N
N

N

HAL

open science

Constant-space string matching in sublinear average

time

Maxime Crochemore, Leszek Gasieniec, Wojciech Rytter

» To cite this version:

Maxime Crochemore, Leszek Gasieniec, Wojciech Rytter. Constant-space string matching in sublinear
average time. Compression and Complexity of Sequences (Positano, 1997), Jun 1997, Salerno, Italy.

pp-230-239, 10.1109/SEQUEN.1997.666918 . hal-00619976

HAL Id: hal-00619976
https://hal.science/hal-00619976
Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00619976
https://hal.archives-ouvertes.fr

Constant-Space String-Matching
in Sublinear Average Time

(Extended Abstract)

MAXIME CROCHEMORE® LESZEK GASIENIEC!

Universite de Marne-la-Vallee Max-Planck Institut fur Informatik

WOICIECH RYTTER?
Warsaw University
and

University of Liverpool

Abstract

Given two strings: pattern P of length m and text T of length n. The string-
matching problem is to find all occurrences of the pattern P in the text T. We
present a simple string-matching algorithms which works in average o(n) time
with constant additional space for one-dimensional texts and two-dimensional
arrays. This is the first attempt to the small-space string-matching problem in
which sublinear time algorithms are delivered. More precisely we show that all
occurrences of one- or two-dimensional patterns can be found in O(%) average
time with constant memory, where r is the repetition size (size of the longest

repeated subword) of P.

*Institut Gaspard Monge, Universite de Marne-la-Vallée, France (mac@univ-mlv.fr).

TMax-Planck Institut fiir Informatik, Im Stadtwald, D-66123 Saarbriicken, Germany
(leszekOmpi-sb.mpg.de).

Hnstitute of Informatics, Warsaw University, Poland and Department of Computer Science, Uni-
versity of Liverpool, U.K. Supported by the grant KBN 8T11C01208 (rytter@mimuw.edu.pl).

1 Introduction

The string-matching problem is defined as follows. Assume we are given two strings:
pattern P of length m and text T of length n. The pattern occurs at position ¢ in
text T iff P = T[i..i+m—1]. We consider algorithms that determine all occurrences
of the pattern P in the text T. The complexity of the string matching algorithm is
measured by the number of symbol comparisons of pattern and text symbols. The
algorithms solving string-matching problem in linear time and constant space are
perhaps the most interesting ones among all designed for the entire problem. The first
algorithm which uses a constant amount of additional memory was proposed by Galil
and Seiferas in [8]. Later Crochemore and Perrin in [4] have presented an algorithm
that achieves a smaller (at most 2n) number of comparisons while preserving the small
amount of memory. Then, another improvement (%) on the number of comparisons
was presented by Breslauer in [2]. In the meantime, alternative algorithms were

introduced by Gasieniec, Plandowski and Rytter in [9] (2 + ¢) and [10] (1 + ¢).

Besides there are known algorithms which make a sublinear number of comparisons
on the average. The first such method was proposed in [11] for strings. An attempt
to 2d-dimensional pattern matching fast on the average is due to Baeza-Yates and
Régnier in [1]. However all known sublinear average time algorithms use a linear-size
additional memory to keep a table of shifts as in the Boyer-Moore algorithm, (see
e.g. [11], [7]), or for the representation of a directed subword graph or equivalent
data structures (see e.g. [3] and [6]). The latter algorithms have the best possible

O(”k’%) average time complexity due to lower bound of Yao [12].

One can try to find a trade-off between small space and good average time applying
techniques from [3] to the subwords of the pattern P. This might lead to an algorithm

which uses O(s) space (size of the preprocessed subwords) and has O(%)

average
time. Until now there was no algorithm both performing an average sublinear number

of comparisons and using only constant memory space.

In this paper we present the novel idea of such an algorithm for one-dimensional
strings as well as for two-dimensional arrays. The idea of the algorithms is based on

the use of subword repetitions.

For the simplicity of the presentation we assume that all strings considered in the

paper are built over a binary alphabet ¥ = {a, b}.

