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Abstract. In the framework of spatially averaged inhomogeneous cosmologies in
classical general relativity, effective Einstein equations govern the dynamics of averaged
scalar variables in a scale–dependent way. A particular cosmology may be characterized
by a cosmic equation of state, closing the hierarchy of effective equations. In this
context a natural candidate is provided by the Chaplygin gas, standing for a unified
description of Dark Energy and Dark Matter. In this paper we suppose that the
inhomogeneous properties of matter and geometry obey the Chaplygin equation
of state. The most extreme interpretation assumes that both Dark Energy and
Dark Matter are not included as additional sources, but are both manifestations of
spatial geometrical properties. This feature is an important conceptual difference in
comparison with the standard approach of a FLRW Universe filled with dust and
another fundamental field characterized by the Chaplygin equation of state. We finally
discuss the consequences of the resulting scenario for effective cosmological parameters
in order to establish the framework of a future confrontation with observations, and
we note that the standard Chaplygin gas may not be ruled out by them.

PACS numbers: 04.20.-q, 04.40.-b, 95.35.+d, 95.36.+x, 98.80.-Es, 98.80.-Jk

1. Introduction

Does an inhomogeneous Universe evolve on average like a homogeneous solution in the

framework of general relativity? This question is not new [27] and naturally emerges

in view of the nonlinearity of the theory and, in particular, from the generally non–

commuting operations of averaging and time–evolution [28]. The main difficulty to

answer it resides in the notion of averaging and in its construction (see, e.g., [20],

Section 2.2 of [4], and references therein).

Our Universe is supposed to verify the strong cosmological principle which demands

homogeneity and isotropy at all scales. This standard approach, known as Friedmann–

Lemâıtre–Robertson–Walker (FLRW hereafter) cosmology, is widely used in order to

describe the dynamics of our Universe and the formation of its constituents. It

however leaves in suspense an explanation about the origin of Dark Energy and Dark

Matter, which respectively represent in this model about 3/4 and 1/4 of the total content
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of the Universe. This last point might actually reveal a symptom of a deeper problem

linked to this approach. Indeed, in FLRW cosmology one determines background

quantities regardless the scale and makes them evolve according to a homogeneous–

isotropic solution of Einstein equations. Our first query could be reformulated in order

to notice the central aspect of this issue: are the background quantities well–defined

within standard cosmology, i.e. as a suitable average over the inhomogeneities? Is

their evolution well–approximated in this framework, i.e. is the time–dependence of the

homogeneous–isotropic averaged state well–approximated by a homogeneous–isotropic

solution?

We shall adopt an approach that averages, in a domain–dependent way, the scalar

parts of Einstein’s equations with respect to synchronous free–falling observers in a

dust model ([14], [15]), a realization of the averaging problem that does not answer

the above questions in the affirmative. The average evolution of an inhomogeneous

Universe differs from the evolution of a homogeneous one; in other words, even if we are

entitled to describe structure formation in terms of perturbations of a background, this

latter is generally not a member of the homogeneous solutions (see also [36], [37]).

This difference of evolution is driven by the non–trivial geometrical structure of an

inhomogeneous space, featuring deviations that are known as “backreaction”. These

backreaction effects can act on average, at least qualitatively, as the dark components.

The set of equations obtained within this approach should be closed to derive the

evolution of all the involved quantities, namely the effective scale factor, the averaged

scalar curvature deviation and the kinematical backreaction variable. In recent papers

attention was turned to a closure under the assumption of global constraints such

as a globally stationary Universe ([16], [17]), or by exploring the solution space with

exact scaling laws for the backreaction and the averaged scalar curvature ([19], [39]), or

by symmetry requirements such as spherical symmetry (e.g. [29], [41], [46], [22], [38],

and references therein). In our present work we want to choose the closure relation

by focusing on the particularity of the model to unify the dark components through

backreaction. According to this point of view, the Chaplygin gas seems to be an

interesting lead since it unifies Dark Matter and Dark Energy in only one fluid, obeying

an exotic equation of state ([35], [32], [33]). This unification is made through the

evolution of this particular fluid and it can be extended to a unification where both

dark components are simultaneously modelled thanks to the scale dependence of our

approach‡. These points motivate us to build a model in which the generically existing

coupling between the backreaction and the averaged scalar curvature deviation, which

encodes the particular geometrical structure evolution of an inhomogeneous Universe, is

furnished by a scale-dependent Chaplygin gas equation of state§.

‡ A “simultaneous” unification has also been proposed in the context of an inhomogeneous, but
fundamental Chaplygin gas in [8].
§ A study of inhomogeneous spherically symmetric spacetimes, presenting non–linear perturbations
constructed from the fluctuations of local variables with respect to background quantities — called
quasi–local scalars, has been given in [45]. As an example the Chaplygin gas is employed in [45]
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In Section 2 we introduce the equations that govern the average evolution of

an inhomogenous universe model and briefly discuss them. We present in Section 3

the Chaplygin gas and some of its properties. In Section 4 we suppose that the

backreaction and the averaged scalar curvature deviation are coupled according to the

Chaplygin state equation. The Chaplygin gas then describes a particular geometrical

structure of the inhomogeneous Universe and does not correspond to any fundamental

field. Finally, in Section 5, we reformulate the results obtained in terms of effective

cosmological parameters, we compare this model to the Friedmannian framework and

we study in particular the acceleration of a spatial domain.

