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Abstract. We consider a version of pattern matching useful in process-
ing large musical data: J-matching, which consists in finding matches
which are d-approximate in the sense of the distance measured as maxi-
mum difference between symbols. The alphabet is an interval of integers,
and the distance between two symbols a, b is measured as |a — b|. We
present d-matching algorithms fast on the average providing that the
pattern is “non-flat”and the alphabet interval is large. The pattern is
“flat” if its structure does not vary substantially. We also consider (4, ~)-
matching, where v is a bound on the total number of errors. The algo-
rithms, named 6-BM1, §-BM2 and 6-BM3 can be thought as members
of the generalized Boyer-Moore family of algorithms. The algorithms are
fast on average. This is the first paper on the subject, previously only
“occurrence heuristics” have been considered. Our heuristics are much
stronger and refer to larger parts of texts (not only to single positions).
We use d-versions of suffix tries and subword graphs. Surprisingly, in the
context of §-matching subword graphs appear to be superior compared
with compacted suffix trees.

1 Introduction

A musical score can be viewed as a string: at a very rudimentary level, the alpha-
bet could simply be the set of notes in the chromatic or diatonic notation, or the
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set of intervals that appear between notes (e.g. pitch may be represented as MIDI
numbers and pitch intervals as number of semitones). Approximate matching in
one or more musical works play a crucial role in discovering similarities between
different musical entities and may be used for establishing “characteristic signa-
tures” [3]. Such algorithms can be particularly useful for melody identification
and musical retrieval. The approximate matching problem has been used for a
variety of musical applications (see overviews in [8,3,11,1]). It is known that
exact matching cannot be used to find occurrences of a particular melody. Ap-
proximate matching should be used in order to allow the presence of errors. The
amount of error allowed will be referred to as §. This paper focuses in one special
type of approximation that arise especially in musical information retrieval, i.e.
d-approximation. Most computer-aided musical applications adopt an absolute
numeric pitch representation (most commonly MIDI pitch and pitch intervals in
semitones; duration is also encoded in a numeric form). The absolute pitch encod-
ing, however, may be insufficient for applications in tonal music as it disregards
tonal qualities of pitches and pitch-intervals (e.g. a tonal transposition from a
major to a minor key results in a different encoding of the musical passage and
thus exact matching cannot detect the similarity between the two passages). One
way to account for similarity between closely related but non-identical musical
strings is to use d-approximate matching. In §-approximate matching, equal-
length patterns match if each corresponding integer differs by not more than 4.
For example, a C-major {60, 64,65,67} and a C-minor {60, 63, 65,67} sequence
can be matched if a tolerance of § = 1 is allowed in the matching process. For a
given sequence of length m, the total amount of error is bounded by O(¢ - m).
This increases dramatically for large values of §, and therefore, we can restrict it
to a maximum of . This further restriction will be referred as (6, y)-approximate
matching. In [2], a number of efficient algorithms for d-approximate and (9, v)-
approximate matching were presented (i.e. the SHIFT-AND algorithm and the
SHIFT-PLUS algorithm, respectively). These algorithms use the bit-wise tech-
nique. In [5] exact string matching algorithms are adapted to §-approximation
using heuristics on the alphabet symbols. Here, we present three new algorithms:
0-BM1, §-BM2 and §-BM3. They can be thought as members of the Boyer-Moore
family of algorithms. The two first algorithms implement a heuristic based on
a suitable generalization of the suffix trees data structure. The third algorithm
uses a heuristic that considers fingerprints for selected substrings of the pattern
and compares them with corresponding fingerprints of substrings of the text to
be processed. The algorithms are fast on average. We provide experimental re-
sults and observations on the suitability of the heuristics. Our algorithms are
particularly efficient for “non-flat” patterns over large alphabet intervals, and
many patterns are of this kind.

