Maxime Crochemore
email: maxime.crochemore@univ-mlv.fr.

Danny Hermelin ⋆⋆

Gad M Landau ⋆ ⋆ ⋆

Stéphane Vialette
email: vialette@lri.fr.

Approximating the 2-Interval Pattern problem

We address the problem of approximating the 2-Interval Pattern problem over its various models and restrictions. This problem, which is motivated by RNA secondary structure prediction, asks to find a maximum cardinality subset of a 2-interval set with respect to some prespecified model. For each such model, we give varying approximation quality depending on the different possible restrictions imposed on the input 2-interval set.

Introduction

In the context of RNA secondary structure prediction, Vialette [START_REF] Vialette | On the computational complexity of 2-interval pattern matching problems[END_REF] proposed a geometric representation of a helix in an RNA single stranded molecule by means of a natural generalization of an interval, namely a 2-interval. A 2-interval is the union of two disjoint intervals defined over a single line. In [START_REF] Vialette | On the computational complexity of 2-interval pattern matching problems[END_REF], intervals and 2-intervals represent respectively sequences of contiguous bases and possible pairings between such sequences in the RNA secondary structure. The goal is to find a maximum disjoint subset of the given set of 2-intervals, restricted to prespecified geometrical constrains, so as to serve as a valid approximation of the actual secondary structure of the given RNA.

Throughout the paper, a 2-interval is denoted by D = (I, J) where I and J are two (closed) intervals defined over a single line such that I < J, i.e., I is completely to the left of J. Two 2-intervals D 1 = (I 1 , J 1) and D 2 = (I 2 , J 2) are disjoint, if both 2-intervals share no common point, i.e., (I 1 ∪ J 1) ∩ (I 2 ∪ J 2) = ∅. For such disjoint pairs of 2-intervals, three natural binary relations are of special interest.

Definition 1 (Relations between 2-intervals). Let D 1 = (I 1 , J 1) and D 2 = (I 2 , J 2) be two disjoint 2-intervals. Then

-D 1 < D 2 (D 1 precedes D 2), if I 1 < J 1 < I 2 < J 2 . -D 1 ⊏ D 2 (D 1 is nested in D 2), if I 2 < I 1 < J 1 < J 2 . -D 1 ≬ D 2 (D 1 crosses D 2), if I 1 < I 2 < J 1 < J 2 .
A pair of 2-intervals D 1 and D 2 is R-comparable for some R ∈ {<, ⊏, ≬}, if either (D 1 , D 2) ∈ R or (D 2 , D 1) ∈ R. A set of 2-intervals D is R-comparable for some R ⊆ {<, ⊏, ≬}, R = ∅, if any pair of distinct 2-intervals in D is Rcomparable for some R ∈ R. The non-empty subset R is called a model. Note that any two disjoint 2-intervals are R-comparable for some R ∈ {<, ⊏, ≬}. Equivalently, any pairwise disjoint subset of D is {<, ⊏, ≬}-comparable. In [START_REF] Blin | New results for the 2-interval pattern problem[END_REF][START_REF] Vialette | On the computational complexity of 2-interval pattern matching problems[END_REF], the 2-Interval Pattern problem is defined as follows: -D is a point 2-interval set if all intervals in S(D) are pairwise disjoint (note that in this case, all intervals in S(D) may be considered as points).

D 1 D 2 D 3 (b) D 1 D 2 D 3 (a) (d) (c)
-D is a unitary 2-interval set if S(D) consists of intervals of unit length.

-D is a balanced 2-interval set if any 2-interval in D is a pair of two intervals of equal length. -D is an unlimited 2-interval set if none of the above restrictions are imposed.