2. Effective description of inhomogeneous universe models

Restricting attention to a Universe filled with irrotational dust, i.e. irrotational

pressureless matter, we spatially average the scalar parts of Einstein equations (the Ha-

miltonian constraint, Raychaudhuri’s equation and the continuity equation) with respect

to a collection of comoving (generalized fundamental) observers over a compact, restmass

preserving spatial domain D, and obtain the following set of equations ([14], [15] and

[20] for details):
(

ȧD

aD

)2

− 8πG

3
〈%〉D = −〈R〉D + QD

6
, (1)

äD

aD
+

4πG

3
〈%〉D =

QD

3
, (2)

〈%〉̇D + 3
ȧD

aD
〈%〉D = 0 , (3)

1

a6
D

(
QD a6

D
)
˙ +

1

a2
D

(
〈R〉D a2

D
)
˙ = 0 , (4)

where aD is the effective volume scale factor,

aD(t) :=

(
VD(t)

VDi

)1/3

, (5)

with VDi
the initial volume of the domain and VD(t) its volume at proper time t,

〈%〉D = M a−3
D /VDi

is the density of irrotational dust averaged over D, 〈R〉D is the

spatial scalar curvature averaged over D and QD is the kinematical backreaction,

QD(t) :=
2

3

〈
(θ − 〈θ〉D)2〉

D − 2
〈
σ2

〉
D , (6)

with θ the rate of expansion and σ :=
√

1
2
σijσij the rate of shear with the shear tensor

components σij.

Eqs. (1, 2) govern the kinematics of the effective scale factor, and Eqs. (3, 4) express

the conservation law for the dust matter and the backreaction terms, respectively. It

and relates the quasi–local variables pressure and density. The reader may find connections between
quasi–local variables and our averaging procedure in [44].
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is important to point out that 〈R〉D might evolve differently from its Friedmannian

counterpart (as we shall discuss in Subsection 4.3). Upon introducing the averaged

scalar curvature deviation WD := 〈R〉D − 6kDi
a−2
D , we may rewrite Eq. (1) in the form

(
ȧD

aD

)2

+
kDi

a2
D

− 8πG

3
〈%〉D = −WD + QD

6
. (7)

Looking now at Eqs. (2, 7) one should notice that both the backreaction and the

averaged curvature, through WD, induce a change in the averaged dynamics of the

domain in comparison with the Friedmannian framework. Eq. (2) tells us that a positive

backreaction contributes to accelerate the expansion of the domain and then plays

against gravity: QD > 0 effectively mimics a Dark Energy behaviour over D. The

domain will actually undergo an acceleration of its expansion only if the “intensity”

of Dark Energy is sufficient, which is the case when QD > 4πG〈%〉D. A negative

backreaction contributes to decelerate the domain expansion and therefore adds to

gravity: QD < 0 effectively mimics a Dark Matter behaviour over D. For the averaged

model we may suppose that backreaction acts as Dark Matter on small scales (e.g.

galaxy cluster and void scales) and as Dark Energy on the largest scales (CMB and

high–redshift supernovae). In the present work this differentiation with respect to the

spatial scale will however not be made explicit. An explicit multi–scale dynamics can

be formulated to refine such a description [47].

We shall assimilate here the properties of the spatial geometrical structure to

a domain–dependent Chaplygin gas. To this aim we first describe the backreaction

variables in terms of an effective perfect fluid whose energy density and pressure read‖:

%D
b = − 1

16πG
( QD + WD ) ; pDb = − 1

16πG
( QD − WD

3
) . (8)

We stress here that, since it is an effective description, this fluid does not have to satisfy

any energy conditions (as discussed in [19]). We so reformulate Eqs. (1, 2) casting them

into Friedmannian form:
(

ȧD

aD

)2

+
kDi

a2
D

− 8πG

3

(
〈%〉D + %D

b

)
= 0 , (9)

äD

aD
+

4πG

3

(
〈%〉D + %D

b + 3pDb
)

= 0 . (10)

Using these two last equations together with Eq. (3) one obtains the conservation law

for the backreaction fluid

%̇D
b + 3

ȧD

aD

(
%D

b + pDb
)

= 0 , (11)

‖ In the present work we prefer to consider the deviation term WD to describe the fluid, instead of
the full averaged scalar curvature 〈R〉D. First, (QD,WD) incorporate the deviation from a general
Friedmannian model, being equivalent to the pair (QD, 〈R〉D) only in a zero–curvature Friedmannian
model. Second, the kinematical backreaction and the curvature deviation both vanish on the
background and are gauge–invariants (as shown to second–order in perturbation theory [40]).
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which, if written out, reflects the generic coupling between the curvature deviation and

the kinematical backreaction — a simple reformulation of Eq. (4):

1

a6
D

(
QD a6

D
)
˙ +

1

a2
D

(
WD a2

D
)
˙ = 0 . (12)

3. The Chaplygin gas

The Chaplygin gas (CG hereafter) is a perfect fluid obeying the state equation

pch = − A

%ch

, (13)

where %ch > 0 and pch are respectively the energy density and the pressure of the fluid in

a comoving frame, and A is a positive constant. It was first introduced as a cosmological

fluid unifying Dark Matter and Dark Energy by Kamenshchik et al. [35] and has been

since widely studied in this context (see, e.g., [30], [31], [2], [26], [32], [23], [3], [21], [24],

[33], [9], [10]). The equation of state (13) has also raised interest in particle physics

thanks to its connection with string theory [12] and its supersymmetric extension [34].

