
HAL Id: hal-00619974
https://hal.science/hal-00619974

Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A trie-based approach for compacting automata
Maxime Crochemore, Chiara Epifanio, Roberto Grossi, Filippo Mignosi

To cite this version:
Maxime Crochemore, Chiara Epifanio, Roberto Grossi, Filippo Mignosi. A trie-based approach for
compacting automata. Combinatorial Pattern Matching, 2004, Turkey. pp.145-158, �10.1007/978-3-
540-27801-6_11�. �hal-00619974�

https://hal.science/hal-00619974
https://hal.archives-ouvertes.fr

A Trie-Based Approach for Compacting Automata

Maxime Crochemore⋆, Chiara Epifanio⋆⋆, Roberto Grossi⋆ ⋆ ⋆, and
Filippo Mignosi†

Abstract. We describe a new technique for reducing the number of
nodes and symbols in automata based on tries. The technique stems
from some results on anti-dictionaries for data compression and does not
need to retain the input string, differently from other methods based on
compact automata. The net effect is that of obtaining a lighter automa-
ton than the directed acyclic word graph (DAWG) of Blumer et al., as
it uses less nodes, still with arcs labeled by single characters.

Keywords: Automata and formal languages, suffix tree, factor and suffix au-
tomata, index, text compression.

1 Introduction

One of the seminal results in pattern matching is that the size of the minimal
automaton accepting the suffixes of a word (DAWG) is linear [4]. This result
is surprising as the maximal number of subwords that may occur in a word is
quadratic according to the length of the word. Suffix trees are linear too, but
they represent strings by pointers to the text, while DAWGs work without the
need of accessing it.

DAWGs can be built in linear time. This result has stimulated further work.
For example, [8] gives a compact version of the DAWG and a direct algorithm
to construct it. In [13] and [14] it is given an algorithm for online construction
of DAWGs. In [11] and [12] space-efficient implementations of compact DAWGs
are designed. For comparisons and results on this subject, see also [5].

In this paper we present a new compaction technique for shrinking automata
based on antifactorial tries of words. In particular, we show how to apply our
technique to factor automata and DAWGs by compacting their spanning tree
obtained by a breadth-first search. The average number of nodes of the structure

⋆ Institut Gaspard-Monge, Université de Marne-la-Vallée, France and King’s College
(London), Great Britain (mac@univ-mlv.fr).

⋆⋆ Dipartimento di Matematica e Applicazioni, Università di Palermo, Italy
(epifanio@math.unipa.it).

⋆ ⋆ ⋆ Dipartimento di Informatica, Università di Pisa, Italy (grossi@di.unipi.it).
† Dipartimento di Matematica e Applicazioni, Università di Palermo, Italy

(mignosi@math.unipa.it).

thus obtained can be sublinear in the number of symbols of the text, for highly
compressible sources. This property seems new to us and it is reinforced by
the fact the number of nodes for our automata is always smaller than that for
DAWGs.

We build up our finding on “self compressing” tries of antifactorial binary
sets of words. They were introduced in [7] for compressing binary strings with
antidictionaries, with the aim of representing in a compact way antidictionar-
ies to be sent to the decoder of a static compression scheme. We present an
improvement scheme for this algorithm that extends its functionalities to any
chosen alphabet for the antifactorial sets of words M . We employ it to represent
compactly the automaton (or better the trim) A(M) defined in [6] for recog-
nizing the language of all the words avoiding elements of M (we recall that a
word w avoids x ∈ M if x does not appear in w as a factor).

Our scheme is general enough for being applied to any index structure having
a failure function. One such example is that of (generalized) suffix tries, which
are the uncompacted version of well-known suffix trees. Unfortunately, their
number of nodes is O(n2) and this is why researchers prefer to use the O(n)-
node suffix tree. We obtain compact suffix tries with our scheme that have a
linear number of nodes but are different from suffix trees. Although a compact
suffix trie has a bit more nodes than the corresponding suffix tree, all of its arcs
are labeled by single symbols rather than factors (substrings). Because of this
we can completely drop the text, as searching does not need to access the text
contrarily to what is required for the suffix tree. We exploit suffix links for this
kind of searching. As a result, we obtain a family of automata that can be seen
as an alternative to suffix trees and DAWGs.

