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Minimal Forbidden Words and Factor Automata

M. CROCHEMORE®'! F. Mignosi?, and A. RESTIVO?
b) b)

! Institut Gaspard-Monge mac@univ-mlv.fr
2 Universita di Palermo [mignosi,restivo]l@altair.math.unipa.it

Abstract. Let L(M) be the (factorial) language avoiding a given anti-
factorial language M. We design an automaton accepting L(M) and built
from the language M. The construction is effective if M is finite.

If M is the set of minimal forbidden words of a single word v, the automa-
ton turns out to be the factor automaton of v (the minimal automaton
accepting the set of factors of v).

We also give an algorithm that builds the trie of M from the factor
automaton of a single word. It yields a non-trivial upper bound on the
number of minimal forbidden words of a word.

Keywords: factorial language, anti-factorial language, factor code, fac-
tor automaton, forbidden word, avoiding a word, failure function.

1 Introduction

Let L C A* be a factorial language, i.e.; a language containing all factors of its
words. A word w € A* is called a minimal forbidden word for L if w ¢ L and all
proper factors of w belong to L. We denote by M F'(L) the language of minimal
forbidden words for L.

The study of combinatorial properties of M F (L) helps investigate the struc-
ture of the language L or of the system it describes. For instance, locally testable
factorial languages (cf [8]) are characterized by the fact that the corresponding
languages of minimal forbidden words are finite. In the context of Symbolic
Dynamics they correspond to systems of finite type.

Another example 1s given by a language L that is the set of factors of an
infinite word: in this case, as shown in [2], the elements of M F(L) are closely
related to the bispecial factors (cf. [6], [7] and [3]) of the infinite word.

A measure of complexity of the language L is introduced in [2] based on the
function Fr, that counts, for any n, the number of words of length n in M F(L).
Authors prove that the growth of Fr(n) as well as the topological entropy of
MF(L) are topological invariants of the dynamical system defined by L. This
result provides a usefull tool to show that some systems are not isomorphic,
which comes in addition to other notion like the ordinary notion of entropy and
the zeta function, for example.

Finally, [5] considers properties of languages defined by finite forbidden sets
of words. Authors define the Mobius function for these languages.
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In this paper we focus on the transformations between L and M F(L). We
first design an automaton accepting L(M) and that is built from the language
M. When M is a finite set the transformation is effective. Moreover, if M is given
by 1ts digital tree, that is, its tree-like deterministic automaton, the algorithm is
very similar to the algorithm of Aho and Corasick that builds a pattern-matching
machine for a finite set of words [1].

In a second part we consider the particular situation of a language that is the
set of factors of a single word v. The construction of its factor automaton, the
minimal deterministic automaton accepting the factors of v (see [4]) is known to
be rather intricate. It is remarkable that the preceding transformation yields ex-
actly the factor automaton of v when the input if the set M of minimal forbidden
words of v. We also give an algorithm that realizes the converse transformation,
building the trie of M from the factor automaton of v. A corollary of the algo-
rithm is a non-trivial upper bound on the number of minimal forbidden words
of a word.

The complexities of algorithms described in this paper are all linear in the
size of their input or output. Therefore, the design of possible faster algorithms
relies on different representations of objects, which is not the aim of the paper.

2 Avoiding an anti-factorial language

Let A be a finite alphabet and A* be the set of finite words drawn from the
alphabet A, the empty word ¢ included. Let L C A* be a factorial language,
1.e. a language satisfying: Yu,v € A* wv € L = u,v € L. The complement
language L = A*\ L is a (two-sided) ideal of A*. Denote by MF (L) the base
of this ideal, we have L = A*MF (L) A*.

The set MF (L) is called the set of minimal forbidden words for L. A word
v € A* is forbidden for the factorial language L if v ¢ L, which is equivalent to
say that v occurs in no word of L. In addition, v is minimal if it has no proper
factor that 1s forbidden.

One can note that the set MF (L) uniquely characterizes L, just because

L= A"\ A"MF(L)A". (1)

The following simple observation provides a basic characterization of minimal

forbidden words.
Remark 1 A wordv = ajas - - - ay, belongs to MF (L) iff the two conditions hold:

— v is forbidden, (i.e., v & L),
— both ajas---an_1 € L and azaz---a, € L (the prefir and the suffiz of v of
length n — 1 belong to L ).

The remark translates into the equality:
MF(L)=ALNLAN (A" \ L). (2)

As a consequence of both equalities (1) and (2) we get the following proposition.



