Maxime Crochemore

Costas S Iliopoulos

Hiafeng Yu

Algorithms for Computing Evolutionary Chains in Molecular and Musical Sequences

Keywords: String algorithms, approximate string matching, dynamic programming, molecular sequences, music analysis

The problem of nding evolutionary chains is de ned as follows: given a string t (\the text") and a pattern p (the \motif"), nd whether there exists a sequence u1 = p; u2 ; : : : ; u l occurring in the text t such that ui+1 occurs to the right of ui in t and ui and ui+1 are \similar" (i.e. the di er by a certain number of symbols). Here we consider several variants of the evolutionary chain problem and we present e cient algorithms for solving them.

Introduction

This paper is focused on a set of string pattern-matching problems which arise in music analysis, musical information retrieval and molecular sequence analysis. A musical score can be viewed as a string: at a very rudimentary level, the alphabet could simply be the set of notes in the chromatic or diatonic notation, or at a more complex level, we could use the GPIR representation of Cambouropoulos 3,[START_REF] Cambouropoulos | A formal theory for the discovery of local boundaries in a melodic surface[END_REF] as the basis of an alphabet. Approximate repetitions in musical entities play a crucial role in nding musical similarities amongst di erent musical entities, as well as playing a part in de ning the \characteristic signature" (see 7]). Such algorithms can be used for melody identi cation and music retrieval e.g. audio applications on Internet systems.

Furthermore, e cient algorithms for computing the approximate repetitions are also directly applicable to molecular biology (see [START_REF] Fischetti | Identifying periodic occurences of a template with applications to protein structure[END_REF][START_REF] Karlin | E cients algorithms for molecular sequences analysis[END_REF][START_REF] Landau | An algorithm for approximate tandem repeats[END_REF] and in particular in DNA sequencing by hybridization [START_REF] Pevzner | Gray Code Masks for DNA Sequencing by Hybridization[END_REF]), reconstruction of DNA sequences from known DNA fragments (see [START_REF] Schmidt | All shortest paths in weighted grid graphs and its application to nding all approximate repeats in strings[END_REF][START_REF] Skiena | Reconstructing strings from substrings[END_REF]), in human organ and bone marrow transplantation as well as the determination of evolutionary trees among distinct species [START_REF] Schmidt | All shortest paths in weighted grid graphs and its application to nding all approximate repeats in strings[END_REF]).

Exact repetitions have been studied extensively. The repetitions can be either concatenated with the original substring or they may overlap or they may not. Algorithms for nding non-overlapping repetitions in a given string can be found in [START_REF] Apostolico | The myriad virtues of the Su x Trees[END_REF][START_REF] Crochemore | An optimal algorithm for computing the repetitions in a word[END_REF][START_REF] Iliopoulos | A linear algorithm for computing the squares of a Fibonacci string[END_REF][START_REF] Main | An O(n log n) algorithm for nding all repetitions in a string[END_REF][START_REF] Landau | An algorithm for approximate tandem repeats[END_REF][START_REF] Myers | An algorithm for locating non-overlapping regions of maximum alignment score[END_REF] and algorithms for computing overlapping repetitions can be found in 2, [START_REF] Iliopoulos | Fast local covers[END_REF][START_REF] Iliopoulos | Covering a string[END_REF][START_REF] Moore | Computing the covers of a string in linear time[END_REF]. A natural extension of the repetitions problem is to allow the presence of errors; that is, the identi cation of substrings that are duplicated to within a certain tolerance k (usually edit distance or Hamming distance). Moreover, the repeated substring may be subject to other constraints: it may be required to be of at least a certain length, and certain positions in it may be required to be invariant.

The problem of nding evolutionary chains is de ned as follows: given a string t (\the text") and a pattern p (the \motif"), nd whether there exists a sequence u 1 = p; u 2 ; : : : ; u l occurring in the text t such that u i+1 occurs to the right of u i in t and u i and u i+1 are \similar" (i.e. the di er by a certain number of symbols).

a) Original d) replacement (= deletion + insertion) c) deletion b) insertion [] [] Figure 1
Local approximations in search pattern, trace gradual change (`evolution') in a motif.