The left part of Table 1 depicts the current state of the art for the 2-Interval Pattern problem in terms of exact algorithms. In [START_REF] Vialette | On the computational complexity of 2-interval pattern matching problems[END_REF], the 2-Interval Pattern problem over the {⊏, ≬} and {<, ⊏, ≬} models is proved to be NP-hard even for unitary 2-interval sets. The proof for the {<, ⊏, ≬} model is obtained as a direct consequence of the APX-hardness result for the Maximum Independent Set problem for t-interval graphs given in [START_REF] Bar-Yehuda | Scheduling spit intervals[END_REF]. The results in [START_REF] Bar-Yehuda | Scheduling spit intervals[END_REF] also provide approximation algorithms for this model. In [START_REF] Blin | New results for the 2-interval pattern problem[END_REF], an NP-hardness result for the {<, ≬} model restricted to unitary 2-interval sets is given. The time complexity for this same model when the input is restricted to point 2-interval sets is still unknown [START_REF] Vialette | On the computational complexity of 2-interval pattern matching problems[END_REF][START_REF] Blin | New results for the 2-interval pattern problem[END_REF]. These results imply that in practical terms, secondary structures containing pseudoknots are hard to predict in our suggested mathematical model. This is consistent with previously known NP-hardness results for RNA secondary structures prediction in other models considering arbitrary pseudoknots [START_REF] Akutsu | Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots[END_REF][START_REF] Ieong | Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs[END_REF][START_REF] Lyngsø | RNA pseudoknot prediction in energy based models[END_REF]. In this paper we focus on the three NP-hard models of the 2-Interval Pattern problem. More specifically, we design constant factor approximation algorithms for the {<, ⊏, ≬}, {⊏, ≬}, and {<, ≬} models. The approximation factors obtained by all our algorithms vary depending on the restriction imposed on the input set of 2-intervals (see Table 1). Furthermore we suggest a new restriction, namely balanced 2-interval sets. By definition, unitary 2-interval sets are also balanced but the converse is not necessarily true. Consequently, the above mentioned NP-hardness results also hold for the balanced case, and moreover, balanced 2-interval sets introduce a new combinatorial object which requires particular consideration. Furthermore, the balanced restriction is very natural in the biological setting of the problem.

Classical complexity Model Unl. Bal. Uni. Pnt. {<, ⊏, ≬} NP-C [11, 2] O(n √ n) [11] {⊏, ≬} NP-C [11] O(n 2 √ n) [3] {<, ≬} NP-C [3] ? {<, ⊏} O(n 2) [11] {≬} O(n 2 log n) [11] {⊏} O(n log n) [3] {<} O(n log n) [
This paper is organized as follows. In Section 2, we consider the 2-Interval Pattern problem over the general model, i.e., the {<, ⊏, ≬} model. We describe in Section 3 an approximation algorithm for the problem over the {⊏, ≬} model. Finally, in Section 4, the {<, ≬} model is considered, and different approximation algorithms are introduced for all possible restrictions imposed on the input.

2 Approximation algorithms for the {<, ⊏, ≬} model.

We begin by considering the 2-Interval Pattern problem over the general model, i.e., the {<, ⊏, ≬} model. Recall that in this case, given an input set of 2-intervals D, the problem asks to find a maximum {<, ⊏, ≬}-comparable subset of D, which is equivalent to finding a maximum pairwise disjoint subset of D.

For point 2-intervals sets, 2-Interval Pattern can be solved in polynomial time by maximum matching [START_REF] Vialette | On the computational complexity of 2-interval pattern matching problems[END_REF]. For unitary 2-interval sets, the problem is already APX-hard [START_REF] Bar-Yehuda | Scheduling spit intervals[END_REF], and therefore is APX-hard also for balanced and unlimited 2-interval sets. Furthermore, the results in [START_REF] Bar-Yehuda | Scheduling spit intervals[END_REF] also yield approximation algorithms for our case which directly imply the following.

Proposition 1 ([2]

). The 2-Interval Pattern problem over the {<, ⊏, ≬} model can be approximated within a factor of 4 when restricted to unlimited 2-interval sets, and a factor of 3 when restricted to unitary interval sets.