2 J-approximate dictionaries

Let ¥ be an alphabet of integers and § an integer. Two symbols a,b of X' are
said to be d-approximate, denoted a LR b, iff |a —b] < 4. We say that two



strings x,y are §-approximate, denoted z X y if and only iff |z| = |y|, and =[i] L

y[i], for each i € {1..|z|}. For a given integer v we say that two strings x,y are
y-approximate, denoted x X y if and only if

2| = |y|, and 3 |2fi] - yli]] < .

Two strings x,y are (§,7)-approximate, denoted x 0 y, if and only if z and

y satisfy both conditions above. The Boyer-Moore type algorithms are very ef-
ficient on average since scanning a small segment of size k allows, on average,
to make large shifts of the pattern. Eventually this gives sublinear average time
complexity. This general idea has many different implementations, see [4]. Our
approach to d-matching is similar, we scan a segment of size k in the text. If this
segment is not J-approximate with any subword of the pattern we know that no
occurrence of the pattern starts at m — k positions to the left of the scanned
segment. This allows to make a large shift of size m — k. The choice of k affects
the complexity. In practice small £ would suffice. Hence the first issue, with this
approach, is to have a data structure which allows to check fast if a word of
size k is J-approximate to a subword of pat. We are especially interested in the
answer “no” which allows to make a large shift, so an important parameter is the
rejection ratio, denote by Exact-RR. It is the probability that a randomly chosen
k-subword is not d-approximate with a subword of pat. If this ratio is high then
our algorithms would work much faster on average. However another parameter
is the time to check if the answer is “no”. It should be proportional to k. We do
a compromise: build a data structure with smaller rejection ratio but with faster
queries about subwords of size k. Smaller rejection ratio means that sometimes
we have answer “yes” though it should be “no”, however if the real answer is
“no” then our data structure outputs “no” also. This is the negative answer
which speeds up Boyer-Moore type algorithms. The positive answer has small
effect. The data structure is an approximate one, its rejection ratio is denoted
by RR, and it is hard to analyze it exactly. Hence we rather deal with heuristics.
The performance depends on particular structure, the parameter k¥ and class of
patterns. Another important factors are rejection ratios: Fract-RR and RR. If
Exact-RR is too small we cannot expect the algorithms to be very fast. On the
other hand we need to have RR as close to Ezact-RR as possible. The applica-
bility is verified in practice. The starting structure is the suffix trie, it is effective
in searching but it could be too large theoretically, though in practice &k is small
and k-truncated suffix trie is also small. Surprisingly we do not have linear size
equivalent of (compact) suffix trees, but we have a linear size equivalent of sub-
word graphs: J-subword graphs, this shows that suffix trees and subword graphs
are very different in the context of §-matching. Below we give formal definition
of our data structures and rejection ratios. Denote by SUB(z, k) the set of all
substrings of x of size k. Denote also:

0-SUB(z, k) ={z | # £ y for some y € SUB(z,k)}
An approrimate dictionary for a given string z is the data structure D, which
answers the queries:

Dy(2): “z € 5-SUB(z,k) ?”



Let D,(z) be the result (true or false) of such query for a string z given by the
data structure D,. By D. we denote the corresponding data structure for the

N . . 5
queries involving the equality z = y. In order for our data structure to work

fast we allow that the answers could be incorrect. By an efficiency of D, we
understand the rejection-ratio proportion:

_ l{z€ 5% | Do(2) = false}]
- B '

Optimal efficiency is the exact rejection-ratio for x:

_ |5-SUB(z, k)|

Ezact-RRy(z) =1 B

In other words the efficiency is the probability that a random substring z of
length k is not accepted by D, or (in the case of Ezact-RR) it is not an element
of §-SUB(z, k). Our data structures D are partially correct:

0-SUB(z, k) C {z | Dy(2) = true}

Denote i ©6 = max{i — 6, min{¥}} and i ¢ = min{i + §,max{Z}}. We
define §-suffix tries and §-subword graphs algorithmically. The §-suffiz trie of a
pattern zx is built as follows:

— build the trie T = (V, E) recognizing all the suffixes of  where V is the set
of nodes and E C V x X' x V is the set of edges of T';

— replace each edge (p, a,q) € E by (p, [max{0,a— 0}, min{max{X'}, a+d}],q);

— for all the nodes v € V, if there are two edges (v, [a,b],p), (v,[c,d],q) € E
such that [a,b] N [c,d] # O then merge p and ¢ into a single new node s and
replace (v, [a, b],p) and (v, [¢,d],q) by one edge (v,[min{a, ¢}, max{b,d}], s).