See Music Example in Appendix

There is no speci c algorithm for the evolutionary chain problem in the literature. Landau and Vishkin 16,[START_REF] Landau | Fast string matching with k di erences[END_REF] gave an algorithm (LV Algorithm) for the string searching with k-di erences problem: given a text of length n, and an integer k and a pattern of length m, nd all occurrences of the pattern in the text with at most k-di erences; the LV algorithm requires O(n(log m + log j j)) time, where is the alphabet used. A naive way to solve this problem is to repeatedly apply the LV algorithm to the text using u i as the pattern, for i = 1; 2; :::, giving a worst-case O(n 2 (log m+log j j)) running time. Here we present a straightforward O(nm) algorithm for computing non-overlapping evolutionary chains with k-di erences. We also present an O(n(log m+log j j)) algorithm for the same problem that makes use of su x trees; this algorithm require O(kn) time for xed alphabets. Furthermore we present O(n 2) algorithms for several variants of the computing overlapping evolutionary chains with k di erences, where n is the size of the input string.

Here we study the computation of the longest evolutionary chain as well as the chain with least number of errors in total. Several variants to the evolutionary chain problem are still open. The choice of suitable similarity criteria in music and biology is still under investigation. The use of penalty tables may be more suitable than the k-di erences criterion in certain applications. Additionally, further investigation whether methods such as [START_REF] Galil | An improved algorithm for approximate string matching[END_REF][START_REF] Landau | Fast string matching with k di erences[END_REF] can be adapted to solve the above problems is needed.

The paper is organised as follows. In the next section we present some basic de nitions for strings and background notions for pattern-matching with k-di erences. In Section 3 we describe the algorithms for non-overlapping evolutionary chains. In Section 4 we describe the algorithms for several variants of overlapping evolutionary chains. Finally in Section 6 we present our conclusions and open problems.

2 Background and basic string de nitions A string is a sequence of zero or more symbols from an alphabet ; the string with zero symbols is denoted by . The set of all strings over the alphabet is denoted by . A string x of length n is represented by x 1 : : : x n , where x i 2 for 1 i n. A string w is a substring of x if x = uwv for u; v 2 ; we equivalently say that the string w occurs at position juj + 1 of the string x. The position jwj + 1 is said to be the starting position of u in x and the position jwj + juj the end position of u in x. A string w is a pre x of x if x = wu for u 2 . Similarly, w is a su x of x if x = uw for u 2 .

The string xy is a concatenation of two strings x and y. The concatenations of k copies of x is denoted by x k . For two strings x = x 1 : : : x n and y = y 1 : : : y m such that x n i+1 : : : x n = y 1 : : : y i for some i 1, the string x 1 : : : x n y i+1 : : : y m is a superposition of x and y. We say that x and y overlap Let x be a string of length n. A pre x x 1 : : : x p , 1 p < n, of x is a period of x if x i = x i+p for all 1 i n p. The period of a string x is the shortest period of x. A string b is a border of x if b is a pre x and a su x of x.

Consider the sequences 1 2 ::: l and 1 2 ::: l with i ; i 2 f g , i 2 f1::lg. If i 6 = i , then we say that i di ers to i . We distinguish among the following three types of di erences:

1. A symbol of the rst sequence corresponds to a di erent symbol of the second one, then we say that we have a mismatch between the two characters, i.e., i 6 = and i 6 = .

2. A symbol of the rst sequence corresponds to \no symbol" of the second sequence, that is i 6 = and i = . This type of di erence is called a deletion.

3. A symbol of the second sequence corresponds to \no symbol" of the rst sequence, that is i = and i 6 = . This type of di erence is called an insertion.

