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Abstract. We introduce an algorithm for extracting all longest repeats
with k don’t cares from a given sequence. Such repeats are composed of
two parts separated by a block of k£ don’t care symbols. The algorithm
uses suffix trees to fulfill this task and relies on the ability to answer the
lowest common ancestor queries in constant time. It requires O(nlogn)
time in the worst-case.

Keywords: Combinatorial Problems, String, Repeat Extraction, Don’t
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1 Introduction

In recent years, many combinatorial problems that originate in bioinformatics
have been studied. Here we consider a combinatorial problem on motifs. The
term motif [5] is often used in biology to describe similar functional components
that several biological sequences have in common. It can also be used to describe
any collection of similar substrings of a longer sequence. In nature, many motifs
are composite, i.e. they are composed of conserved parts separated by random
regions of variable lengths.

In this paper we explore a sub-problem that is important in the approach
to the combinatorics and the complexity of the original biologically motivated
topic. Thus, we concentrate on finding all longest repeats with a block of k don’t
cares. Such repeats consist of two exact parts separated by a gap of fixed length
k. Hence, our aim is to find all such repeats and their positions in the string.
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A closely related problem was studied by Brodal et al. [2]. They developed
algorithms for finding all “maximal pairs with bounded gap”. This notion refers
to a non extendable substring having two occurrences within a bounded dis-
tance of each other. A restricted version of the same problem was considered by
Kolpakov and Kucherov [7]. They proposed an algorithm for a fixed gap. The
problem of finding longest repeats with no don’t cares is a mere application of
suffix trees [5].

In our method we use two suffix trees intensively, one for the original string
and the other for its reverse. The use of a generalized suffix tree (for both the
string and its reverse) would be possible but is not necessary because we do not
need all the information it contains. We have not yet explored the possibility of
using an affix tree [9] but there are some doubt that it will lead to a significant
improvement on the asymptotic time complexity.

The paper is organized as follows: in Section 2, we state the preliminaries
used throughout the paper. In Section 3, we define the longest repeat with k
don’t cares and describe in general how to find them using two suffix trees. In
Section 4, we detail our algorithm. Finally in Section 5, we analyze the running
time of the algorithm.

2 Preliminaries

Throughout the paper x denotes a string of length n defined on a finite alphabet

Y. We use z[i], for i = 1,2,... ,n, to denote the i-th letter of z, and x[i..j] as
a notation for the substring x[i]z[i + 1]-- - x[j] of 2. The string T denotes the
reverse of x, such that T [1] = z[n],... , T [n] = z[1].

The length of a string w is denoted by |w|. If w = wv then w is said to be the
concatenation of the two strings u and v. The string w” is the k-th power of w.

A symbol ‘¢’ ¢ X' is called a “don’t care”; any other symbol is called solid.
A don’t care matches any other symbol, that is, ¢ = o for each o € X U {¢}. A
pattern y over X U {o} is said to occur in x at position i if y[j] = z[i + j — 1],
for 1 < j < |y|. A motif w denotes a pattern that occurs at least twice in x.
We restrict the motifs to have a solid symbol at both ends, i.e., w[l] # ¢ and
wl|w|] # ¢o. The set L,, is the set of occurrence positions of a given motif w,
where L., = {z[i..i + |w| — 1],1 < i <n — |w| + 1}. Observe that |L,,| > 2.

For a given string = and an integer k, a motif w of the form L o* R is called
repeat with k don’t cares. The substrings L and R, respectively, are the left and
right parts of w. The length of the longest such repeat in = is denoted by lry(z).
Later on, we use the following notion: a motif w is called left maximal (resp.
right maximal) if w can not be extended to the left (resp. right) without losing
one of its occurrences.

Here we present a method for finding all longest repeats with k& contiguous
don’t cares and their positions. This method uses the suffix tree of x as a fun-
damental data structure. A complete description of suffix trees is beyond the
scope of this paper, and can be found in [5] or [4]. However, for the sake of
completeness, we will briefly review the notion.