The generalization of the CG ([35], [5]),

pch = − A

%α
ch

, (14)

with α a free positive parameter, is commonly used in cosmological models, however

in the present work we shall consider for simplicity the case α = 1, i.e. the standard

Chaplygin gas¶. Assuming that the gas verifies the energy conservation law over a

spatial domain D,

%̇D
ch + 3

ȧD

aD

(
%D

ch + pDch
)

= 0 , (15)

we obtain, making use of the relation (13), the expressions

%D
ch =

√
AD +

BD

a6
D

; pDch = − AD√
AD + BD/a6

D
, (16)

where BD = %D 2

ch i
−AD determines the initial conditions of the CG and both AD and BD

depend on the domain. Note that Eqs. (16) describe the evolution of a homogeneous

CG which is the one of interest in our work since the backreaction terms are, due to the

averaging procedure, homogeneous over a spatial domain. However, since we average

over inhomogeneities, there certainly exist interesting links to the inhomogeneous CG

(for an investigation of the latter the reader is referred to [8]).

We now remind briefly of the different aspects of the CG according to the sign of

BD.

¶ A generalization of our ideas, using Eq. (14), is straighforward. We emphasize that, even if the
standard CG does not seem to well fit with observations in a FLRW model, this must not be the
case in our approach, since observational data have to be reinterpreted before the need for such a
generalization is justified (cf. Concluding Remarks).
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3.1. Choosing a positive integration constant

We follow [35] to present the behaviour of the CG for a positive BD. The expressions (16)

become for small values of the scale factor, a6
D � BD/AD:

%D
ch ∼

√
BD

a3
D

; pDch ∼ 0 , (17)

which indicates that the CG can behave as a Dark Matter component. For large values

of the scale factor, a6
D � BD/AD, it follows that

%D
ch ∼

√
AD ; pDch ∼ −

√
AD , (18)

which reflects the Dark Energy–like behaviour of the CG in its last stage. Finally, one

may also develop (16) for large values of aD to obtain:

%D
ch ∼

√
AD +

BD

2
√

AD
a−6
D ; pDch ∼ −

√
AD +

BD

2
√

AD
a−6
D . (19)

Between the phases (17) and (18) the CG can be seen as a mixture of a cosmological

constant and a stiff fluid whose pressure and energy density are equal.

To resume, for a positive BD the CG acts first as Dark Matter and then as Dark

Energy whose state equation evolves towards the one of a cosmological constant.

3.2. Choosing a negative integration constant

As already noticed in [43] the CG presents an other interesting feature for a negative

BD since its density increases with the scale factor. In this situation it plays the role

of phantom Dark Energy, and it evolves at late times towards a cosmological constant.

For the pressure and energy density to be well–defined one needs

AD +
BD

a6
D

> 0 ⇔ a6
D > −BD

AD
. (20)

It therefore exists a minimal value for the scale factor, amin
D = (−BD/AD)1/6, implying

that this case describes a bouncing universe model at early times.

4. Evolution of the kinematical backreaction and the curvature deviation

4.1. Backreaction fluid as a Chaplygin gas

As we have outlined in Section 2, the backreaction fluid inherits a simultaneous

unification of the dark components thanks to its scale dependence. We want to build a

model in which this fluid is assimilated to the Chaplygin gas in order to physically shape

the behaviour of the backreaction and the curvature deviation on a given spatial scale,

while also allowing for a metamorphosis of the “dark character” through evolution.

In this model, the Chaplygin gas emerges from the inhomogeneous structure of the

Universe, and is not related to any fundamental field. We then consider that the
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backreaction fluid responds to the scale–dependent state equation (13) over a spatial

domain D. Using the definitions (8), we rewrite the expression (13) in the form

(WD + QD)(
WD

3
− QD) = (16πG)2AD . (21)

Since no energy condition has to be verified by the backreaction fluid, we may also

consider the Chaplygin equation of state (13) with a negative energy density (and hence

a negative AD if one wants to preserve the negativity of the pressure). However, we

shall restrict ourselves in this paper to the case where the backreaction fluid satisfies

(13) under the usual conditions, i.e. with a positive energy density and a positive AD
+.

We thus have to respect, in view of the expression (21), the following constraints, which

we call the Chaplygin fluid constraints:

WD + QD < 0 ;
WD

3
− QD < 0 , (22)

or, equivalently,

WD < 0 ;
WD

3
< QD < −WD . (23)

In this situation the curvature deviation of any domain is negative at any time whatever

its dynamics could be. We also notice that QD and WD evolve in such a way that

the relation (21) is always satisfied (see Figure 1). Rewriting Eq. (21) as a function

WD(QD, AD) under the Chaplygin fluid constraints, we derive, for a given AD, the

maximal value of the deviation term WM = −24πG
√

AD obtained for QWM
= 8πG

√
AD.

