience Publish-

ers, J. Wiley & Sons, 1985.
[3] M. P. Béal. Codage Symbolique. Masson, 1993.

[4] M.-P. Béal, F. Mignosi, and A. Restivo. Minimal Forbidden Words and
Symbolic Dynamics. in (STACS 96, C. Puech and R. Reischuk, eds., LNCS
1046, Springer, 1996) 555-566.

[5] J. Berstel. Fibonacci Words — a Survey. in (The Book of L, G. Rozenberg,
A. Salomaa, eds., Springer Verlag, 1986).

19

[6]

[7]

T. C. Bell, J. G. Cleary, I. H. Witten. Text Compression. Prentice Hall,
1990.

M. Crochemore, C. Hancart. Automata for matching patterns. in (Hand-
book of Formal Languages, G. Rozenberg, A. Salomaa, eds.”, Springer-
Verlag”, 1997, Volume 2, Linear Modeling: Background and Application)
Chapter 9, 399-462.

M. Crochemore, F. Mignosi and A. Restivo. Minimal Forbidden Words and
Factor Automata. Accepted at the conference MFCS’98.

M. Crochemore, F. Mignosi and A. Restivo. Automata and Forbidden
Words. Technical Report, IGM 98-5, Institut Gaspard-Monge, 1998. Sub-

mitted to Information Processing Letters.

M. Crochemore, F. Mignosi, A. Restivo and S. Salemi. Search in Com-
pressed Data. in preparation.

M. Crochemore, F. Mignosi, A. Restivo and S. Salemi. A Compressor
Compiler. in preparation.

R. S. Ellis. Entropy, Large Deviations, and Statistical Mechanics. Springer
Verlag, 1985.

J. Gailly. Frequently Asked Questions in data compression, Internet. Avail-
able at http://www.landfield.com/faqs/compression-faq/parti/preamble .html Or

ftp://rtfm.mit.edu/pub/usenet/news.answers/compression-faq/.

J. G. Kemeny and J. L. Snell. Finite Markov Chains. Van Nostrand
Reinhold, 1960.

R. Krichevsky. Universal Compression and Retrieval. Kluver Academic

Publishers, 1994.

M. Morse and G. Hedlund. Symbolic Dynamics II: Sturmian trajectoires.
Amer. J. Math. 62, 1-40, 1940.

M. Nelson and J. Gailly. The Data Compression Book. 2nd edition. M&'T
Books, New York, NY 1996.

C. Shannon. Prediction and entropy of printed english. Bell System Tech-
necal J., 50-64, January, 1951.

J. A. Storer. Data Compression: Methods and Theory. Computer Science
Press, Rockville, MD, 1988.

I. H. Witten, A. Moffat and T. C. Bell. Managing Gigabytes. Van Nostrand
Reinhold, 1994.

20