We say that the word w € ¥* has a period ¢ (0 < ¢ < |w|) if w[i] = w[i + ¢] for

all positions 1 < < |w| — q.

The shortest period of w is called the period of w. If it satisfies ¢ < |w|/2, then

the word w is called periodic; otherwise, w is called nonperiodic.

2 Nonperiodic one-dimensional patterns

In this section we assume that the pattern P is nonperiodic.

Let us denote by rep_size(P) the size of the length of a largest subword of P.

Example 1.

The repeated subword in an example text given below is indicated here in bold.

rep_size(ababbaababaaababbaababba) = 9.

The number of logarithmic-size subwords of a text is large enough to guarantee that

at least one of them repeats. This implies easily the following fact.

Lemma 1

For each pattern P of size m rep_size(P) = Q(logm).

Denote r = rep_size(P), and let w be a longest repeated subword. Assume
Plp—r.p—1] = Plg—r.q—1], p<g—r and P[p]# P[q.
In Example 1 we have
(w,r,p,q) = (babbaabab,9,11,23).

The positions p, ¢ are mismatches w.r.t. the repetition of the word w. In general
if there are no mismatch positions based on repetition w to the right of two copies of

w then we try to find them to the left reversing the string-matching process.

In case no mismatch is found neither to the right nor to the left it means that the
repetition occurs at the borders of the pattern. This case is handled similarly to the

periodic case discussed in the next section.
We say that a position ¢ in T is a mismatch position iff T[i +p—1] £ T[i +q—1].
We call a window any interval of positions [i..i4+r—1]on the T, for 1 < < n—r+1.

Assume w.l.o.g. that we already know the 4-tuple (w,r, p, q).

Denote by Leftmost_Mismatch(W') the procedure that finds the first (from the left)
mismatch position in a given window W. If there is no such a mismatch position then

a special value nil is returned.

Lemma 2
(1). If Leftmost Mismatch(W) = nil , no position of P in T is in W,
(2). Otherwise, no position of P in T is in W — {Leftmost_Mismatch(W)}.

Proof:

The mismatch is used as a constant-size deterministic sample. a

Denote by Naive_Check(i) the procedure that tests a possible occurrence of P
starting at a given position ¢ in 7" and that tests the equality of corresponding symbols
from left to right.

In the worst case, m comparisons are done, but for random binary texts T' the
average time is really small. We assume that symbols of the text are uniformly
distributed.

Lemma 3
On random texts each of the procedures Naive_Check and Leftmost_Mismatch makes

on the average less than 2 comparisons.

Proof: The sum 22% is bounded by 2. a

Lemma 4

Assume that pattern P is nonperiodic. Then, for a random text T, we can find all the

_n
rep _size(P)

additional memory. The worst-case running time of the algorithm is O(n).

occurrences of P in T in O(), which is O(ﬁ), average time using constant

Proof:

There are O(n/r) iterations in the algorithm Nonperiodic_Pattern_Searching below.
Each iteration uses at most 4 comparisons on the average both for execution of
Naive_Check and Leftmost_Mismatch, due to Lemma 3.

The comparisons done during different iterations can be dependent on each other,
but the independence is not needed according to the fact that the average value of a

sum of random variables is the sum of their average value.

Therefore the algorithm makes altogether at most O(n/r) comparisons on the average.

ALGORITHM Nonperiodic_Pattern_Searching;
{ nonperiodic pattern };
1= 1;
r:= rep_size(P);
while1 <n —m do
begin
W= [i.a+r—1];
io := Leftmost_Mismatch(W)
if 19 # nil then
if Naive_Check(io) then
report match at ig;
=147

end

Similarly to the algorithm presented in [10] we can guarantee the linear worst-case
time of the algorithm Nonperiodic_Pattern_Searching since the shifts are based on a

longest repeated subword of the pattern. This completes the proof. a

3 Periodic one-dimensional patterns

Assume now that P is periodic, so obviously its repetition size is large.