We shall see in Subsections 4.3 and 4.4 that these values form an attractor for the

dynamics of the system.

4.2. Exact evolution equations

Inserting the expressions (8) into the evolution laws (16) results in

WD = − 24πG√
AD + BD/a6

D
(AD +

BD

2a6
D

) , (24)

QD =
8πG√

AD + BD/a6
D

(AD − BD

2a6
D

) . (25)

We may express the constants AD and BD in terms of the initial values of the

backreaction Qi and the curvature deviation Wi over D,

AD =
1

256π2G2
(Wi + Qi) (

Wi

3
− Qi) , (26)

BD =
1

128π2G2
(Wi + Qi) (

Wi

3
+ Qi) , (27)

and determine the evolution of WD and QD in the form

+ We do not impose here any other energy conditions on the backreaction fluid.
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Figure 1. Each curve draws the relation (21) for a different AD (its value
arithmetically increases from the curves on the right to the ones on the left) under the
Chaplygin fluid constraints. For a given AD, whatever their evolution could be, QD
and WD run on the corresponding iso–AD curve. The dots represent the maximal
value of the curvature deviation for each AD. A negative QD mimics Dark Matter and
a positive QD Dark Energy.

WD = − 3

2

αβ + αγ a−6
D(

αβ + 2 αγ a−6
D

)1/2
, (28)

QD =
1

2

αβ − αγ a−6
D(

αβ + 2 αγ a−6
D

)1/2
, (29)

where the new terms are defined as

α := Wi + Qi ; β :=
Wi

3
− Qi ; γ :=

Wi

3
+ Qi =

1

2
(α − β) . (30)

The Chaplygin fluid constraints imply α < 0 and β < 0. The evolution of QD and WD

is entirely determined by the initial values Qi and Wi of the domain or, equivalently, by

α and β. The opposite sign of γ gives the sign of BD, Eq. (27), and therefore defines

the behaviour of the Chaplygin backreaction fluid.

4.3. Evolution of the curvature deviation

The rate of change ∂WD/∂aD shows that the curvature deviation grows with aD. For

large values of the scale factor, a6
D � |γ/β|, we get

WD ∼ −3

2
(αβ)1/2 , (31)
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which takes the form, using Eq. (26),

WD ∼ −24πG
√

AD = WM , (32)

where WM has been introduced before. Thus, for a given AD, the curvature deviation

increases towards its attractor WM , for which the departure from the Friedmannian

curvature is maximum. For γ = 0 the curvature deviation is initially set to WM and

then does not evolve. It is important to remark that there exists an infinite number of

couples (Qi ,Wi) or, equivalently, (α, β) which yield the same AD under the Chaplygin

fluid constraints. For all of them WD will live on the same iso–AD curve and will tend

towards the same attractor (see Figure 1).

4.4. Evolution of the backreaction

For large values of the scale factor, a6
D � |γ/β|, we have

QD ∼ 1

2
(αβ)1/2 (33)

or, equivalently, using Eq. (26),

QD ∼ 8πG
√

AD = QWM
> 0 , (34)

where QWM
has been introduced before. The backreaction tends at late times towards a

domain–dependent cosmological constant whose value is given by the initial conditions

α and β on the domain. The same remark as in Subsection 4.3 can be made for QD.

One needs to distinguish the following cases (see Figure 1):

(i) for γ > 0 the backreaction is always positive and hence only acts as Dark Energy

over the domain. In this situation, since ∂QD/∂aD is negative, QD behaves as Dark

Energy whose intensity decreases until reaching the attractor QWM
. We remind the

existence in this case of a minimal scale factor amin
D = (−2γ/β)1/6. α < 0 implies

amin
D < 1;

(ii) for γ = 0 the system is initially set on the attractor, thus it does not evolve. The

backreaction always acts as a cosmological constant;

(iii) for γ < 0 we have a positive ∂QD/∂aD. Two subcases arise according to the initial

value Qi :

(a) for 0 ≤ Qi < −Wi/3 the backreaction acts as Dark Energy whose intensity

increases until reaching the attractor QWM
;

(b) for Wi/3 < Qi < 0 the backreaction changes its sign during its evolution. It

first behaves as Dark Matter whose intensity decreases, then as Dark Energy

whose intensity increases until reaching the attractor. The moment of the

transition Dark Matter–Dark Energy depends on the initial values of the

domain since atr
D = (γ/β)1/6.
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We conclude by emphasizing some of the characteristics of the model. First, the

Chaplygin gas relates the backreaction terms of our inhomogeneous universe model

and therefore furnishes a particular manifestation of its inhomogeneous structure. Our

model does not suppose the existence of any other fundamental field, contrary to the

approach of a FLRW Universe filled with dust and Chaplygin gas. Second, the role and

the evolution of the backreaction depend on the domain considered and on its initial

values. As a consequence this model could be seen as an effective multi–scale model.

For instance QD might act as Dark Matter on small scales (situation iii-b) with a Dark

Energy transition occuring at very late times, and as different kinds of Dark Energy on

larger scales (situations i, ii and iii-a).