As an example, let the text be abcdefghi and the pattern be bxdyegh (see Figure 2). In positions 1 and 3 of t and p we have no di erences (the symbols \match") but in position 2 we have a mismatch. In position 4 we have a \deletion" and in position 5 we have a \match". In position 6 we have an \insertion" and in positions 7 and 8 we have \matches". Another way of seeing this di erence is that one can transform the sequence to by performing insertions, deletions and replacements of the mismatched symbols. Types of di erences: mismatch, insertion, deletion.

Let t = t 1 t 2 : : : t n and p = p 1 p 2 : : : p m with m < n. We say that p occurs at position q of t with at most k-di erences if there are a sequences a 1 ; :::; a r , b 1 ; :::; b r such that 1. There is a subsequence of the sequence a such that a s1 ; a s2 ; :::; a sr = t q ; t q+1 ; :::t q+r 1 with s 1 < s 2 < ::: < s r and a i = for all i 2 f1::rg fs 1 ; s 2 ; :::s r g.

2.

There is a subsequence of the sequence b such that b v1 ; b v2 ; :::b vr = p 1 ; p 2 ; :::p m with v 1 < v 2 < ::: < v r and b i = for all i 2 f1::rg fv 1 ; v 2 ; :::v r g .

3.

The number of di erences between the sequence a and b is at most k. 4. There are no sequences that satisfy 1 and 2 and have less than k di erences.

The problem of string searching with k-di erences is de ned as follows: given a text t = t 1 t 2 : : : t n , a pattern p = p 1 p 2 : : : p m and an integer k, nd all occurrences of the pattern p in the text t with at most k di erences. String searching with k-di erences.

Let the text be t = abcdefghi and the pattern be p = bxdyegh (see Figure 3). The pattern p occurs at position 4 of x with at most 3 di erences. The pattern p also occurs in position 2 with at most 5 di erences and the pattern p occurs in position 5 with at most 3 di erences.

Computing Non-overlapping Evolutionary Chains

The problem of non-overlapping evolutionary chains (abbreviated NOEC) is as follows: given a text t, an integer k and a pattern p, nd whether the strings of the a sequence u 1 = p; u 2 ; : : : ; u l occur in the text t such that:

1. The number of di erences between any two consecutive strings u i and u i+1 in the evolutionary chain is at most k, for all i 2 f1::lg. 2. The starting position of the string u i+1 in t is nearest one to the right of the end position of u i for all i 2 f1::lg.

The rst condition ensures that the strings in the evolutionary chain have errors within some tolerance and the second condition enforces the strings in the chain not to overlap. The non-overlapping evolutionary chain for p = abcd with at most one di erence.

The pattern p rst occurs in position 2. The rst re-occurrence of the pattern to the right of position 5 with at most 1-di erence is at position 7. Consider the pattern abb in position 14. The nearest re-occurrence of abb with at most one di erence is at position 15 (i.e. the string bb) but it is not part of the chain because it overlaps with abb; the rst re-occurrence with at most one di erence that is part of the chain is in position 17. The non-overlapping evolutionary chain is fabcd; abd; adb; abb; bb; bbg.

The modi ed dynamic programming Algorithm

First we consider an O(nm) algorithm for computing the non-overlapping evolutionary chain of a text of length n and a pattern of lenght m. The algorithm NOEC presented below is based on the Dynamic-Programming procedure presented in [START_REF] Landau | Introducing e cient parallelism into approximate string matching and a new serial algorithm[END_REF][START_REF] Landau | Fast string matching with k di erences[END_REF]. The main idea is to construct a matrix D 1::m; 1::n], where D i;j is the minimum number of di erences between the pre x of the pattern p 1 :::p i and any contiguous substring of the text ending at t j . The Dynamicprogramming procedure below terminates when it nds the rst occurrence of the pattern with at most k di erences.