This paper is organized as follows. Section 2 contains our generalization of
some of the algorithms in [7] so as to make them work with any alphabet.
Section 3 presents our data structure, the compact suffix trie and its connection
to automata. Section 4 contains our new searching algorithms for detecting a
pattern in the compact tries and related automata. Finally, we present some
open problems and further work on this subject in Section 5.

2 Compressing with Antidictionaries and Compact Tries

In this section we describe a non-trivial generalization of some of the algorithms
in [7] to any alphabet A, in particular with Encoder and Decoder algorithms
described next. We recall that if w is a word over a finite alphabet A, the
set of its factors is called F (w). For instance, if w = aeddebc, then F (w) =
{ε, a, b, . . . , aeddebc}.

Let us take some words in the complement of F (w), i.e., let us take some
words that are not factors of w, call these forbidden. This set of such words
AD is called an antidictionary for the language F (w). Antidictionaries can be
finite as well as infinite. For instance, if w = aeddebc the words aa, ddd, and
ded are forbidden and the set {aa, ddd, ded} is an antidictionary for F (w). If

w1 = 001001001001, the infinite set of all words that have two 1’s in the i-th
and i + 2-th positions, for some integer i, is an antidictionary for w1.

We want to stress that an antidictionary can be any subset of the complement
of F (w). Therefore an antidictionary can be defined by any property concerning
words.

The compression algorithm in [7] treats the input word in an on-line manner.
Let us suppose to have just read the word v, proper prefix of w. If there exists
any word u = u′a, where a ∈ {0, 1}, in the antidictionary AD such that u′ is a
suffix of v, then surely the letter following v cannot be a, i.e., the next letter is
b, with b �= a. In other words, we know in advance the next letter b that turns
out to be “redundant” or predictable. As remarked in [7], this argument works
only in the case of binary alphabets.

We show how to generalize the above argument to any alphabet A, i.e., any
cardinality of A. The main idea is that of eliminating redundant letters with the
compression algorithm Encoder. In what follows the word to be compressed is
noted w = a1 · · · an and its compressed version is denoted by γ(w).

Encoder (antidictionary AD, word w ∈ A∗)
1. v ← ε; γ ← ε;
2. for a ← first to last letter of w

3. if there exists a letter b ∈ A, b �= a such that
for every suffix u′ of v, u′b �∈ AD then

4. γ ← γ.a;
5. v ← v.a;
6. return (|v|, γ);

As an example, let us run this algorithm on the string w = aeddebc, with
AD = {aa, ab, ac, ad, aeb, ba, bb, bd, be, da, db, dc, ddd, ea, ec, ede, ee}.

The steps of the execution are described in the next array by the current
values of the prefix vi = a1 · · · ai of w that has been just considered and of the
output γ(vi). In the case of a positive answer to the query to the antidictionary
AD, the array indicates the value of the corresponding forbidden word u, too.
The number of times the answer is positive in a run corresponds to the number
of bits erased.

ε γ(ε) = ε

v1 = a γ(v1) = a

v2 = ae γ(v2) = a aa, ab, ac, ad ∈ AD

v3 = aed γ(v3) = a ea, ec, ee, aeb ∈ AD

v4 = aedd γ(v4) = a da, db, dc, ede ∈ AD

v5 = aedde γ(v5) = a da, db, dc, ddd ∈ AD

v6 = aeddeb γ(v6) = ab

v7 = aeddebc γ(v7) = ab ba, bb, bd, be ∈ AD

Remark that γ is not injective. For instance, γ(aed) = γ(ae) = a.
In order to have an injective mapping we consider the function γ′(w) =

(|w|, γ(w)). In this case we can reconstruct the original word w from both γ′(w)
and the antidictionary.

Remark 1. Instead of adding the length |w| of the whole word w other choices
are possible, such as to add the length |w′| of the last encoded fragment w′ of
w. In the special case in which the last letter in w is not erased, we have that
|w′| = 0 and it is not necessary to code this length. We will examine this case
while examining the algorithm Decompact.

The decoding algorithm works as follows. The compressed word is γ(w) =
b1 · · · bh and the length of w is n. The algorithm recovers the word w by predicting
the letter following the current prefix v of w already decompressed. If there
exists a unique letter a in the alphabet A such that for any suffix u′ of v, the
concatenation u′a does not belong to the antidictionary, then the output letter
is a. Otherwise we have to read the next letter from the input γ.