4.5. Another approach: the backreaction fluid as a scalar field

The backreaction fluid might also be described by a minimally coupled real scalar field

φD, called the morphon field [19], evolving in an effective potential UD(φD), as follows:

%D
φ :=

ε

2
φ̇2
D + UD ; pDφ :=

ε

2
φ̇2
D − UD , (35)

where ε = +1 for a standard scalar field (with a positive kinetic energy) and ε = −1 for

a phantom scalar field (with a negative kinetic energy). The last expressions together

with the relations (8) give

εφ̇2
D = − 1

8πG
(QD +

WD

3
) ; UD = − 1

24πG
WD . (36)

The system evolves towards the maximal value of the curvature deviation WM , as seen

in Subsection 4.3, which corresponds to the minimal value of the potential. With the

correspondence (36) the integrability condition (12) implies that φD, for φ̇D 6= 0, obeys

the scale–dependent Klein–Gordon equation

φ̈D + 3
ȧD

aD
φ̇D + ε

∂

∂φD
UD = 0 . (37)

The above correspondence allows us to interpret the kinematical backreaction effects

in terms of properties of scalar field cosmologies, notably quintessence or phantom–

quintessence scenarii that are here routed back to models of inhomogeneities. The

morphon field may also be characterized by the domain–dependent equation of state

pDφ = wD
φ %D

φ , which assumes in our model the form

wD
φ =

−1

1 + 2
γ

β
a−6
D

. (38)

For γ < 0 , the morphon field acts as Dark Matter and ‘standard’ Dark Energy as

mentioned in Subsection 3.1. In this situation we have −1 < wD
φ < 0 and wD

φ → −1+ at

late times. For γ > 0 , it behaves as phantom Dark Energy as mentioned in Subsection

3.2. In this case we have, since aD > amin
D , wD

φ < −1 and wD
φ → −1− at late times. We

stress again that the phantom character is an effective property in our description, no
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fundamental phantom field is assumed to exist [19]. Finally, for γ = 0 , the morphon

field mimics a scale–dependent cosmological constant and we have wD
φ = −1.

Using Eqs. (28, 29) the relations (35) become

εφ̇2
D =

1

8πG

αγ a−6
D(

αβ + 2 αγ a−6
D

)1/2
, (39)

UD =
1

16πG

αβ + αγ a−6
D(

αβ + 2 αγ a−6
D

)1/2
. (40)

The scalar field dynamics can be reconstructed by evaluating the following integral, e.g.

to find UD(φD):

ε(φ
′

D)2 =
3

4πG

αγ a−8
D[

16πG
M

VDi

a−3
D +

(
αβ + 2 αγ a−6

D
)1/2 − 6kDi

a−2
D

](
αβ + 2 αγ a−6

D

)1/2
, (41)

where the prime denotes the derivation w.r.t. the volume scale factor. This relation

does not seem analytically integrable in the general case. In the vacuum with a zero–

Friedmaniann curvature (kDi
= 0) the expression (41) becomes

ε(φ
′

D)2 =
3

4πG

αγ a−8
D

αβ + 2 αγ a−6
D

. (42)

From this last relation we get the following expression for a standard scalar field (ε = +1

and γ < 0):

φD(aD) = ∓ 1√
24πG

arccosh

√
A + Ba−6

D
A

+ φ0 , (43)

where φ0 is an integration constant. The potential is then written [35]

UD(φD) =
1

32πG

√
αβ

(
cosh

√
24πG(φD − φ0) +

1

cosh
√

24πG(φD − φ0)

)
. (44)

For a phantom scalar field (ε = −1 and γ > 0) we get from the relation (42)

φD(aD) = ∓ 1√
24πG

arccos

√
A + Ba−6

D
A

+ φ0 , (45)

and the potential reads

UD(φD) =
1

32πG

√
αβ

(
cos

√
24πG(φD − φ0) +

1

cos
√

24πG(φD − φ0)

)
. (46)

Note that this last expression can be obtained directly from the relation (44) by the

simple reparametrization φD − φ0 → i(φD − φ0). This is obvious in view of the form of

the kinetic term of the morphon field: for a standard scalar field it is written φ̇2
D, and

for a phantom field −φ̇2
D.

In the following section we reformulate the different results obtained in this section

in terms of effective cosmological parameters and we study the dynamics of the model.
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5. Effective cosmological parameters

5.1. Constraints and evolution equations for the cosmological parameters

Expressed through the domain–dependent cosmological parameters

ΩD
m :=

8πG

3H2
D
〈%〉D ; ΩD

k := − kDi

H2
D a2

D
; (47)

ΩD
W := − WD

6H2
D

; ΩD
Q := − QD

6H2
D

, (48)

where HD = ȧD/aD is the volume Hubble functional, the averaged Hamiltonian

constraint (1) assumes the form [20]

ΩD
m + ΩD

k + ΩD
W + ΩD

Q = 1 . (49)

The Chaplygin fluid constraints (22) may be expressed as

ΩD
W + ΩD

Q > 0 ;
ΩD

W
3

− ΩD
Q > 0 . (50)

Eqs. (28, 29) furnish the evolution laws for ΩD
W and ΩD

Q :

ΩD
W =

3

2

H2
i

H2
D

ΩαΩβ + ΩαΩγ a−6
D(

ΩαΩβ + 2 ΩαΩγ a−6
D

)1/2
, (51)