We have an equivalence relation on the set of vertices: two vertices are equivalent
iff they are roots of isomorphic subtrees. In the ¢-suffix trie construction we
process nodes by taking at each large step all vertices which are in a same
equivalence class C'. Then in this step we process all edges outgoing from vertices
from C. All these vertices are independent and we can think that it is done in
parallel. The construction terminates when the trie stabilizes. The d-subword
graph of a sequence x is obtained by minimizing its d-suffiz trie. This means
that each equivalence class of vertices is merged into a single vertex. Figure 2
shows an example of d-suffiz trie and d-subword graph.

Theorem 1.  The numbers of nodes and of edges of §-subword graph for the
string x are O(|z|).

Proof. The number of equivalence classes of the initial suffix trie is at most 2n. In
the process of merging edges the nodes which are equivalent initially will remain
equivalent until the end. Hence the number of equivalence classes of intermediate
d-suffix trie (after processing all edges outgoing from nodes in a same equivalence
class) is at most 2n, which gives the upper bound on the number of nodes of the
d-subword graph. The bound on the number of edges can be shown similarly as
for standard subword graphs. O
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Fig. 1. The suffix trie and subword graph for the word w = 1521652659.
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Fig. 2. The d-suffiz trie and the J-subword graph for the sequence w = 1521652659
with § =1 and ¥ = [0..9]. A single integer means ¢ means the interval [ © 6,7 & J].

For each subword y € SUB(z, k) of x, denote by hash(y) the sum of the symbols
of y. For each k < |z| we introduce the following families of intervals (overlapping
and adjoined intervals are “glued together”) of the interval [min{X'}, k-max{X'}]
which represents respectively the sets:

Fs(z.k) = |J [hash(y) © ké, hash(y) @ k]
yeSUB(z,k)

M, (z, k) = U [hash(y) © min{kd, v}, hash(y) ® min{kd,v}] .
yESUB(,k)

Clearly Mys(z, k) = Fs(x, k). Figure 3 presents an example.

Lemma 1.
(a) If z 2 y for some y € SUB(z, k) then hash(z) € Fs(x, k).
(b) If z oy y for some y € SUB(z, k) then hash(z) € M, (x,k).



Fig. 3. (a) The family of intervals F5(z, k) and (b) the family M, (z, k), for the string
1529283 withd=~y=1, k=23and ¥ =1[0.9].

The efficiency of the family Z of intervals can be measured as RR(Z) = 1 —
Prob(hash(x) € Z) where x is a random string of length k. In other words it is
the probability that an integer is not in any interval of the family. Observe that
7 in our case is always represented as a family of disjoint intervals, overlapping
and adjoined ones have been glued together.

3 Three 0-BM algorithms

We show in this section how the data structures of Section 2 are used in §-
matching. We now want to find all the J-occurrences of a pattern pat of length
m in a text text of length n. We apply a very simple greedy strategy: place the
pattern over the text such that the right end of the pattern is over position ¢
in the text. Then check if the suffix suf of length k (k may depend on pat) of
text ending at ¢ is “sensible”. If not the pattern is shifted by a large amount and
many position of text are never inspected at all. If suf is sensible then a naive
search in a “window” of text is performed.