The algorithm given in [START_REF] Bar-Yehuda | Scheduling spit intervals[END_REF] that solves the case of unitary 2-interval sets can be executed in O(n lg n) time, where n is the size of the input set of 2-intervals. However, the algorithm for unlimited 2-interval sets uses linear programming techniques, which in practice are very often too time costly. Clearly, balanced 2-interval sets lie between the two cases and are arguably the most biologically important case. In the rest of this section we describe a quadratic time 4-approximation algorithm for balanced 2-intervals sets.

Given any balanced 2-interval set D, let the smallest 2-interval in D be the 2interval with the shortest left (or right, as they are both of equal length) interval among all left intervals involved in D. The algorithm we suggest is a simple greedy strategy that repeatedly picks the smallest 2-interval in the input, adds it to the solution, and omits all other 2-intervals in the input which intersect it. A schematic description of this algorithm, which we call Bal-{<, ⊏, ≬}-Approx, is given in Figure 2. contained in the left or right interval of D 0 . Thus, there can be at most four disjoint intervals involved in D, which intersect D 0 at this given iteration. It follows that at this iteration, at most four 2-intervals in the optimal solution are omitted from D. Applying this argument for all iterations of the algorithm yields the desired approximation factor guarantee.

⊓ ⊔ Time complexity. Given an input set of 2-intervals D of size n, algorithm Bal-{<, ⊏, ≬}-Approx can be implemented straightforwardly to run in O(n 2) time.

3 An approximation algorithm for the {⊏, ≬} model.

We next consider the 2-Interval Pattern problem over the {⊏, ≬} model. Recall that the 2-Interval Pattern problem over this model is NP-complete even for unitary 2-interval sets [START_REF] Vialette | On the computational complexity of 2-interval pattern matching problems[END_REF]. In the following we introduce a single algorithm which achieves different constant approximation factors for unitary, balanced and unlimited 2-interval sets. More specifically, we describe an algorithm which uses the algorithms described in the previous section as sub-procedures, choosing the specific algorithm according to the restriction imposed on the input. Our algorithm is a direct generalization of the algorithm devised in [START_REF] Blin | New results for the 2-interval pattern problem[END_REF] for the 2-Interval Pattern problem over the {⊏, ≬} model, restricted to point 2-interval sets. As in [START_REF] Blin | New results for the 2-interval pattern problem[END_REF], the notion of interval graphs is used extensively throughout the section. An interval graph is an intersection graph of a finite family of intervals, all defined over a single line [START_REF] Golumbic | Algorithmic graph theory and perfect graphs[END_REF][START_REF] Mckee | Topics in intersection graph theory[END_REF]. Given a 2-interval D = (I, J), let C(D) denote the smallest interval that covers D, i.e., C(D) = [l(I) : r(J)] where l(I) and r(J) are the left and right endpoints of I and J, respectively. Blin et al. [START_REF] Blin | New results for the 2-interval pattern problem[END_REF] called C(D) the covering interval of D. They also observed that any pair of disjoint 2-intervals are {⊏, ≬}-comparable if and only if their corresponding covering intervals intersect. Thus, given a set of 2-intervals D, and the set C(D) of all covering intervals of 2-intervals in D, any {⊏, ≬}-comparable subset D ′ ⊆ D corresponds to a pairwise intersecting subset of C ′ ⊆ C(D). However, the converse is not true as a pair of non-disjoint 2-intervals have corresponding intersecting covering intervals as well. Hence, a pairwise intersecting subset of C(D) can contain corresponding 2-intervals which are non-disjoint in D.

Let D be the input set of 2-intervals and C(D) be the set of covering intervals of all 2-intervals in D. First, we construct the interval graph Ω C(D) of C(D).

Since Ω C(D) is an interval graph, it has at most |V (Ω C(D))| = |D| maximal (in containment order) cliques, and all these maximal cliques can be computed in polynomial time [START_REF] Gavril | Algorithms for minimum coloring, maximum clique, minimum covering by cliques and maximum independent set of a chordal graph[END_REF]. Note that any pair of 2-intervals with covering intervals in a maximal clique, are either nesting or crossing (but not preceding), or they are non-disjoint. Now, let OP T denote a maximum cardinality {⊏, ≬}-comparable subset of D and let C(OP T) be the set of covering intervals of OP T . The subgraph of Ω C(D) which corresponds to C(OP T) is a clique, and is thus a subset of a maximal clique in Ω C(D) . Furthermore, any 2-interval with a covering interval in this clique and not in OP T is necessarily non-disjoint with at least one of the 2-intervals in OP T .