G G G T C T A G 0 0 0 1 1 1 1 G 1 0 0 1 2 2 2 G 2 1 0 1 2 3 3 T 3 2 1 0 1 2 3

Figure 5

The matrix D i;j for p = GGGT and t = GGGTCTA Procedure Dynamic-Programming(t; p; k) begin n jtj; m jpj; D i;j 0; 0 i m; 0 j n; D i;0 i; 0 i m ;

for i := 1 to m do for j := 1 to n do if p i] = t j] then D i;j = minfD i 1;j + 1; D i;j 1 + 1; D i 1;j 1 g else D i;j = minfD i 1;j + 1; D i;j 1 + 1; D i 1;j 1 + 1g if D i;j k then return i; u comment u is the su x of t 1 :::t i is the one that achieves the score D i;j . od od end Next, the algorithm NOEC makes repeated applications of the Dynamicprogramming procedure; every time that an occurrence of the pattern is found ending at position i of the text, then we re-apply the Dynamic-programming procedure to the su x t i+1 :::t n . is the length of the pattern.

A fast dynamic programming algorithm

The matrix D computed by the Dynamic-Programming procedure above contains a lot of redundant data which are not of used by algorithm NOEC. In fact it will su ce to nd the index of the largest row of each diagonal of the matrix D, which has an entry less than k. This computation can be done in linear time with the aid of su x trees (see 1]) . The alternative dynamic programming algorithm given in 17] can be modi ed as above and it will lead to the following theorem (for details and proofs see 17]).

Theorem 2. There exists an algorithm that computes the non-overlapping evolutionary chain in O(kn) time for xed alphabets, where n is the length of the input text and k the is maximum number of di erences allowed between consecutive members of the chain.

Theorem 3. There exits an algorithm that computes the non-overlapping evolutionary chain in O(n(log m + log j j)) time for a general alphabet , where n is the length of the input text , m is the length of the pattern and k is the maximum number of di erences allowed consecutive members of the chain.

Computing Overlapping Evolutionary Chains

The problem of overlapping evolutionary chains (abbreviated OEC) is de ned as follows: given a text t, a pattern p and an integer k < jpj=2, nd whether the strings of the a sequence u 1 = p; u 2 ; : : : ; u l occur in t and satisfy the following conditions:

1. The number of di erences between u i and u i+1 is at most k, for all i 2 f1::lg. 2. Let s i he starting position of string u i in t for all i 2 f1::lg. The starting position of u i+1 for all i 2 f1::lg is to the right of s i + ju i j=2.

In this case we allow the strings of the evolutionary chain to overlap. These strings have been constrained the overlap at most jpj=2 symbols. Without such constraint, we can obtain trivial chains such as u i = t i :::t m 1 , where u i and u i+1 have at most one di erence. First we present a method for nding all possible members of an overlapping evolutionary chain Let D i;j be as in section 3 but the pattern is identical to the text, i.e. p = t; thus D is an n n matrix. In order to e ciently compute the matrix D i;j with both i; j 2 f1::ng; we need to evaluate the following matrix M; we mark M i;j := p if there is the alignment of p 1 :::p i with t 1 :::t j with the least number of di erences requires that p 1 matching t l for some l; otherwise we mark M i;j := . The matrix M i;j for t = GGGTCTA

G G G T C T

The computation of matrix M can easily be done using the matrix D. Consider two consecutive entries in a column of D, say D i;j and D i+1;j . We have to consider two cases:

1. The case p i+1 6 = t j . If D i+1;j D i;j , then the only way that we can align p i :::p i+1 and t 1 :::t j and achieve D i+1;j di erences is by aligning and matching p 1 with t l for some l; hence M i+1;j = p . Otherwise M i+1;j = .

2. The case p i+1 = t j . We have the following subcases: { D i+1;j = D i;j+1 + 1. In this case one can see that M i+1;j = M i;j+1 . { D i+1;j = D i;j 1 + 1. In this case one can see that M i+1;j = M i;j 1 . { D i+1;j = D i 1;j 1 . In this case one can see that M i+1;j = M i 1;j 1 . { i = 1. One can see that M i+1;j = .

If more than one of the above subcases hold, then we opt for the one that leads to M i+1;j = . Thus the computation M can easily done in parallel with the computation of D. In order to simplify the exposition the computation of M is omitted in the pseudocode below.