Proposition 1 For a factorial language L, languages L and MF (L) are simul-
taneously rational, that is, L € Rat(A*) iff MF(L) € Rat(A™).

The set MF (L) is an anti-factorial language or a factor code, which means
that it satisfies: Yu,v € MF (L) u # v = wu is not a factor of v, property that
comes from the minimality of words of MF(L).

We introduce a few more definitions.

Definition 1 A word v € A* avoids the set M, M C A*, if no word of M is a
factor of v, (i.e., ifv g A*MA*). A language L avoids M if every words of L
avoid M.

From the definition of MF'(L), it readily comes that L is the largest (according
to the subset relation) factorial language that avoids MF(L). This shows that for
any anti-factorial language M there exists a unique factorial language L(M) for
which M = MF(L). The next remark summarizes the relation between factorial
and anti-factorial languages.

Remark 2 There is a one-to-one correspondence between factorial and anti-
factorial languages. If L and M are factorial and anti-factorial languages re-

spectively, both equalities hold: MF(L(M)) = M and L(MF (L)) = L.

We also refer to the next definition that is to be considered in the context of
dynamical systems (see [9] for example).

Definition 2 The factorial language L is said to be of finite type when MF (L)
s finute.

Finally, with an anti-factorial finite language M we associate the finite au-
tomaton A(M) as described below. The automaton is deterministic and com-
plete, and, as shown at the end of the section by Theorem 3, the automaton
accepts the language L(M).

The automaton A(M) is the tuple (@, A,4, T, F) where

— the set @ of states is {w | w is a prefix of a word in M},
— A is the current alphabet,

— the initial state ¢ is the empty word e,

— the set T of terminal states is Q \ M.

States of A(M) that are words of M are sink states. The set F' of transitions is
partitioned into the three (pairwise disjoint) sets Fy, Fy, and F3 defined by:

— F1 ={(u,a,ua) | ua € Q,a € A} (forward edges or tree edges),

- F = {(u,a,v) | v € Q\ M,a € Ajua ¢ Q,v longest suffix of ua in Q}
(backward edges),

— F3={(u,a,u) |u€ M,a € A} (loops on sink states).

The transition function defined by the set I of arcs of A(M) is noted ¢.

Remark 3 One can easily prove from definitions that



1. if ¢ € Q\ (M U{e}), all transitions arriving on state q are labeled by the
same letter a € A,

2. from any state q € ) we can reach a sink state, i.e., q can be extended to a
word of M .

Definition 3 For any v € A¥, q, denotes the state §(e,v), target of the unique
path in A(M) starting at the initial state and labeled by v.

Since A(M) is a complete automaton, ¢, is always defined. In the automaton
A(M) states are words, but to avoid misunderstandings we sometimes write “the
word corresponding to ¢,” instead of just “the word ¢,”.

Remark 4 Note that if v is a state of A(M) we have ¢, = v.

We are now ready to state the next lemma (which proof is by induction on
v) that is used in the proof of Theorem 3, the main result of the section.

Lemma 2 Let M be an anti-factorial language and consider A(M). Let v € A*
be such that, for any proper prefiv u of v, qu is not a sink state (q, ¢ M ). Then,

1. the word q, 1s a suffir of v,
2. qy is the longest suffiz of v that is also a state of A(M)

(orVq € Q q suffir of v = ¢ suffiz of ¢, ).

Proof. By induction on [v]. B
Denoting by Lang(A) the language accepted by an automaton A, we get the
main theorem of the section.

Theorem 3 For any anti-factorial language M, Lang(A(M)) = L(M).

Proof. We first prove L(M) C Lang(A(M)). We have to show that if v is a word
that avoids M then v € Lang(A(M)). Assume ab absurdo that v ¢ Lang(A(M));
therefore ¢, 1s a sink state. Let u be the shortest prefix of v for which ¢, is a
sink state (note that ¢, = ¢,). By lemma 2 statement 1, ¢, is a suffix of u, but
¢y 18 by definition an element of M, and so v does not avoid M, a contradiction.

We then prove Lang(A(M)) C L(M). Let v € Lang(A(M)). Let us suppose
ab absurdo that v does not avoid M, i.e., v = uwz for some w € M,u,z € A*.
We choose uw as the shortest prefix of v that belongs to A*M. Since w € M
it is by definition a state of A(M); since w is a state that is a suffix of uw, by
Lemma 2 statement 2, w 1s a suffix of ¢uq. But ¢uq, which is by definition a
state of A(M), is a prefix of an element w’ of M. Since w is a suffix of a prefix
of w', w is a factor of w’, a contradiction because M is anti-factorial. B>

The above definition of A(M) turns into the algorithm below, called L-
AUTOMATON, that builds the automaton from a finite anti-factorial set of words.
The input 1s the trie 7 that represents M. It is a tree-like automaton accepting
the set M and, as such, it is noted (@, A, i, T, d"). The procedure can be adapted
to test whether 7 represents an anti-factorial set, or even to generate the trie of
the anti-factorial language associated with a set of words.