Observation 1. Let OP T denote the maximum {⊏, ≬}-comparable subset of D. Then OP T is a maximum pairwise disjoint subset of a set of 2-intervals D ′ , OP T ⊆ D ′ ⊆ D, such that C(D ′), the covering intervals of OP T , corresponds to a maximal clique in Ω C(D) .

Given the 2-intervals which corresponds to a maximal clique in Ω C(D) , one can use the algorithms in Section 2 to find an approximation of the maximum pairwise disjoint subset of these 2-intervals. A detailed schematic description of our algorithm, which is called {⊏, ≬}-Approx, is given in Figure 3. 4 Approximation algorithms for the {<, ≬} model.

We now turn to considering the 2-Interval Pattern problem over the {< , ≬} model. Recall that the problem is known to be NP-hard for unitary 2interval sets, while for point 2-interval sets the problem is not known to be in P [START_REF] Blin | New results for the 2-interval pattern problem[END_REF]. Thus, in the following section we consider all possible restrictions for the {<, ≬} model. More specifically, we design a 3-approximation algorithm for unitary 2-interval sets which is also a 2-approximation algorithm for point 2interval sets. We later slightly modify this algorithm to obtain a 5-approximation algorithm for balanced 2-interval sets. Finally, we introduce a different more complex modification which yields a 6-approximation algorithm for unlimited 2-interval sets.

Throughout the section, we will use the notion of trapezoid graph [START_REF] Dagan | Trapezoid graphs and their coloring[END_REF][START_REF] Felsner | Trapezoid graphs and generalizations: Geometry and algorithms[END_REF]. Consider two intervals, I ′ and J ′ , defined over two distinct horizontal lines. The trapezoid T = (I ′ , J ′) is the convex set of points bounded by I ′ and J ′ , and the two arcs connecting the right and left endpoints of I ′ and J ′ . We call I ′ and J ′ the bottom interval and top interval of T respectively. A family of trapezoids is a finite set of trapezoids which are all defined over the same two horizontal lines. The above definitions imply, that two distinct trapezoids T 1 = (I ′ 1 , J ′ 1) and T 2 = (I ′ 2 , J ′ 2) in a family of trapezoids are disjoint, i.e., they contain no common point, if and only if (I ′ 1 < I ′ 2 and J ′ 1 < J ′ 2) or (I ′ 2 < I ′ 1 and J ′ 2 < J ′ 1) holds. If T 1 and T 2 are indeed disjoint, then one trapezoid is completely to left of the other, say for instance T 1 , and this is denoted by T 1 < T 2 . Finally, a trapezoid graph is an intersection graph of a family of trapezoids.

Point and unitary 2-interval sets.

We begin the discussion in this section by first describing an approximation algorithm for point and unitary 2-interval sets. We call this initial algorithm {<, ≬}-Approx. The general outline of {<, ≬}-Approx consists of the following stages: First T (D), a family of trapezoids representing each 2-interval in D is constructed. Next, the maximum pairwise disjoint subset of T (D) is computed using the algorithm proposed in [START_REF] Felsner | Trapezoid graphs and generalizations: Geometry and algorithms[END_REF]. Finally, trapezoids in this subset which correspond to non-disjoint 2-intervals in D are omitted, and the filtered solution is outputted. Definition 4 (Corresponding trapezoid family). Let D be a set of 2intervals, and let α and β be two distinct horizontal lines such that α is below β. The corresponding trapezoid family of D, denoted T (D), is defined as the family containing a single trapezoid T = (I ′ , J ′) ∈ D for each 2-interval D = (I, J) ∈ D, where I ′ is defined over α, J ′ is defined over β, and I ′ = I and J = J ′ .