ΩD
Q = − 1

2

H2
i

H2
D

ΩαΩβ − ΩαΩγ a−6
D(

ΩαΩβ + 2 ΩαΩγ a−6
D

)1/2
, (52)

where the new terms are defined by

Ωα := − α

6H2
i

; Ωβ := − β

6H2
i

; Ωγ := − γ

6H2
i

=
1

2
(Ωα − Ωβ) . (53)

The sign of Ωγ determines the behaviour of ΩD
W and ΩD

Q. One may reformulate the

constraints (50) in terms of the initial conditions:

0 < Ωα ; 0 < Ωβ . (54)

5.2. Evolution of the Hubble functional

Eq. (49) together with Eqs. (51, 52) provide the evolution equation for the Hubble

functional (see Appendix A for the study of HD in a particular case):

H2
D

H2
i

= Ωi
k a−2

D + Ωi
m a−3

D +
(
ΩαΩβ + 2 ΩαΩγ a−6

D
)1/2

. (55)

HD tends, at late times, towards

H2
D

H2
i

∼ (ΩαΩβ)1/2 . (56)
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5.3. Evolution of the cosmological density parameters

One finds, for large values of the scale factor,

ΩD
W ∼ 3

2
; ΩD

Q ∼ −1

2
. (57)

It is interesting to note that the cosmological parameters tend towards a value

independent of the initial conditions (see Appendix A for the study of ΩD
W and ΩD

Q in a

particular case). We may also introduce the cosmological parameter ΩD
X , the so–called

X–matter, defined as

ΩD
X := ΩD

W + ΩD
Q =

H2
i

H2
D

(
ΩαΩβ + 2 ΩαΩγ a−6

D
)1/2

. (58)

We have noticed in Section 2 that the kinematical backreaction might explain the origin

of Dark Matter and Dark Energy, and we have presented its behaviour in Subsection

4.4. If one wants to compare our model to a scale–dependent Friedmannian cosmology

in terms of cosmological parameters, ΩD
X has to be considered as the origin of the dark

components, instead of ΩD
Q alone. This simply means that the curvature deviation, since

it also participates in the departure from the Friedmannian framework, may also

act, qualitatively, as the dark components. In fact we know from previous work that

the curvature deviation is actually quantitatively more important than the backreaction

term itself [20].

We depict in Figure 2 two situations to illustrate our model. The initial moment is

chosen to be the epoch of the CMB, and we set ΩD
k = 0∗, Ωi

m = 1−10−5 and Ωi
X = 10−5.

In the upper figure the X–matter only stands for Dark Energy; ΩD
X corresponds to ΩF

DE

(the Dark Energy in the concordance model) and ΩD
m to Ωb + ΩF

DM (respectively the

baryons and the Dark Matter in the concordance model). In the lower figure the X–

matter stands for Dark Energy and Dark Matter (since it can play both roles, it is

regarded in this case as the result of different contributions on different scales); thus

ΩD
X corresponds to ΩF

DE + ΩF
DM and ΩD

m to Ωb. The two situations describe a Universe

initially close to a homogeneous–isotropic Friedmannian Universe (Ωi
X ∼ 0) with zero–

curvature (ΩD
k = 0). This low deviation, however, becomes larger with the growth of the

scale factor to reach in the first case ΩD
X(aD ∼ 1000) = Ω0

X = Ω0
DE ∼ 0.72 (where the

superscript denotes the “today”–value), and in the second case ΩD
X(aD ∼ 1000) = Ω0

X =

Ω0
DE +Ω0

DM ∼ 0.95]. The origin and magnitude of the Dark Energy (first situation) and

∗ This choice allows to roughly compare our model to the concordance model. In this situation we
have WD = 〈R〉D.
] If we choose the initial moment to be the CMB epoch, aD ∼ 1000 is chosen to roughly
correspond to the “today”–value of the scale factor in a Friedmannian cosmology. Under the
assumption that the metric of our Universe does not significantly differ from a Euclidean metric,
the scale factor, calculated through this metric (Eq. (5)), evolves in our model approximately like its
Friedmannian counterpart. Thus, we are entitled to assume a0

D ∼ 1000. However, backreaction terms,
encoding the inhomogeneities, involve first and second derivatives of the metric and can therefore not
be neglected, even if the metrical amplitudes are considered to be near–Euclidean (see the discussion
in [18] and numerical applications therein).
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Figure 2. Evolution of the cosmological parameters ΩD
m, ΩD

X , ΩD
W and ΩD

Q w. r. t.
the scale factor. We set ΩD

k = 0, Ωi
m = 1 − 10−5 and Ωi

X = Ωα = 10−5 where
the initial moment is the CMB epoch. Upper figure: Ωβ = 5 · 10−13; we have
ΩD

X(aD ∼ 1000) = Ω0
DE ∼ 0.72 (dot) and ΩD

m(aD ∼ 1000) = Ω0
b + Ω0

DM ∼ 0.28
(square). Lower figure: Ωβ = 3 ·10−11; we have ΩD

X(aD ∼ 1000) = Ω0
DE +Ω0

DM ∼ 0.95
(dot) and ΩD

m(aD ∼ 1000) = Ω0
b ∼ 0.05 (square).

of both Dark Energy and Dark Matter (second situation) are then entirely explained by

the particular geometrical structure of an inhomogeneous space obeying the Chaplygin

equation of state.
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Figure 3. Evolution of wD
φ w. r. t. the scale factor. ΩD

k = 0, Ωi
m = 1 − 10−5 and

Ωi
X = Ωα = 10−5; the initial moment is the CMB epoch. Case (a): Ωβ = 5 · 10−13

and ΩD
X = ΩF

DE . Case (b): Ωβ = 3 · 10−11 and ΩD
X = ΩF

DE + ΩF
DM . In both situations

wD
φ quickly evolves towards −1, which corresponds to the cosmological constant–like

behaviour of the backreaction fluid.