In view of Equality 1, the design of the algorithm remains to adapt the
construction of a pattern matching machine (see [1] or [4]) The algorithm uses a
function f called a failure function and defined on states of 7 as follows. States
of the trie T are identified with the prefixes of words in M. For a state au (a € A,
u € A*), flau) is (i, u), quantity that may happen to be u itself. Note that
f(%) is undefined, which justifies a specific treatment of the initial state in the
algorithm.

L-AuTOMATON (trie 7 = (Q, 4,1,T,48"))
1. foreacha € A

2 if (4, a) defined
3 set 6(1,a) = &'(7,a);
4 set f(6(1,a)) = 1
5. else
6. set 8(1,a) = 1
7. for each state p € @ \ {i} in width-first search and each a € A
8 if 8'(p, a) defined
9. set 8(p,a) = &' (p, a);
10 et £(6(pa)) = (S (), a);
11. else ifpgT
12. set 8(p,a) =6(f(p), a);
13. else
14. set 8(p,a) = p;

15. return (@, A,1,Q\ T,6);

av

Fig. 1. Trie of the factor code {aa, bbaa, bbb} on the alphabet {a,b}. Squares represent
terminal states.

Ezample. Figure 1 displays the trie that accepts M = {aa,bbaa, bbb}. It is an
anti-factorial language. The automaton produced from the trie by algorithm L-
AUTOMATON is shown in Figure 2. It accepts the prefixes of (abUb)(ab)*ba that
are all the words avoiding M.



Fig.2. Automaton accepting the words that avoid the set {aa,bbaa,bbb}. Squares
represent non-terminal states (sink states).

Theorem 4 Let T be the trie of an anti-factorial language M. Algorithm L-
AUTOMATON builds a complete deterministic automaton accepting L(M).

Proof. The automaton produced by the algorithm has the same set of states as
the input trie. It is clear that the automaton i1s deterministic and complete.
Let u € AT and p = d(¢,u). A simple induction on |u| shows that the word
corresponding to f(p) is the longest proper suffix of u that is a prefix of some
word in M. This notion comes up in the definition of the set of transitions Fs
in the automaton A(M). Therefore, the rest of the proof just remains to check
that instructions implement the definition of A(M). >

Theorem 5 Algorithm L-AUTOMATON runs in time O(|Q| x |A]) on input T =
(Q, A, 4, T, ¢ if transition functions are implemented by transition matrices.

3 Factor automaton of a single word

In this section we specialize the previous results to the language of factors of
a single word. It is proved below that the contruction of Section 2 yields the
factor automaton (minimal dterministic automaton accepting the factors) of the
word (see Theorem 7). The minimality of the automaton seems to be exceptional
because, for example, the same construction applied to the set {aa, ab} does not
provide a minimal automaton.

The reverse construction that produces the trie of minimal forbidden words
from the factor automaton is described in the next section.

We consider a fixed word v € A* and denote by F(v) be the language of
factors of v.

Proposition 6 The language F(v) is of finite type.

Proof. Indeed, factors of v, of lengths less than |v|+ 1, avoid all words of length
exactly |v] + 1. Therefore, every minimal forbidden word of F(v) has length at
most |v| + 1. B



The result of the previous proposition is made more precise in the next sec-
tion, but an immediate consequence of it and of the definition of the automaton
A(M) for an anti-factorial language M, the automaton A(MF (F(v))) has a fi-
nite number of states. The next statement gives a complete characterization of
the automaton as the factor automaton of v.

Theorem 7 For any v € A*, the automaton obtained from A(MF (F(v))) by
removing its sink states is the minimal deterministic finite automaton accepting
the language F(v) of factors of v.

Proof. The automaton A(MF (F(v))) is already a deterministic finite automaton
that accepts the language F(v) by Theorem 3. We only have to prove that it is
minimal after removing the sink states.

Suppose ab absurdo that there exist two equivalent non-sink states p, ¢ in Q.
By the standard equivalence relation of undistinginshability and by construction
p,q € F(v). Hence, v = zpy and v = 2'qy’ and we can choose x and 2’ of minimal
length. We consider two cases:

(i) |=zpl # |='ql,

(ii) |ap| = |2'q|.