I' 1 I' 2 J' 2 I' 1 J' 1 I 2 I 2 J 2 I 2 J 1 J 2 J 1 I 1 I 1 J 1 J 2 I 1 J' 2 I' 2 J' 1 I' 1 I' 2 J' 1 J' 2 I' 2 I' 1 I 2 J 2 J 1 I 1 J' 2 J' 1
Fig. 4. {<, ≬}-comparable 2-intervals correspond to disjoint trapezoids but the converse is not necessarily true.

Let D be a set of 2-intervals and let T (D) be the corresponding trapezoid family of D. It is not difficult to see that {<, ≬}-comparable 2-intervals in D correspond to disjoint trapezoids in T (D), while {⊏}-comparable 2-intervals in D correspond to intersecting trapezoids in T (D) (see Figure 4). Felsner et al. [START_REF] Felsner | Trapezoid graphs and generalizations: Geometry and algorithms[END_REF] presented an O(n lg n) algorithm for finding a maximum disjoint subset in a family of n trapezoids. Unfortunately, this alone does not suffice in our case since there may be disjoint trapezoids in T (D) which correspond to non-disjoint 2-intervals in D. (see Figure 4). Definition 5 (Clashing intervals). Let I ′ = [l(I ′), r(I ′)] and J ′ = [l(J ′), r(J ′)] be two distinct intervals defined over two distinct horizontal lines such that l(I ′) ≤ l(J ′). The two intervals I ′ and J ′ clash, if either l(I ′) ≤ l(J ′) ≤ r(J ′) ≤ r(I ′) or l(I ′) ≤ l(J ′) ≤ r(I ′) ≤ r(J ′). Definition 6 (Clashing trapezoids). Let T 1 = (I ′ 1 , J ′ 1) and T 2 = (I ′ 2 , J ′ 2) be two distinct trapezoids in a family of trapezoids. The two trapezoids T 1 and T 2 clash, if either I ′ 1 and J ′ 2 clash or I ′ 2 and J ′ 1 clash.

Observation 3. Any pair of 2-intervals in D are {<, ≬}-comparable if and only if their corresponding trapezoids in T (D) are disjoint and do not clash.

Observation 3 is the heart of algorithm {<, ≬}-Approx. Note that the number of maximal (in containment order) pairwise disjoint subsets of T (D) can be exponential, so exhaustively searching through all such subsets for a maximum non-clashing subset is unfeasible. Let T ′ be the maximum pairwise disjoint subset of T (D). Since the optimal solution OP T ⊆ D also corresponds to a pairwise disjoint non-clashing subset of trapezoids, we must have |OP T | ≤ |T ′ |. Next we show how to obtain a a pairwise non-clashing subset of T ′ which is no more than a constant factor smaller then OP T , in case D is either a point or unitary 2-interval set. Namely, we find a subset of T ′ which is an approximation of OP T .

Consider the leftmost trapezoid T 0 of T ′ and let D 0 be its corresponding 2-interval in D. By our definition of a 2-interval and of T (D), any trapezoid in T (D), has a bottom interval which is completely to the left of its top interval. Thus, T 0 can only clash with trapezoids on its right in T ′ . Now, if D is a point 2interval set, then all 2-intervals with left intervals intersecting the right interval of D 0 have the same left interval, and as T ′ is pairwise disjoint, at most one of these has a corresponding trapezoid in T ′ . Furthermore, if D is a unitary 2-interval set, intersecting intervals involved in D must overlap. Thus, any trapezoid in T ′ clashing with T 0 corresponds to a 2-interval with a left interval which contains either endpoints, but not both, of the right interval of D 0 . Since T ′ is pairwise disjoint, there can be at most two such trapezoids in T ′ .