G G G T C T A G 0 0 0 1 1 1 1 G 1 0 0 1 2 2 2 G 2 1 0 1 2 3 3 T 3 2 1 0 1 2 3 C 3 2 2 1 0 1 2 Figure 7
The matrix D i;j for t = GGGTCTA using M i;j with m = 3 Let's consider Figure 7. We compute the rows 1,2,3, and 4 of the matrix D as in section 3 for the pattern p = GGGT. We also compute the matrix M as above. We will now proceed to compute approximate matches of GGTC with t 1 :::t i for all i. Lets consider the evaluation of D 5;2 ; its value depends on the values of D 5;1 ; D 4;1 and D 4;2 . If we were to use D 5;1 , then we have to increase its value by 1 for the mismatch of p 5 = C and t 2 = G and decrease it by 1 because M 4;1 = ; note p 1 is no longer taking part in this alignment. If were to use D 4;1 , then we have to increase its value by 1 for the mismatch of p 5 = C and t 2 = G and decrease it by 1 because M 4;1 = . If were to use D 4;2 , then we have to increase its value by 1 for the mismatch of p 5 = C and t 2 = G and decrease it by 1 because M 4;1 = . Whenever there is a match then we only use the three neighbouring values unaltered (see Figure 6). The correctness proof will appear in the full paper. The pseudocode for the procedure is outlined below.

Procedure Dynamic-Programming-II(t; p; k) begin n jtj; m jpj; D i;j 0; 0 l n; 0 i m; D i;0 i; 0 i m; for i := 1 to n do for j := 1 to n do if M i 1;j = p OR i < m then q = 0; else q = 1; if p i] = t j] then D i;j = minfD i 1;j + 1 q; D i;j 1 + 1 q; D i 1;j 1 g else D i;j = minfD i 1;j + 1 q; D i;j 1 + 1 q; D i 1;j 1 + 1 qg if D i;j k then return i; u end end Algorithm OEC(t; p; k) begin while i < n do (i; p) Dynamic-Programming-II(t; p; k) t t i+1 :::t n ; end Theorem 4. Algorithm OEC computes the all possible overlapping chains in O(n 2) time, where n is the length of the input text.

The de nition of the problem OEC does not specify which of the overlapping patterns is chosen as members of the overlapping evolutionary chain. The following variants of the OEC problem give three choices with di erent criteria.

Computing the nearest-neighbour evolutionary chain.

The problem of nearest-neighbour overlapping evolutionary chains (abbreviated NNOEC) is de ned as follows: given a text t, a pattern p and an integer k < jpj=2, nd whether the strings of the sequence u 1 = p; u 2 ; : : : ; u l occur in t and satisfy the conditions for the OEC problem and the string u i+1 is the nearest one to the right of s i + ju i j=2 that has at most k di erences with u i for all i 2 f1::lg.

Next, the algorithm NNOEC makes repeated applications of the Dynamicprogramming procedure; every time that an occurrence of the pattern is found ending at position i of the text, then we re-apply the Dynamic-programming procedure to the su x t i+1 :::t n . The NNOEC algorithm can be speeded up in a similar manner to the procedure Dynamic-Programming (see Theorems 2 & 3). The details will be shown in the full paper. Hence, we have the following theorems: Theorem 6. There exists an algorithm that computes the nearest neighbour evolutionary chain in O(kn) time over xed alphabets, where n is the length of the input text and k is the maximum number of di erences allowed between consecutive members of the chain. Theorem 7. There exists an algorithm that computes the nearest neighbour evolutionary chain in O(n(log m + log(j j)) time over an alphabet j j, where n is the length of the input text , m is the length of the pattern and k is maximum number of di erences allowed between consecutive members of the chain.

Computing the maximal length evolutionary chain.