Algorithm §-BM1;
14— m;
while i <n
if text[i — k + 1...7] € -Suffiz- Trie(pat)
then NAIVE(i,i + m — k — 1);
i+—i+m—k;

We denote here by NAIVE(p,q) a procedure checking directly if pat ends at
positions in the interval [p..q], for p < gq.

We design an improved version of §-BM1 using é-subword graphs instead tries.
Let (X,V,vo, F, E) be the d-subword graph of the reverse pattern, where X is
the alphabet, V' is the set of states, vg € V is the initial state, FF C V is the set
of final states and £ C V x X' x V is the set of transitions. Let d-per(z) be the
é-period of the word x defined by

o-per(z) =min{p | V1 <i<m —p z[i] L x[i + p]}-



Then it is possible to adopt the same strategy as the Reverse Factor algorithm [4]
for exact string matching to J-approximate string matching. When the pattern
pat is compared with text[i — m + 1...¢] the symbols of text[i — m + 1...4]
are parsed through the d-subword graph of the reverse pattern from right to
left starting with the initial state. If transitions are defined for every symbol of
text[i —m + 1...4], it means that a d-occurrence of the pattern has been found
and the pattern can be shifted by J-per(pat) positions to the right. Otherwise
the pattern can be shifted by m minus the length of the path, in the é-subword
graph, from the initial state and the last final state encountered while scanning
text[i —m+1...4] from right to left. Indeed the d-subword graph of the reverse
pattern recognizes at least all the d-suffixes of the reverse pattern from right to
left and thus at least all the §-prefixes of the pattern from left to right.

Algorithm §-BM2;
14— m;
while i <n
g+ vg; j—i;b«0;
while (g, text[j],p) € E
=pj=i—1
if g € F then b+ i — j;
if ¢ — j > m then check and report
d-occurrence at position ¢ —m + 1;
i + i + 0-per(pat);
else i + ¢+ m —b;

The value d-per(pat) can be approximated using the d-subword graph of the
reverse pattern.

Our last algorithm can be used also for (d,v)-approximate string matching. We
apply the data structure of interval families.

Algorithm §-BM3;
14 m;
while i <n
if hash(text[i — k + 1...7]) € M; . (pat, k)
then NAIVE(i,i + m — k — 1);
i+—i+m—k;

4 Average time analysis of algorithms 6-BM1 and §-BM3

Denote p = Prob(z X y) where z and y are random symbols of X and g pet =
RRi(Dpat)-



Lemma 2. The overall average time complexity of 6-BM1 and §-BM3 algo-
rithms is at most

n

p 1
— <<Qk,pat + (]. - qk’pat)—]. _p) k+ (1 - qk,pat) m + (1 - Qk,pat) (1 _p)2)

Proof. Each iteration of the algorithms tries to find occurrences of the pattern
ending at positions i..i + m — k — 1. We call those positions a window. The win-
dow for next iteration starts just behind the window for the previous iteration.
The probability that the pattern is moved to the next window after at most &
comparisons is exactly ¢k pat = RRi(Dpat). Now it is enough to prove that the
average number of comparisons made by the naive algorithm in one iteration is
bounded by )
p
(R LR ey

Let p;, for j = 1..m — k — 1 be the average number of comparisons made by the
naive algorithm at position ¢ 4+ j — 1 of the window. Since the we cannot assume
that text symbols at positions ¢ — k+ 1..¢ are random (because Dpq (text[i — k +
1..4]) = true), we assume that the probability of matching those symbols with
the symbols of the pattern during the naive algorithm is 1. Hence

p<(1-pk+1)+pA—p)k+2)+p"A—p)(k+3)+---+

+pm 1 —p)(m = 1) + p™ Fm.

Similarly the average number of comparisons made by the naive algorithm at
position ¢ + 1 is at most

p2 < (1=p)+p(1=p)(k+1)+p* (1—p)(k+2)+- - -+p™ * 1 (1=p)(m—1)+p™ *m.