5.4. Another approach: the morphon equation of state

Using the effective cosmological parameters, we rewrite Eq. (38) as

wD
φ =

−1

1 + 2
Ωγ

Ωβ
a−6
D

. (59)

The behaviour of wD
φ is known in terms of cosmological parameters simply by replacing

γ with −Ωγ through Subsection 4.5 (see also Figure 3).

5.5. Dynamics of the fluid volume

Depending on the initial conditions, the domain D might undergo a decelerated or an

accelerated expansion at different periods of its evolution. To learn how it behaves we

throw an eye on the volume deceleration parameter,

qD = − 1

H2
D

äD

aD
=

1

2
ΩD

m + 2 ΩD
Q . (60)

At late times, since qD ∼ −1, the fluid volume undergoes an accelerated expansion, we

are indeed dealing with a cosmological constant in this situation. Three different cases

occur for the dynamics of the domain (see Figure 4, and Appendix A for a detailed

analysis in a particular case):
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Figure 4. Evolution of the deceleration parameter w. r. t. the scale factor. ΩD
k = 0,

Ωi
m = 1 − 10−5 and Ωi

X = Ωα = 10−5; the initial moment is the CMB epoch. Case
(a): Ωβ = 5 · 10−13 and ΩD

X = ΩF
DE . Case (b): Ωβ = 3 · 10−11 and ΩD

X = ΩF
DE + ΩF

DM .
The evolution of the deceleration parameter is only shaped by ΩD

m and ΩD
Q (ΩD

X does
not contribute to it, see Eq. (60)). In both situations the expansion of the domain is
first decelerated (qD > 0), then accelerated (qD < 0).

(i) its expansion is first decelerated then accelerated;

(ii) its expansion is always accelerated;

(iii) its expansion is accelerated, then decelerated and again accelerated.

The latter case is an interesting situation: the kinematical backreaction is responsible

for two accelerated phases. Our model only concerns the matter–dominated Universe,

however this situation allows to imagine that the primordial inflation and the one

occuring today might be driven by the same effect studied in a more general model.

6. Concluding Remarks

We have built in this paper a model in which the backreaction fluid acts as a domain–

dependent effective Chaplygin gas, focusing for simplicity on the case where its effective

energy density is positive. The behaviour of the kinematical backreaction only depends

on the initial conditions of the domain and may correspond to Dark Matter or different

types of Dark Energy according to the scale and the time evolution. Our model

kinematically resembles a Friedmannian cosmology with two fluids (dust and Chaplygin

gas), but conceptual implications differ. First, the origin of Dark Energy (or, in

the extreme case, of both dark components) is related to the non–trivial geometrical

structure of an inhomogeneous space; we do not assume the existence of other
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fundamental constituents or fields. Second, the geometrical structure that complies with

the Chaplygin equation of state can in principle be verified by concrete inhomogeneous

models and also observationally; the model is no longer phenomenological in the sense

that no free parameters remain. Free parameters in the standard approach (being

homogeneous) are here traced back to the initial data for the inhomogeneities and are

therefore, in this sense, not arbitrary. Any fitting of observational data of our model

will lead to unambiguous initial data that can be constraint by structure formation.

Third, one has to be careful when cosmological observables are derived. Indeed, angular

diameter and luminosity distances, for instance, depend on metrical properties. These

latter are affected and related, in our description, to the averaged scalar curvature,

which evolves differently compared with its Friedmannian counterpart. It is therefore

necessary to reinterprete observational data, using e.g. the lines of the analysis performed

for the exact scaling solutions in [39]. In light of this remark it is premature to exclude

([1],[6],[7],[25]) the standard Chaplygin equation of state as providing a good match

with observational data. The construction of an effective metric for a cosmology with a

Chaplygin backreaction fluid and a comparison with observations are the subjects of a

future work.
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away dark energy with a Lemâıtre–Tolman model. arXiv:0906.0905 (2009)
[23] L. P. Chimento, A. S. Jakubi and D. Pavo: Dark Energy, dissipation, and the coincidence

problem. Phys. Rev. D 67, 087302 (2003)
[24] L. P. Chimento: Extended tachyon field, Chaplygin gas, and solvable k-essence cosmologies.

Phys. Rev. D 69, 123517 (2004)
[25] J. V. Cunha, J. S. Alcaniz and J. A. S. Lima: Cosmological constraints on Chaplygin gas dark

energy from galaxy clusters X–ray and supernova data. Phys. Rev. D 69, 083501 (2004)
[26] A. Dev, J. S. Alcaniz and D. Jain: Cosmological consequences of a Chaplygin gas Dark Energy.