The problem of computing longest overlapping evolutionary chains (abbreviated LOEC) is de ned as follows: given a text t, a pattern p and an integer k < jpj=2, nd whether the strings of the a sequence u 1 = p; u 2 ; : : : ; u l occur in t and satisfy the conditions as in the OEC problem and maximizes l. The computation of the maximal chain requires the full matrix D as is computed in Theorem 4 and the evaluation of the following recursion l max = l j ; if d i;j < k and d i;r > k 8r max r fl i+j and d i;r > kg; otherwise. where i + jpj=2 < r jpj.

Computing the minimal weight evolutionary chain

The problem of computing minimal-weight overlapping evolutionary chains (abbreviated WOEC) is de ned as follows: given a text t, a pattern p and an integer k < jpj, nd whether the strings of the a sequence u 1 = p; u 2 ; : : : ; u l occur in t and satisfy the conditions as in the OEC problem and minimize d = l X i=1 i + i where i is the sum of the di erences between u i and u i+1 and i = f(s i+1 s i ju i j), where f is a penalty table.

The computation of the maximal chain requires the full matrix D as computed in Theorem 4 and the evaluation of the following recursion w min (i) = j i jpj + w j ; if d i;j < k and d i;r > k 8r min r fw i+j and d i;r > kg; otherwise. where i + jpj=2 < r jpj.

Conclusions and Open problems

Our primary goal is to identify e cient algorithms for computational problems which arise in computer-assisted analysis of music, and to also formalise their relation to well known string pattern-matching problems. The major obstacle to applying computational and mathematical techniques developed in the context of string pattern-matching problems to problems of computer-assisted music analysis appears to be the di culty of communication and mutual comprehension between computer scientists and musicologists.

The primary direction of this research is towards a formal de nition of musical similarity between musical entities (i.e. complete pieces of music or meaningful subsets of pieces, e.g. `themes' or `motifs') (See 5,6,7] for details). In particular we are aiming at producing a quantitative measure or 'characteristic signature' of a musical entity. This measure is essential for melodic recognition and it will have many uses including, for example, data retrieval from musical databases.

Here we presented the practical algorithms NOEC and OEC for the computation of non-overlapping and overlapping evolutionary chains. Furthermore, we presented theoretical algorithms for the same problems with improved upper bounds on their time complexity. Additionally we presented two variants of the OEC problem, the maximal evolutionary chains and minimum-weight evolutionary chains, both of which are of practical importance.

The problems presented here need to be further investigated under a variety of similarity or distance rules (see 7,21]). For example, Hamming distance of two strings u and v is de ned to be the number of substitutions necessary to get u from v (u and v have the same length).

Finally comparisons of the empirical results obtained (to be presented in the full paper) and to those that can be obtained from software library on string algorithms (see 9]) should be drawn. Music Example Francesco da Milano, monothematic lute recercar (Cavalcanti Lutebook, f. 71v) The ve successive entries, A-E, are audibly related and can be treated as stages in the 'evolution' of a diatonic motif by a series of alterations of edit distance 2 (where the deletion, insertion, replacement and time-displacement operations each have weight 1). Thr example was taken from Cavalcanti Lutebook, Brussels, Belgium, Biblioth eque Royale (B-Br), MS II 275.

Appendix: Music Example

 Figure 2

1 2 3

 3 Figure 3

 Figure 4

 Figure 6

 Algorithm NOEC computes the non-overlapping evolutionary chain in O(nm) time and O(nm) space, where n is the length of the input text and m

	Algorithm NOEC(t; p; k) begin while i < n do (i; p) Dynamic-Programming(t; p; k) t t i+1 :::t n ; end
	Theorem 1.

 Algorithm NNOEC computes the nearest neighbour evolutionary chain in O(nm) time, where n is the length of the input text and m is the size of the input pattern.

	Theorem 5.
	Algorithm NNOEC(t; p; k) begin while i < n do (i; p) Dynamic-Programming(t; p; k) t t i+jui j=2+1 :::t n ; end

? Partially supported by the C.N.R.S. Program \G enomes" ?? Partially supported by the EPSRC grant GR/J 17844.