Similarly the average number of comparisons made by the naive algorithm at
position m + ¢ — 1 is at most

pi <(1=p)+p(1—p)+--+p (1 -p)+
+p A = p)k+ D)+ p (1 =p)(E+2) +...p" LA —p)(m —1) + p™Fm
It can be proved that p; < k+ ﬁ and py < (1—p) +p(k+ ﬁ) and generally
pi<(1=-p)+pl—-p)+- - +p 21 —p)+p~1(k+ ﬁ). Hence, after some

calculations we get
1

p
E ; < k .
p,_m+1_p +(1—p)2

This completes the proof. O

As a corollary of previous lemma we have.
Theorem 2. Let k < 0.99m and p < 0.99. The average time complezity of the
algorithms 6-BM1 and §-BM3 is

O(—(k + (1 = gk par)n)) -

n
m



Observe here that our analysis does not depend on the data structure D. The
only thing it assumes is that the scheme of the algorithm matches the structure
of the algorithms §-BM1 and §-BM3. Clearly, the efficiency of such algorithms
depends heavily on the choice of £ and the efficiency of D. For instance, for § = 0,
(ie. we consider string matching without errors) we may choose k = 2log 5 m.
Then, for §-BM1, 1 — gj, pet is the probability that a random string of length &
is not a subword of pat. The number of subwords of length k of pat is at most m
and the number of all words of length %k is m?2 so 1 — Gk pat < % thus the average
time complexity is O(2 logm) the best possible. Moreover k¥ may depend also
on the pattern pat itself. If pat is “good” then k may be chosen small and when
it is “bad” k may be chosen bigger. In particular we may increase k up to the
moment when 1 — gj ¢ decreases below an acceptable level.

5 Experimental Results

We computed experimentally the values RR and Ezact-RR for our approximate
dictionaries for various values of k£ and different sizes of the alphabet. These
efficiencies correspond to average case complexity of our §-BM algorithms. We
compared the values of RR and Fzact-RR with average running time for suf-
ficiently large sample of random inputs. We counted the average number of
text character inspections for the following algorithms: J-Tuned-Boyer-Moore,
0-Skip-Search, 6-Maximal-Shift [5] and §-BM1, §-BM2 and 6-BM3. All the al-
gorithms have been implemented in C in a homogeneous way such as to keep
their comparison significant. The text used is composed of 500,000 symbols and
were randomly built. The size of the alphabet is 100. The target machine is a
PC, with a AMD-K6 II processor at 330MHz running Linux kernel 2.2. The
compiler is gcc. For each pattern length m, we searched per one hundred pat-
terns randomly built. We counted the number ¢ of text character inspections for
one text character. The results are presented in Figures 4 to 5. For § = 1 the
best results for §-BM1 algorithm have been obtained with k& = log, m. The best
results for the J-BM3 algorithm have always been obtained with & = 2. For small
values of §, §-BM1 and 6-BM2 algorithms and better than §-Tuned-Boyer-Moore
algorithm (which is the best among the known algorithms) for large values of
m (m > 20). For larger values of § (up to 5) -BM1 and §-BM2 algorithms are
better than d-Tuned-Boyer-Moore algorithm for small values of m (m < 12).
For larger values of §, the §-Tuned-Boyer-Moore algorithm is performing better
than the other algorithms. In conclusion the algorithms introduced in this article
are of particular practical interest for large alphabets, short patterns and small
values of §. Alphabets used for music representations are typically very large. A
“bare” absolute pitch representation can be base-7 (7 symbols), base-12, base-40
or 120 symbols for midi. But meaningful alphabets that will allow us to do in-
depth music analysis use symbols that in reality is set of parameters. A typical
symbol could be (aq,as,as, ...a), where a; represents the pitch, ag represents
the duration, a4 the accent etc. A typical pattern (“motif”) in musical sequence



is 15-20 notes but an alphabet can have thousands of symbols. Thus the need of
algorithms that perform well for small patterns and large alphabets.
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Fig. 5. Results for § = 2.