Algorithm {<, ≬}-Approx first computes T ′ the maximum pairwise disjoint subset of T (D), and then repeatedly adds the leftmost trapezoids in T ′ to the solution while omitting all trapezoids which clash with this trapezoid in T ′ . A schematic description of algorithm {<, ≬}-Approx is given in Figure 5. time. In addition, each iteration in step 3 of the algorithm can easily be computed by scanning T ′ a constant number of times. As there are O(n) iterations all together, it follows that step 3, and consequently algorithm {<, ≬}-Approx, can be computed in O(n 2) time. In fact, if we sort all the right endpoints of intervals involved in D in an O(n lg n) preprocessing stage, we can compute each iteration of step 3 in linear time with respect to the number of trapezoids omitted. As there is only a constant number of such trapezoids in each iteration, step 3 can be computed in O(n) time. This yields a total of O(n lg n) running time.

Definition 2 (

 2 The 2-Interval Pattern problem). Let D be a set of 2intervals and let R ⊆ {<, ⊏, ≬}, R = ∅, be a given model. The 2-Interval Pattern problem asks to find a maximum cardinality R-comparable subset of D. By the above definition, any solution for the 2-Interval Pattern problem over a model R corresponds to a secondary structure constrained by R. Let D be a set of 2-intervals and let S(D) = {I, J : D = (I, J) ∈ D} be the set of intervals involved in D. Several biologically motivated restrictions on D and S(D) are of interest.

3 Fig. 1 .Definition 3 .

 313 Fig. 1. Restrictions for 2-interval sets. Intervals are represented by dark lines or circles and 2-intervals are represented by a thin line connecting two intervals. (a) A point 2-interval set where D1 ≬ D2 and D1 < D3. D2 and D3 are not disjoint and thus are not comparable by any relation. (b) A unitary 2-interval set where D1 ≬ D2, D1 < D3, and D2 < D3. (c) A balanced 2-interval set where D3 ⊏ D2. The entire set is {<, ⊏}comparable. (d) An unlimited {<, ⊏, ≬}-comparable 2-interval set.

Lemma 1 .

 1 Fig. 2. A schematic description of algorithm Bal-{<, ⊏, ≬}-Approx.

Algorithm 1 . 3 .Fig. 3 .

 133 Fig. 3. A schematic description of algorithm {⊏, ≬}-Approx.

Lemma 2 .

 2 Algorithm {⊏, ≬}-Approx is a 4-approximation (3-approximation) algorithm for the 2-Interval Pattern problem for unlimited (unitary) 2interval sets. Proof. Immediate from the above discussion and from Proposition 1 and Lemma 1. ⊓ ⊔ Time complexity. The number of sub-procedure invocations in step 4(b) of {⊏ , ≬}-Approx is bounded by O(n) where n denotes the size of the input set. Also, generating all maximal cliques of Ω C(D) can be done in O(n 2) time. Hence, we have a super-quadratic running time of O(n 2 lg n) for unitary 2-interval sets and a O(n 3) running time for balanced 2-interval sets. For unlimited 2-interval sets, the running time of {⊏, ≬}-Approx is polynomial [2].

Observation 2 .

 2 Any two disjoint 2-intervals in D are {<, ≬}-comparable if and only if their corresponding trapezoids in T (D) are disjoint.

Algorithm 1 .Fig. 5 .

 15 Fig. 5. A schematic description of algorithm {<, ≬}-Approx.

Table 1 .

 1 The 2-Interval Pattern problem over it's various models and restrictions. Left part: Classical complexity results for the 2-Interval Pattern problem, where n = |D|. Right part: The approximation factors we obtain in this paper.

	Approximation factors
	Model	Unl. Bal. Uni. Pnt.
	{<, ⊏, ≬} (Section 2) 4 a 4 a {⊏, ≬} (Section 3) {<, ≬} (Section 4) 6 b	4 b 4 d 3 e 3 c 5 b 3 c 2 c --
	a Polynomial-time [2].
	11]	

b O(n 2) time algorithm. c O(n lg n) time algorithm [2]. d O(n 3) time algorithm. e O(n 2 lg n) time algorithm.

Partially supported by the Israel Science Foundation grant 282/01.

Balanced 2-interval sets.