Case (i). We can suppose for example that |xp| < |¢'q| (the case |xp| > |2/q]
is handled symmetrically). Then, zpy € F(v) implies that §(p, y) is not a sink
state, hence, by the equivalence (¢, y) is not a sink state, that is, qy € F(v) by
Remark 4. Therefore, v = 2”7 qyz where |2”| > |2’| by the choice of 2’ (of minimal
length). Hence, |v| > |2'| + |¢| + |y| + |2] > |#p| + |y| = |v], a contradiction.
Case (ii). The equality |zp| = |2’q| implies either that p is a suffix of ¢ or the
converse. Let us suppose for example that p = s¢ for some word s # €. By
Remark 3 statement 2, there exists w = pz that belongs to MF(F(v)). By the
equivalence, ¢z 1s also a sink state and, again by the equivalence, for no proper
prefix u of ¢z, ¢, is a sink state. Hence, by Lemma 2.1, ¢,. is an element of
MF(F(v)), that is, a suffix of ¢z. Since p = sq, s # €, q4; is a proper suffix of pz
against the anti-factorial property of MF(F(v)). A contradiction again.

After cases (i) and (ii) it appears that there cannot exist two different non-
sink states p, ¢ in () that are equivalent. Therefore the automaton without sink
states 1s minimal, which ends the proof. B>

4 Minimal forbidden words of a word

We end the article by an algorithm that builds the trie accepting the language
MF(F(v)) of minimal words avoided by v. This is an implementation of the
inverse of the transformation described in Section 2. Its design follows Equality 2.
A corollary of the transformation gives a bound on the number of minimal
forbidden words of a single word, which improves on the bound coming readily
from Proposition 6.



MF-TRIE (factor automaton A = (@, A, ¢, T, ) and its suffix function s)
1. for each state p € @ in width-first search from ¢ and each a € A

2 if 8(p, a) undefined and (p = ¢ or §(s(p), a) defined

3. set 8'(p, a) = new sink;

4. else if 6(p,a) = g and g not already treated

5 set 8'(p,a) = g;

6. return (@, A1, {sinks},d');

The input of algorithm MF-TRIE is the factor automaton of word v. It in-
cludes the failure function defined on the states of the automaton and called s.
This function is a by-product of efficient algorithms that build the factor au-
tomaton (see [4]). It is defined as follows. Let v € A* and p = (i, u). Then,
s(p) = 6(i,u') where u’ is the longest suffix of u for which (i, u) # §(i,u’). It
can be shown that the definition of s(p) does not depend on the choice of u.

Fig. 3. Factor automaton of abbab; all states are terminal.
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Fig. 4. Trie of minimal forbidden words of F(abbab) on the alphabet {a, b, c}. Squares
represent terminal states.

Ezample Consider the word v = abbab on the alphabet {a b, c}. Its factor
automaton is displayed in Figure 3. The failure function s defined on states



has values: s(1) = s(5) = 0, s(2) = s(3) = 5, s(4) = 1, s(6) = 2. Algorithm
MF-TRIE produces the trie of Figure 4 that represents the set of five words
{aa, aba, babb, bbb, c}.

Theorem 8 Let A be the factor automaton of a word v € A*. (It accepts the
language F(v).) Algorithm MF-TRIE builds the tree-like deterministic automaton
accepting MF (F(v)) the set of minimal forbidden words of F(v).

Corollary 9 A word v € A* has no more than 2(|v|—2)(|Av|—1)+|A| minimal
Jorbidden words if |v| > 3, where A, is the set of letters occurring inv. The bound
becomes |A| + 1 if |v| < 3.

Proof. The number of words in MF(F(v)) is the number of sink states created
during the execution of algorithm MF-TRIE. These states have exactly one in-
going arc originated at a state of the factor automaton A of v. So, we have to
count these arcs.

From the initial state of A there is exactly |A| — |Ay| such arcs. From the
(unique) state of A without outgoing arc, there are at most |A,| such arcs. From
other states there are at most |A,| — 1 such arcs.

For |v| > 3, it is known that .4 has at most 2|v| — 2 states (see [4]). Therefore,
IMP(F()] < (Al ~ [Aul) 1A |+ @0 = 2) (| A~ 1) = 2(Ju] —2) (1A, | — 1)+ |A]

When |v| < 3, it can be checked directly that |MF(F(v))| < |A| + 1. B

Theorem 10 Algorithm MF-TRIE runs in time O(|v| x |A|) on input word v if
transition functions are implemented by transition matrices.
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