Decoder (antidictionary AD, word γ ∈ A∗, integer n)
1. v ← ε;
2. while |v| < n

3. if there exists a unique letter a ∈ A such that for any u′ suffix of v

u′a does not belong to AD then

4. v ← v · a;
5. else

6. b ← next letter of γ;
7. v ← v · b;
8. return (v);

The antidictionary AD must be structured in order to answer, for a given
word v, whether there exist |A| − 1 words u = u′b in AD, with b ∈ A and b �= a,
such that u′ is a suffix of v. In case of a positive answer the output should also
include the letter a.

Languages avoiding finite sets of words are called local and automata recog-
nizing them are ubiquitously present in Computer Science (cf [2]).

Given an antidictionary AD, the algorithm in [6], called L-automaton,
takes as input the trie T that represents AD, and gives as output an automaton
recognizing the language L(AD) of all words avoiding the antidictionary. This
automaton has the same states as those in trie T and the set of labeled edges of
this automaton includes properly the one of the trie. The transition function of
automaton A(AD) is called δ. This automaton is complete, i.e., for any letter a

and for any state v, the value of δ(v, a) is defined.
If AD is the set of the minimal forbidden words of a text t, then it is proved

in [6] that the trimmed version of automaton A(AD) is the factor automaton of
t. If the last letter in t is a letter $ that does not appear elsewhere in the text, the
factor automaton coincides with the DAWG, apart from the set of final states.
In fact, while in the factor automaton every state is final, in the DAWG the
only final state is the last one in every topological order. Therefore, if we have
a technique for shrinking automata of the form A(AD), for some antidictionary
(AD), this technique will automatically hold for DAWG, by appending at the
end of the text a symbol $ that does not appear elsewhere. Actually the trie
that we compact is the spanning tree obtained by a breadth-first search of the

DAWG, as this spanning tree is the trie obtained by pruning all leaves from the
trie of all minimal forbidden words of text t (cf. [6]). The appendix presents an
example of this procedure.

Self-compressing tries. Let us analyze now a technique to achieve a better com-
pression ratio than the one obtained with the simple application of algorithm
ENCODER.

If AD is an antifactorial antidictionary for a text t then for any word v ∈ AD

the set AD\{v} is an antidictionary for v. This last property lets us to compress
v using AD \ {v} or a subset of it. Hence the new technique, that is analogous
to the one in [7], will consist in self-compressing the antidictionary of the text t

that is not necessarily binary.
Let us go in details and consider a generic word v in AD. Words u in AD\{v}

of length smaller than or equal to v’s one will be used to compress v and to obtain
its compressed version γ1(v). If a word u in AD, such that |u| = |v|, is used for
compressing v, then u and v have the same prefix x of length |u|−1 of v. Further
γ1(v) = γ1(u) = γ1(x).

In this case we loose information on last letters of u and v. We have two
choices. The first one is to compress a word v in AD by using as an antidictionary
the subset of AD including all words having length strictly smaller than |v|. The
second choice consists in adopting some strategy to let only one of the two words
being compressed using the other one. We will proceed along the first choice, i.e.
while compressing a given word in the antidictionary we would not use words of
its same length.

Definition 1. A r-uple of words (v1, . . . , vr), being r the cardinality of the al-
phabet A, is called stopping r-uple if v1 = u1a1, . . . vr = urar, where ai are
distinct symbols in A and ui is a suffix of ui+1, for any i such that 1 ≤ i ≤ r−1.

Proposition 1. Let t be a text and AD be an antifactorial antidictionary of t.
If there exists a stopping r-uple (v1, . . . , vr), with vi = uiai, ai ∈ A, 1 ≤ i ≤ r,
then ur is a suffix of t and does not appear elsewhere in t. Moreover there exists
at most one such r-uple of words.

Proposition 2. Let (v1, . . . , vr) be the only possible stopping r-uple in the anti-
dictionary AD of a text t. If the prefix ur−1 of length |vr−1|−1 of the penultimate
word vr−1 in the lexicographic word is a proper suffix of the prefix ur of length
|vr| − 1 of the last word vr, then last letter in vr is never erased.