Definition 1 (Suffix tree). The suffix tree T (z) of the string x is the com-
pacted trie of all suffixes of x$, where $ ¢ X. Each leaf in T (x) represents a
suffiz x[i..n] of x and is labelled with the index i. We refer to the set of indices
stored at the leaves of the subtree rooted at node v as the leaf-list of v; it is de-
noted by LL(v). Each edge in T (x) is labelled with a nonempty substring of x
such that the path from the root to the leaf labelled with index © spells the suffix
x[i..n]. We refer to the substring of x spelled by the path from the root to a node
v as the label of v, and denote it by ¢,. The length of such a substring is the
depth of v and we denote it by d,.

Several algorithms construct the suffix tree 7(x) in O(n) time, assuming an
alphabet of fixed size (see for example [4] [5]). All the internal nodes in T (z)
have an out-degree between 2 and |Y|. Therefore, we can transform the suffix
tree into a binary suffix tree B(x) by replacing every node v in 7 (z) with out-
degree d > 2 by a binary tree with d — 1 internal nodes and d — 2 internal edges,
where the d leaves are the d children of v. Since 7 (x) has n leaves, constructing
the binary suffix tree B(z) requires adding at most n — 2 new nodes. Each new
node can be added in constant time. This implies that the binary suffix tree B(x)
can be constructed in O(n) time.

Our method makes use of the Schieber and Vishkin [8] Lowest Common
Ancestor algorithm. For a given rooted tree T', the lowest common ancestor of
two nodes u and v, lca(u,v), is the deepest node in T that is ancestor of both
u and v. After a linear-time preprocessing of a rooted tree, the lowest common
ancestor of any two nodes can be found in constant time.

3 Longest Repeats with k Don’t Cares

The longest repeats with k don’t cares problem requires finding all longest
repeats of the form Lo* R, that appear in a given string . In the notation, L and
R are both over X' and represent the left and the right parts, respectively, of the
repeat. The parameter k is a given positive integer smaller than n. For example, if

x = BBAZY ABAAAXBBAXZABAZAHIABAA

then the only longest repeat with 2 don’t cares is w = BBA ¢ ©ABA and its
occurrence list is £,,{1,12}. Thus, lry(z) = 8 . An obvious approach to solve
this problem is as follows:

1. generate all possible repeated substrings in x;

2. for each pair of repeated substrings u and v, check whether there exist at
least two pairs of occurrence positions 71 and o of u and j; and js of v such
that j; =1, + |u] + k;

calculate the length of the repeat with k don’t cares u oF v;

4. report all longest ones.

o

This straightforward approach can be improved by dynamic programming
yielding an O(n?) time algorithm.
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Fig. 1. The suffix tree of GCCTAXXXGCATA.

Our approach proceeds differently and results in an O(nlogn) time algo-
rithm. It starts by constructing the two suffix trees 7(z) and 7 (%Z). The first
suffix tree is used to generate the right part of the repeat, while the second
suffix tree generates the left part. Observe that the label ¢, of each internal
node u € T (z) represents a right-maximal repeated substring of z which oc-
curs at LL(u). Similarly, the label ¢, for each internal node v € T (*Z) repre-
sents the reverse of a left-maximal repeated substring of x ending at positions
{jlj=n+1—i,i€ LL(v)}.

For simplicity, we replace each index i in 7 (%) by n+1—i+ (k+1). Our goal
now, is to traverse both trees efficiently to find all pairs of nodes u and v where
u € T(x),veT(x), |LL(u) N LL(v)| > 2, and d, + d, is maximum. For each
pair u and v, the concatenation of the reverse of the label of v, £ don’t cares,
and the label of u gives a longest repeat with k don’t cares, i.e., w = Z ok £,.
Observe that, lr, =d, + k + d,.

For example, if x = GCCTAXXXGCATA and k£ = 1, then Fig. 1 and Fig. 2
represent the suffix trees of, respectively, z and T . Note that, each index i in
T (*T) has been replaced by 16 — i. The node in 7 (z) labelled by T'A and node
in 7 (%) labelled by CG both have leaf-list {4,12}. Thus, GC ¢ T A is a repeat
with 1 don’t care. Since it is the longest such repeat, lry(z) equals 5. The list of
occurrence positions of the longest repeat with one don’t care of x is {1,9}.