Lemma 5
If P is periodic then rep_size(P) >

E

5

In this situation we cannot use the approach based on 4-tuples (w,r, p,q). Thus
we derive a slightly different algorithm, which is even more efficient than the one used

in nonperiodic case.

Lemma 6
Assume P is periodic. Then for a random text T we can find all occurrences of P in
T in O() average time using constant additional memory. The worst-case time of

the algorithm is linear.

Proof:
Assume p is the period of P, where p < |P|/2. We can partition the positions in

T into disjoint consecutive large windows; each window consists of m/2 consecutive
positions of T (the last one can be smaller). The first large window is [1..m/2].

The algorithm makes mL/Z iterations. We process each large window as follows. As-

sume that the current window is [i 4+ 1..71 + m/2].
Phase 1. find the rightmost mismatch in T according to the period p in the segment
[14+1..i4m]. If a mismatch is found then switch to the next window [i+m /24 1..i+m]

and execute Phase 1 again, otherwise
Phase 2. search naively for an occurrence of P starting in the current window

The probability that we do not have a mismatch in Phase 1 is exponentially
small, so the expected cost of the second phase is very small even if we search for
the occurence naively. The expected time to find a mismatch in the first phase is
O(1). There are O(n/m) iterations, so the total cost is as required. This completes
the proof. a

The algorithm for the nonperiodic case when repetition is placed on borders is

handled in the same way but with windows of size O(r).

Lemma 4 and Lemma 6 imply the following result.

Theorem 7

For a random text T we can find all occurrences of P in T in O(average

i)
rep_size(P)

time (which is O(logm)) using constant additional memory. The worst-case time of

the algorithm is linear.

4 Two-dimensional pattern-matching

In this section we show that also for the 2d-pattern matching problem the efficiency

of a search depends on the repetition size.

Assume the pattern P and the text T are m x m and n x n symbol arrays,

respectively.
Denote N = n?, M = m?.

We say that the pattern occurs in T' at position (¢, 7) iff Ple,y] = Tli+x—1,7+
y — 1] for all integers 1 < z,y < m.
A 2-dimensional pattern P has a period [a,b] if Pi,j] = P[i 4+ a,j + b], for all
1<i<m—aand 1< j53<m-—0.

If pattern P has a period [a,b] such that max{a,b} < % then it is called periodic.

Denote by lrep_size(P) the maximum repetition size of a row of P.

Theorem 8
Assume P and T are two-dimensional texts. For a random two-dimensional text T

Trepaize(P)
lrep_size(P/?

there is an algorithm that finds all the occurrences of P in T time O(
which is O(logLM)), average time using constant additional memory. If P contains a
periodic row then the algorithm performs only O(%) comparisons.

Proof:
Similarly as in 1-dimensional case we consider periodic and nonperiodic case sepa-
rately. The algorithm is almost the same as for one dimension. We can construct a

2-dimensional version of the algorithm Nonperiodic_Pattern_Searching.

In the case where all rows of the pattern are nonperiodic, the algorithm takes the
first row of the pattern and looks for it scanning each row of T partitioned into
windows of size lrep_size(P). For each window at least one position involves a test
for an occurrence of the whole pattern. Instead of Naive_Check(ig), a version for 2
dimensions 2d-Naive_Check(io, jo) is used. According to lemma 1 we have altogether
N/lrep_size(P) windows, and in each of them the average number of comparisons
is constant. Hence the total number of comparisons is O(N/1rep_size(P)), which is
O(IOgLM) since lrep_size(P) = Q(log M).

In the case where pattern P has at least one periodic row, the algorithm chooses one
such row and then proceeds in a similar way as in 1-dimensional case. Each row of
T is partitioned into large windows. There are O(%) such windows, and in each of
them the algorithm makes a constant number of comparisons on the average. Hence

the total number of comparisons is O(%) This completes the proof. O

In the case of a periodic pattern P the text search can be done faster.