Let us now examine another algorithm, similar to that presented in [7], apart
from some details, that is very important in our case. The idea of this algorithm
is to “erase” states with only one outgoing edge whose label is predictable by
the previous compression algorithm that uses as antidictionary the leaves of the
trie having strictly smaller depth. In other words, consider a state p that has a
unique outgoing edge labeled by a such that, for any other symbol b �= a, the
longest suffix of pb stored in the trie (i.e., δ(p, b)) is a leaf. Then we erase state p

together with its outgoing edge and we replace p by its unique child as described

in Self-compress. This algorithm works in the case when in the antidictionary
there are no stopping r-uples.

Self-compress (trie T , function δ)
1. i ← root of T ;
2. create root i′;
3. add (i, i′) to empty queue Q;
4. while Q �= ∅
5. extract (p, p′) from Q;
6. if p has more than one child then

7. for each child qj of p

8. create q′j as child of p′;
9. add (qj , q

′
j) to Q;

10. else if q is a unique child of p and
q = δ(p, a), a ∈ A then

11. if δ(p, b) is a leaf ∀ b ∈ A, b �= a then

12. add + sign to q′;
13. add (q, p′) to Q;
14. else create q′ as a-child of p′;
15. add (q, q′) to Q;
16. return trie having root i′;

In this case we do not delete the child, but the parent of a compressed
edge, and we add a + sign to the remaining node. Note that with this new
algorithm there is no guarantee that function δ is always defined on the nodes
belonging to the compacted trie (this property was guaranteed with previous
Self-compress algorithm). To avoid this drawback, δ can be recovered by the
relation s(v) (usually called suffix link), the longest suffix of v that is a node
in the trie, where the left-hand δ is the new version defined in terms of the old
version, the right-hand δ,

δ(p, a) =

δ(p, a) if it is defined

δ(sn(p), a) if not, where n = min{m | δ(sm(p), a) is defined}

Hence, the output of this algorithm represents a compact version of the input
trie and, if we include the new function δ, the compact version of the automaton
A(AD).

To deal with the case when the antidictionary contains a stopping r-uple, we
have to add some more information to the output of the algorithm. This added
information can be to keep a pointer to the leaf corresponding to the longest
element of the stopping r-uple together with the length of the compressed ingoing
edge to this leaf. Details are left to the reader.

Compact tries present some very useful and important properties. In partic-
ular we are able to check whether a pattern p is recognized by the automaton
A(AD), by only “decompacting” a small part of the compact trie, output of
previous algorithm, and not by “decompacting” the whole trie described in [7].

The algorithm Search that realizes this task is described in Section 4. Before
that, we introduce compact suffix tries in Section 3, because we make use of their
properties in the next section.

Recall that if the text ends with a symbol $ the compacted version of automa-
ton A(AD) can be seen as a compacted version of the DAWG, that is different
from the classical one, called CDAWG.

Proposition 3. Every node v that is in our compacted DAWG and is not in
the CDAWG is such that it has only one outgoing edge and its suffix link points
to a node of the CDAWG.

3 Compact Suffix Tries

We want to extend our technique to suffix tries that do not represent antifactorial
sets of words.

We adopt the notation defined in [15], and assume that the reader is familiar
with suffix trees. Given a word w = a1a2 . . . an of n symbols drawn from an
alphabet A, called letters, we denote by w[j . . . j + k − 1] the factor of w of
length k that appears in w at position j. The length of w is denoted by |w| = n.
The empty word ǫ is a factor of any word. A factor of the form w[j, |w|] (resp.
w[1, j]) is called a suffix (resp. prefix) of w.

The suffix trie ST (w) of a word w is a trie where the set of leaves is the set
of suffixes of w that do not appear previously as factors in w.

We can identify a node of the trie with the label of the unique path from the
root of the trie to the given node. Sometimes we can skip this identification and,
given a node v, we call σv the label word that represents the unique path from
the root to v.

In this section we define our compacted version CST (w) of the suffix trie.
Basically we use the same approach of the suffix tree, but we compact a bit less,
i.e., we keep all nodes of the suffix tree S(w) and we keep some more nodes of
the trie. In this way we can avoid to keep the text aside.

In order to describe this new data structure, we have to define first of all its
nodes, namely,

1. all the nodes of suffix tree S(w), and
2. all the nodes v of trie ST (w) such that s(v) is a node of suffix tree S(w).

Recall that in the suffix tree, for any suffix w[j, |w|] of w there is a node v such
that σv = w[j, |w|], even if w[j, |w|] has appeared as factor in another position.