4 Algorithm

The initialization phase of the algorithm consists of two main steps. In the first
step, the suffix tree of x is constructed and then traversed in a preorder manner



Fig. 2. The suffix tree of ATACGXXXATCCG. Each index ¢ is replaced by 16 — ¢. The gray
nodes may be omitted.

where a number is assigned to each node. For each index i, no(i) is the preorder
number assigned to the leaf node v labelled with ¢ in T (z ) This is done during
the tree depth-first traversal. For example, if 7 (z) is the tree of Fig. 1 then

i |1]2[3]4][5[6]7][8[9]10[11]12]13
no(i) | 11| 8 | 9 | 14| 4 |18|19[20|12]| 7 |3 |15 5

In the second step, the suffix tree of T is built. In addition, a list is associated
with each leaf node v. For each leaf node v labelled with the i-th suffix of T,
this list is initialized with the element no(n +1 —i+ (k —1)).

For each internal node v , the list is the sorted union of the disjoint lists of the
children of v. The computation of the lists for the internal nodes can be done dur-
ing a depth-first traversal of the tree. However, in order to guarantee an efficient
merge of the lists associated with the children of a node, 7 (Z) is transformed
into a binary suffix tree B(%Z'). Furthermore, to maintain these lists efficiently,
these lists were implemented using AVL-trees [1]. Although this implementation
is similar to the one used in [2] and [6], any other type of balanced search trees
may be used. Note that the efficient merging of two AVL trees is essential to
our method. The results on the merge operations of two height-balanced trees
stated in [3] are summarized in the following lemmas.

Lemma 1. Two AVL trees of size at most n and m can be merged in time

O(log ("*™)).



Lemma 2. Given a sorted list of elements e; < ey < --- < e,, and an AVL tree
T of size at most m, where m > n, we can find q; =maz{z € T|x < e;} for all
i=1,2,...,n in time O(log <”+m)).

n

Proof. The basic idea is to use the merge algorithm of Lemma 1 while keeping
the positions where the insertions of the elements e; € T' take place. This change
in the merge algorithm does not affect the time complexity and as a result we
can find all ¢; in O(log (n+m)) time.

n

Using the smaller-half trick, which states that “the sum over all nodes v of an
arbitrary binary tree of terms that are O(ny), where ny and ny are the numbers
of leaves in the subtrees rooted at the children of v and ny < ng, is O(nlogn)”,
the following lemma stated in [2] is easy to prove:

Lemma 3. Let T be an arbitrary binary tree with n leaves. The sum over all
internal nodes v in T of terms log ("1;;"2), where ny and ny are the numbers of
leaves in the subtrees rooted at the two children of v, is O(nlogn).

The algorithm for finding all longest repeats with k don’t cares is given in
Fig. 3. Recall that at every node v in B(‘T') we construct a sorted list, stored
in an AVL tree A, of all the preorder numbers associated with the elements in
LL(v). This list can be considered as a leaf-list sorted according to the preorder
numbers associated to the indices in 7 (x). If v is a leaf, then A is constructed
directly (Line 5). If v is an internal node, then A is constructed by merging
A; and As (Line 27), where A; and Aj are the AVL trees associated with the
two children of v and |A;| < |As|. Before constructing A, we use A; and As to
check for an occurrence of longest repeat with k& don’t cares. If a number a in
Aj; is going to be inserted between b and ¢ in As, then b and ¢ are efficiently
obtained (Lemma 2). Let max be the length of the current longest repeat with k
don’t cares. And let u and v be the nodes representing this longest repeat, where
u € T(z) and v € B(*T'). Since we are moving upward in B(T') minimizing the
depth of v, the only way to find a longer repeat with £ don’t cares is by replacing
node w in 7 (x) with a node that has greater depth. Clearly, this node should
be a lowest common ancestor of a pair of nodes that has not been considered so
far, i.e. a pair consisting of an element in 4; and an element in As. It follows
from Lemma 4, that we do not need to consider all the possible new pairs. In
other words, only the pairs of the form (a,b) or (a,c) are the ones that need to
be considered. For each pair of nodes considered by the algorithm, the algorithm
checks whether the sum of the depth of both nodes is greater than or equal to
max. If so, the algorithm uses list M to store the pair. Note that the longest
repeat with k£ don’t cares may not be unique. So, each pair (z,y) in M represents

a longest repeat obtained by a concatenation of ¢, , k don’t cares, and ¢,. Where
Iry(x) equals dy + k + d, for all pairs (z,y) € M.