Phys. Rev. D 67, 023515 (2003)
[27] G.F.R. Ellis: Relativistic cosmology: its nature, aims and problems. In General Relativity and

Gravitation (D. Reidel Publishing Company, Dordrecht, 1984), pp. 215–288
[28] G.F.R. Ellis and T. Buchert: The Universe seen at different scales. Phys. Lett. A. (Einstein

Special Issue) 347, 38 (2005)
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Appendix A: Study of the model in the case ΩD
k = 0

Setting ΩD
k to 0 allows to compare our model to the concordance model (we also suppose

here that ΩD
m 6= 0 for any domain). In this situation Eq. (49) becomes

ΩD
m + ΩD

W + ΩD
Q = 1 ⇒ Ωi

m = 1 − Ωα . (A.1)

Since ΩD
m and ΩD

W + ΩD
Q are both positive under the Chaplygin fluid constraints (see

Eq. (50)), one also needs

ΩD
m < 1 ; ΩD

W + ΩD
Q < 1 . (A.2)

A.1. Evolution of the Hubble functional

Eq. (55) becomes

H2
D = H2

i

[
(1 − Ωα) a−3

D +
(
ΩαΩβ + 2 ΩαΩγ a−6

D
)1/2

]
. (A.3)

For Ωγ ≥ 0 H2
D always decreases, and for Ωγ < 0 it increases in the interval (amin

D , a1)

and decreases in (a1, +∞) with

(amin
D )6 = −2

Ωγ

Ωβ

; (a1)
6 = −2

Ωγ

Ωβ

+ 4
Ωα Ωγ

2

Ωβ (1 − Ωα)2
. (A.4)
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A.2. Evolution of ΩD
W and ΩD

Q

The derivatives of Eqs. (51, 52) show that, for Ωγ ≥ 0, ΩD
W increases and ΩD

Q decreases.

For Ωγ < 0, ΩD
W decreases in (amin

D , a2) and increases in (a2, +∞), and ΩD
Q increases in

(amin
D , a3) and decreases in (a3, +∞), with

(a2)
6 =

−Ωγ [3(1 − Ωα)2 − 2ΩαΩγ ] + 2
√

ΩαΩ3
γ [ΩαΩγ − (1 − Ωα)2]

(1 − Ωα)2 Ωβ
,(A.5)

(a3)
6 =

−Ωγ [5(1−Ωα)2−18ΩαΩγ]+6
√

3ΩαΩ3
γ [3ΩαΩγ−(1−Ωα)2]

(1 − Ωα)2 Ωβ

.(A.6)

A.3. Evolution of the deceleration parameter

We define the quantities

(a4)
6 := − 5

2

Ωα − Ωβ

Ωβ
, (A.7)

(a5)
6 :=

8 ΩαΩγ + (1 − Ωα)2 − (1 − Ωα)
√

(1 − Ωα)2 + 48 ΩαΩγ

8 ΩαΩβ
, (A.8)

(a6)
6 :=

8 ΩαΩγ + (1 − Ωα)2 + (1 − Ωα)
√

(1 − Ωα)2 + 48 ΩαΩγ

8 ΩαΩβ
, (A.9)

Ωα1 :=
12 Ωβ + 1 − 2

√
6 (3 Ωβ − 1) (2 Ωβ + 1)

25
, (A.10)

Ωα2 :=
12 Ωβ + 1 + 2

√
6 (3 Ωβ − 1) (2 Ωβ + 1)

25
, (A.11)

Ωα3 :=
1

5
. (A.12)

and the situations

(a) ∀ aD ∈ (amin
D , +∞) qD < 0 ;

(b) ∀ aD ∈ (amin
D , +∞)\{a4} qD < 0, and qD(a4) = 0 ;

(c) ∀ aD ∈ (amin
D , a5) ∪ (a6, +∞) qD < 0 , qD(a5) = qD(a6) = 0, and ∀ aD ∈

(a5, a6) qD > 0 ;

(d) ∀ aD ∈ (0, a6) qD > 0 , qD(a6) = 0, and ∀ aD ∈ (a6, +∞) qD < 0 .

The following tables present the exact evolution of the deceleration parameter in these

situations:
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(0, Ωβ) [Ωβ, 1)

0 < Ωβ < 1/3 (c) (d)

(0, Ωα3 ) Ωα3 (Ωα3 ,Ωβ) [Ωβ, 1)

Ωβ=1/3 (c) (b) (c) (d)

(0, Ωα1 ) Ωα1 (Ωα1 ,Ωα2 ) Ωα2 (Ωα2 ,Ωβ) [Ωβ, 1)

1/3 < Ωβ < 1 (c) (b) (a) (b) (c) (d)

(0, Ωα1 ) Ωα1 (Ωα1 , 1)

1≤Ωβ (c) (b) (a)

Table 1. Evolution of the deceleration parameter for the different values of Ωα and Ωβ

under the Chaplygin fluid constraints with ΩD
k = 0. In the situations (a) and (b) the

expansion of the domain is always accelerated; in situation (c) it is first accelerated,
then decelerated and again accelerated; in situation (d) it is first decelerated, then
accelerated.
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