At this point one may wonder why are we keeping the nodes of type 2. What
is the relation between these nodes and minimal forbidden words? The answer to
the question is given by next proposition, that can be seen as a kind of converse
of Proposition 3.

Proposition 4. For any node v described in point 2, there exists a letter a such
that σva is a minimal forbidden word of w.

A suffix trie is not a trie of minimal forbidden words, but if we add to the
trie the minimal forbidden words, we can describe a compacting algorithm that
is analogous to that presented in Section 2. The nodes that are neither of type 1,
nor of type 2, and that are not leaves can be erased. More precisely, we do not
need to introduce explicitly the minimal forbidden words in the trie.

Let us now define the arcs of CST (w). Since the nodes of CST (w) are all
nodes of the trie ST (w), for any node v we assign the same number of outgo-
ing arcs, each of them labeled by a different letter. Hence, for any arc of the
form (v, v′) with label l((v, v′)) = a in ST (w), we have an arc (v, x) with label
l((v, x)) = a in CST (w), where the node x is

(i) v′ itself, in the case it is still present in CST (w);
(ii) the first node in CST (w) that is a descendant of v′ in ST (w), when v′ is not

a node of CST (w).

In case (ii), we consider as this arc (v, x) represents the whole path from v

to x in the trie T r(w), and we say that this arc has length greater than one. We
further add a + sign to node x, in order to record this information.

To complete the definition of CST (w) we keep the suffix link function over
these nodes. Notice that, by definition, for any node v of CST (w), the node
pointed by a suffix link, s(v), is always a node of the suffix tree S(w) and hence
it also belongs to CST (w).

We now show that the number of nodes of CST (w) is still linear in the
length |w| of w, independently from the alphabet size. Indeed, since the number
of nodes of the suffix tree S(w) is linear, we only have to prove that the number
of nodes that we add to it to obtain the nodes of CST (w) is linear in the length
|w| of w. This is what we prove in the lemma.

Lemma 1. The number of nodes v of the trie ST (w) such that v does not belong
to the tree S(w) and s(v) is a node of the tree S(w) is smaller than the text size.

Notice that Lemma 1 states a result that is “alphabet independent”, i.e., the
result does not depend on the alphabet size. By definition, since the number
of nodes in the tree is smaller than 2|w|, it is straightforward to prove that the
number of added nodes is smaller than this quantity multiplied by the cardinality
of the alphabet.

The power of our new data structure is that it still has some nice features
when compared to the suffix tree. In fact, we possibly reduce the amount of
memory required by arc labels. While suffix trees arcs are labeled by substrings,
compact suffix tries ones are labeled by single symbols. So they can be accessed
“locally” without jumping to positions in the text, which is no more needed.
Also, this property is “alphabet independent”, as stated in next lemma.

Lemma 2. Let A be any alphabet and w be a word on it. The number of nodes
of the compact suffix trie CST (w) is linear in the length n of w, whichever
cardinality A has.

We remark here that, if we add terminal states to the DAWG of a word
w, the structure thus obtained is the minimal automaton accepting the suffixes
of w. This implies that if we reduce the size of this automaton, we consequently
reduce that of the DAWG.

4 Searching in Compact Tries and Related Automata

In this section we show how to check whether a pattern p occurs as a factor
in a text w, by just “decompacting” a small part of the compact suffix trie
CST (w) associated with w (not the whole trie). Note that the arcs in CST (w)
are labeled with single letters instead of substrings, so we must recover them
somehow without accessing the text.

Generally speaking, with the same technique we can check whether a pat-
tern p is recognized by an automaton A(AD). In this section we center our
description around the algorithms for compact suffix tries, but they work on
automata with minor modifications.

Let us begin by examining a function that returns the string associated with
the path in the trie between two nodes u and v.

Decompact (Compacted trie CST , function δ, function s, arc (u, v))
1. w ← ǫ;
2. a ← label of (u, v);
3. if v has not a + then

4. w ← a;
5. else

6. z ← s(u);
7. while z �= s(v)
8. w ← w concat Decompact(CST , δ, s,(z, δ(z, a)));
9. z ← δ(z, a);

10. if z has only one child x in CST then

11. a ← label of (z, x);
12. return w

Proposition 5. Let u be a node in the compacted trie. If v is a child of u, then
the path from s(u) to s(v) in the compacted trie has no forks.