Theorem 9

If the pattern P is periodic the search for it in T can be done in time O(%)

Proof:

Since the pattern P is periodic it has two repeated subrectangles of size at least

Z x % (see fig. 1, and the shaded areas named A), which defines a set of pairs of

equal symbols of size Q(M). We consider right bottom quadrants D and E of these

rectangles. The 2-dimensional sampling is using this set as follows. Assume that there

pattern P
subsquare D text T

the window
>m/2 c >ma /
A |
. >m/4 ! subsquare D
short period |
>m/2
/ P : IX/
| Y
L ! |
! i subsquare E
|
A : -
mismatch A
/ m I
Lo

large repeated squares ~ SUbsauare E

Figure 1: Sampling in 2-dimensions, if there is mismatch between position = and y

then there is no occurrence of P starting in the indicated window.

is a pair of different symbols (x,y) in the text T whose positions differ exactly by a
vector that is a short period in P. Let symbol = belong to square D and let y belong
to E. Then there is no any occurrence of pattern P in the window B. Using the
latter observation the text T' is divided into windows of size at least %t x 2t = Q(M)
(corresponding to first quadrant of A). The search in every window starts from the
test of equality of symbols in pairs between windows E and D. Since the text is
random the algorithm makes only a constant number of tests on the average in every
window, and this finally gives the O(%) desired bound. O

We can define 2-dimensional repetition size of 2d-pattern P (2drep_size(P), in short)
as the largest repeated subsquare area of P. Similarly to 1-dimensional case we can

prove that.

Theorem 10
For a random two-dimensional text T there is an algorithm that finds all the occur-

rences of P in T in O(WJZZE(P)) average time using constant additional memory.

5 Summary

The main result of the paper is a constant space algorithm that performs O(n/log(m))

comparisons on the average for one-dimensional as well as for two-dimensional texts.

In the case of periodic patterns the average behavior of the algorithm is even better,

reaching the asymptotic bound of O(2).

n
m

Our paper initiates a discussion about pattern matching algorithms using small

space and that are fast on the average. In this paper we have done some steps towards

the goal but we think that the most interesting problem is still open: what is the

exact average complexity of constant-space string matching? Or respectively: what

is the space bound needed by any algorithm making O(7- - log(m)) comparisons on

the average.

References

1]

R. Baeza-Yates and M. Régnier, Fast Algorithms for two-dimensional and Mul-
tiple Pattern Matching, In Proc. of 2nd Scandinavian Workshop on Algorithm
Theory, SWAT 90, LNCS 447, pp. 332-347.

D. Breslauer, Saving Comparisons in the Crochemore—Perrin String Matching
Algorithm. In Proc. of Ist European Symp. on Algorithms, p. 61-72, 1993.

M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string matching algorithms,
Algorithmica (1994) 12, pp.247-267.

M. Crochemore and D. Perrin, Two-way string-matching. J. Assoc. Comput.

Mach., 33(3), p. 651-675, 1991.

M. Crochemore and W. Rytter, Periodic Prefixes in Texts. In Proc. of Se-
quences 91 Workshop Sequences II: Methods in Communication, Security and

Computer Science, p. 153-165, Springer—Verlag, 1993.
M. Crochemore and W. Rytter, Text algorithms. Ozford University Press

Z. Galil, On improving the worst case running time of the Boyer-Moore string

searching algorithm. CACM 22, (1979) 505-508

Z. Galil and J. Seiferas, Time-space-optimal string matching. J. Comput. System
Seci., 26, p. 280-294, 1983.

L. Gasieniec, W. Plandowski and W. Rytter, The zooming method: a recursive
approach to time-space efficient string-matching. Theoret. Comput. Sci. 1996

[10] L. Gasieniec, W. Plandowski and W. Rytter, Sequential sampling: a new ap-
proach to constant space pattern-matching. CPM 1995

[11] D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern matching in strings. SIAM
J. Comput., 6, p. 322-350, 1977.

[12] A.C. Yao, The Complexity of Pattern Matching for a Random String, SIAM
Journal on Computing, 8(3), pp. 368-387, August 1979.