We next consider balanced 2-interval sets. We show that a slight modification to algorithm {<, ≬}-Approx yields a 5-approximation algorithm for this case. We call this new algorithm Bal-{<, ≬}-Approx. Algorithm Bal-{<, ≬}-Approx differs from {<, ≬}-Approx only by the fact that at each iteration of step 3, instead of choosing the leftmost trapezoid in T ′ , the smallest trapezoid (i.e., the trapezoid corresponding to the smallest 2-interval) amongst all trapezoids in T ′ is chosen for the solution. The rest of this section is devoted to the 2-Interval Pattern problem over the {<, ≬} model for unlimited 2-interval sets. We introduce a slightly more delicate modification of {<, ≬}-Approx to obtain a 6-approximation algorithm for the unlimited case. For this, we consider special trapezoid families which have structures that are convenient for our purposes.

Definition 7 (Proper trapezoid family). A family of trapezoids T is proper if for any two distinct trapezoids

Definition 8 (Strongly proper trapezoid family). A proper family of trapezoids T is strongly proper if for any two distinct trapezoids

, where l(J ′ 1), r(J ′ 1) and l(I ′ 2), r(I ′ 2) are the left and right endpoints of J ′ 1 and I ′ 2 respectively.

Note that by the above definition, any pairwise disjoint family of trapezoids is proper, but the converse is not true. Thus, T ′ ⊆ T computed at step 2 of {<, ≬}-Approx is a proper trapezoid family. Also, computing a strongly proper subset T ′′ ⊆ T ′ can be done easily by adjusting step 3 of {<, ≬}-Approx. Instead of omitting all trapezoids clashing with the leftmost trapezoid in this iteration, we need only to omit a small subset of these trapezoids. More specifically, let T 0 = (I ′ 0 , J ′ 0) be the leftmost trapezoid in T ′ . We only omit trapezoids

. It is not difficult to see that we obtain a strongly proper trapezoid family T ′′ ⊆ T ′ if we proceed in this fashion and that |T ′′ | ≥ 1 3 |T ′ |. Definition 9 (Clashing trapezoid graph). Given a family T of trapezoids, the clashing trapezoid graph of T , denoted by G T , is the graph such that each vertex in V (G T) corresponds to a distinct trapezoid in T , and two vertices are connected by an edge if and only if their corresponding trapezoids clash. Lemma 5. Let T be a family of trapezoids. If T is strongly proper then G T is a forest.

Proof. Let T be a strongly proper family of trapezoids and let G T be its corresponding clashing trapezoid graph. Define G * T as the directed graph obtained be orientating the edges of G T according to the precedence relation of T . In other words,

Since T is strongly proper, every trapezoid in T clashes with at most one trapezoid on its left, and so the in-degree of every vertex

However, in such a case we must have T 0 < T t < T 0 by definition of G * T , which is clearly a contradiction. Hence, we conclude that G * T , and consequently G T , contain no cycles, and the above lemma holds.

⊓ ⊔

It is well known that the maximum independent set in any forest G is of size at least 1 2 |V (G)| and that this set can be found in linear time with respect to |V (G)|. Also, by definition, if T ′′ is a pairwise disjoint family of trapezoids, then any independent set of G T ′′ corresponds to a pairwise disjoint non-clashing set of trapezoids, which by Observation 3, corresponds to a {<, ≬}-comparable set of 2-intervals. A schematic description of our algorithm for unlimited 2-intervals sets, called Unl-{<, ≬}-Approx, is given in Figure 6. Lemma 6. Algorithm Unl-{<, ≬}-Approx is a 6-approximation algorithm for the 2-Interval Pattern problem over the {<, ≬} model.

Proof. Let D be the input set of 2-intervals and let T (D), T ′ and T ′′ be the trapezoid families as described in the above description of Unl-{<, ≬}-Approx. Also, denote by OP T the maximum {<, ≬}-comparable subset of D. We have

Accumulating all these inequalities together we get: Step 3 can be computed straightforwardly in O(n 2) time. Finally, step 4 can be computed in O(n) time since G T ′′ is a forest. Thus, the whole algorithm can be implemented to run in O(n 2) time.