An easy variation of this algorithm can be used to check whether a pattern
occurs in a text. More precisely, algorithm Search takes as input a node u and
a pattern p. If there is no outgoing path in the decompacted trie from u labeled
p, it returns “null.” If such a path exists and v is its incoming node, it returns v.
The pattern p is represented either as a static variable or as a pointer to pointers.
We denote by succ(p) the operation that, received as input a pointer to a letter,
points to next letter and p[0] points to the first letter of p. The proof of the
correctness of this algorithm follows by induction and by Proposition 5.

Search (Compacted trie CST , function δ, function s, node u, pattern p)
1. if p[0] = end of string then

2. return(u)
3. else

4. if � ∃v such that p[0] is label of (u, v) then

5. return (null)
6. else

7. let v such that (u, v) has label p[0];
8. if v has not a + then

9. Search(CST , δ, s, v, succ(p))
10. else

11. z ← s(u);
12. while z �= s(v)
13. z′ ← δ(z, p[0]);
14. Search(CST , δ, s,z,p)
15. z ← z′

Notice that, since Search returns a pointer, we can use this information
to detect all the occurrences in an index. The drawback of Decompact and
Search is that they may require more then O(m) time to decompact m letters
and this does not guarantee a searching cost that is linear in the pattern length.
To circumvent this drawback, we introduce a new definition, that we use for a
linear-time version of Decompact (hence, Search).

Definition 2. Let s be the suffix link function of a given trie. We define super-

suffix link for a given node v in the trie, the function

s∗ : v → sk(u),

where u is a node in the trie and k is the greatest integer such that sk(u) and
sk(v) are connected by a single edge (i.e., of path length 1), while the path from
sk+1(u) to sk+1(v) has a length strictly greater than 1.

In order to appreciate how this new definition is useful for our goal, consider
the task of decompacting the edge (u, v) in CST to reconstruct the substring
originally associated with the uncompacted tries. We do this by considering
repeatedly (s(u), s(v)), (s2(u), s2(v)), and so on, producing symbols only when
the path from the two nodes at hand has at least one more edge. Unfortunately,
we cannot guarantee that (s(u), s(v)) satisfies this property. With super-suffix
links, we know that this surely happens with (s(s∗(u)), s∗(s(v))) by Definition 2.
Now, Decompact works in linear time with the aid of super-suffix links.

SuperDecompact (Compacted trie CST , function δ, function s, arc (u, v))
1. w ← ǫ;
2. a ← label of (u, v);
3. if v has not a + then

4. w ← a;
5. else

6. z ← s(s∗(v));
7. while z �= s(δ(s∗(v), a))
8. w ← w concat SuperDecompact(CST , δ, s,(z, δ(z, a)));
9. z ← δ(z, a);

10. if z has only one child x in CST then

11. a ← label of (z, x);
12. return w

As a result of the linearity of SuperDecompact, we also have:

Lemma 3. Algorithm Search for a pattern p takes O(|p|) time by using super-
suffix links instead of suffix links.

Full-Text Indexing. A full-text index over a fixed text t is an abstract data type
based on the set of all factors of t, denoted by Fact(t). Such data type is equipped
with some operations that allow it to answer the following query: given x ∈ A∗,
find the list of all occurrences of x in t. If the list is empty, then x is not a factor
of t.

Suffix trees and compacted DAWGs (CDAWGs) can answer to previous query
in time proportional to the length of x plus the size of the list of the occurrences.
By superposing the structure of CDAWGs to our compacted DAWGs we can
obtain the same performance. More precisely, for any edge q of our compacted
DAWG, let us define recursively final(q)

final(q) =

q if q has more than two children or q is the
only final state

final(δ(q, a)) if not, and (δ(q, a)) is the only outgoing edge
from q.

For any edge (p, q) we add another edge p, final(q) labelled by the length of
the path from p to final(q) in the DAWG. These new edges allow to simulate
CDAWGs.

We have examples of infinite sequences of words where our compacted DAWGs
have size exponentially smaller than the text size. This is the first time to our
knowledge that full-text indexes show this property.

5 Conclusions and Further Work

In this paper we have presented a new technique for compacting tries and their
corresponding automata. They have arcs labeled with single characters; they

do not need to retain the input string; also, they have less nodes than similar
automata. We are currently performing some experiments for testing the effective
gain in terms of final size of the automata. For highly compressible sources, our
automata seem to be sublinear in space. We do not known if algorithm Search

strictly needs super-suffix links to work in linear time on the average (in the
worst case, they are needed). Finally, we are investigating methods for a direct
construction of our automata.