Lemma 4. Lett, 7 and k be the preorder numbers given to three leaves u, v and
w during a preorder traversal of a rooted tree T. If 1 < j < k, then the depth
of lea(u,v) cannot be less than the depth of lca(u,w), where lca is the lowest
common ancestor of two nodes.



Algorithm Longest-Repeat-Don’t-Cares(x, k)
Input: A string x of length n
Output: All longest repeats with k contiguous don’t cares

1.

Al
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11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

Build the suffix tree 7 (x) and traverse the tree in preorder manner numbering all
the nodes.
for each leaf v € T (x)
if v is labelled with ¢
then no(i) < the preorder number of v
Build the binary suffix tree B(*T') and create at each leaf an AVL tree of size one
that stores no(n +1 — i+ (k+ 1)), where ¢ is the index associated with the leaf.
(max,u,v) + (0,r00t(T(x)),r0ot(B(T)))
M 0
for each node v € B(*T) in bottom-up (depth-first) manner
A1, Az < the AVL trees of the two children of v where |A1]| < | As|
for a € A; in ascending order
b+ max{z € A2 | z < a}
ab < lca(no~'(a),no™ (b)) in T (x)
if dop +dy = max
then (u,v) + (ab,v)
M <M U (ab,v)
else if du, +dy > max
then (mazx,u,v) < (dap + dv,ab,v)
M <+(ab,v)
¢ < next(Ts,b)
ac < lca(no~'(a),no"'(c)) in T (x)
if doe +dy = max
then (u,v) + (ac,v)
MM U (ac,v)
else if duoc +dy > mazx
then (mazx,u,v) < (doc + do,ac,v)
M+ (ac,v)
A+ merge(Ai, Az)
lry <—max + k
return (Irg, M)

Fig. 3. All longest repeats with k don’t cares algorithm.

Proof. The proof is by contradiction. Let z and y be lca(u,v) and lca(u,w),
respectively. Assume that the depth of x is less than the depth of y. Since ¢
is less than j, k also must be less than j, which contradicts the condition that
1< g <k.

The depth of a node in the Lemma 4 is the length of the path from the root

to this node. It is quite easy to see that the Lemma can be extended to suffix
trees where the depth of a node is the length of the substring spelled by the path
from the root to this node.



5 Time Complexity

In this section, we analyze the running time of the algorithm. Recall that, for
constant size alphabet, a suffix tree can be built in linear time. Thus, Creating
T (x) and performing the preorder traversal at Line 1 requires O(n) time. The
loop on Lines 2-4 takes O(n) time. Building B(‘Z") also takes O(n) time. Creating
an AVL tree of size one can be done in constant time. Thus, doing so at each of
the n leaves of B(‘T') at Line 5 requires total of O(n) time. Lines 6,7 take O(1)
time.

The algorithm then traverses B(‘T) in depth-first manner (Lines 8-27). At
every internal node v, the algorithm runs a search loop on Lines 10-26 and then
performs a merge at Line 27. Let A; and Ay be the two AVL trees associated
with the two children of v where |A;| < |As|. During the search loop (Lines
10-26), for each a € A;, the algorithm searches As to find b and c. According
to Lemma 2, the time required to complete the search loop at each node is

O(log (|A1|51||A2|)). Additionally, Lemma 1 states that the merge at Line 27 takes

also O(log (‘A1||Il||“42|)) time. Summing these terms over all the internal nodes

of B(*T") gives the total running time of the tree traversal (Lines 8-27), that is
O(nlogn) (Lemma 3). Thus, the total running time of the algorithm is O(n logn)
time. The following theorem states the result.

Theorem 1. Algorithm Longest-Repeats-Don’t-Cares extracts all longest re-
peats with k don’t cares from a given string in O(nlogn) time.
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