References

1. A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic
search, Comm. ACM 18:6 (1975) 333–340.

2. M.-P. Béal. Codage Symbolique, Masson, 1993.
3. M.-P. Béal, F. Mignosi, and A. Restivo. Minimal Forbidden Words and Symbolic

Dynamics, in (STACS’96, C. Puech and R. Reischuk, eds., LNCS 1046, Springer,
1996) 555–566.

4. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas.
The Smallest Automaton Recognizing the Subwords of a Text, Theoretical Com-
puter Science, 40, 1, 1985, 31–55.

5. M. Crochemore, Reducing space for index implementation, in Theoretical Com-
puter Science, 292, 1, 2003, 185–197.

6. M. Crochemore, F. Mignosi, A. Restivo, Automata and forbidden words, in Infor-
mation Processing Letters, 67, 3, 1998, 111–117.

7. M. Crochemore, F. Mignosi, A. Restivo, S. Salemi, Data compression using anti-
dictonaries, in Special issue Lossless data compression, J. Storer ed., Proceedings
of the IEEE, 88, 11, 2000), 1756–1768.

8. M. Crochemore, R. Vérin, Direct Construction of Compact Directed Acyclic Word
Graphs, in CPM97, A. Apostolico and J. Hein, eds., LNCS 1264, Springer-Verlag,
1997, 116–129.

9. V. Diekert, Y. Kobayashi. Some identities related to automata, determinants, and

Möbius functions, Report 1997/05, Fakultät Informatik, Universität Stuttgart,
1997, in (STACS’96, C. Puech and R. Reischuk, eds., LNCS 1046, Springer-Verlag,
1996) 555–566.

10. B. K. Durgan. Compact searchable static binary trees, in Information Processing
Letters, 89, 2004, 49–52.

11. J. Holub. Personal Communication, 1999.
12. J. Holub, M. Crochemore. On the Implementation of Compact DAWG’s, in Pro-

ceedings of the 7th Conference on Implementation and Application of Automata,
University of Tours, Tours, France, July 2002, LNCS 2608, Springer-Verlag, 2003,
289–294.

13. S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, G. Pavesi.
On-Line Construction of Compact Directed Acyclic Word Graphs, To appear in
Discrete Applied Mathematics (special issue for CPM’01).

14. S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, G. Pavesi.
On-Line Construction of Compact Directed Acyclic Word Graphs, Proceedings of
CPM 2001, LNCS 2089, Springer-Verlag, 2001, 169–180.

15. M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications, 90, Cambridge University Press (2002).

Appendix

Let us examine, as an example, the text t = abaababaaba$. Minimal words of
text t are: aaa, aabaa, aa$, babaabab, babab, baba$, bb, b$, $a, $b, $$.

21 22

b

1

17 184

3

b

a b $

8

9

10

11

b $a

b

a

12

24

b

a

1514 16

13

$a b

2

20

$

a

5

6

b

19

a

a

23

b

7

a $

Fig. 1. Trie of the minimal forbidden factors.

21 22

ba

1

a

17 18 1514 1645

1332

19 7 20

23

9

12

24

+

$

a b

bb

a $ab $

+

+

b

b $

$a

b

Fig. 2. Self-Compressed trie of the minimal forbidden factors.

1

4

133

9

12

b

a

+

+

a

a

5

2

7+

b

b $a

a

$

$

$

$
b

b

Fig. 3. Compacted Self-Compressed DAWG of the text t. It has 9 states. It has been ob-
tained by adding the function δ whenever undefined (dotted arcs) to the self-compressed
trie and by trimming it, i.e. by pruning the leaves and the corresponding ingoing and
outgoing arcs. Suffix links and super-suffix links are not drawn.

b

a

 0
a
 1
b
 2
a
 3
a
 4

 5
a
 6
b
 7
a
 8
a
 9
b
 10

 11
$
 12

1

3

4

2

5

(11,1)

(11,1)

(11,1)(6,6)

(6,6)
(3,3) (3,3)

(1,2)

(1,2)

(11,1)

(0,1)

Fig. 4. CDAWG of the text t.

