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Abstract

We consider the Cauchy problem for a spherically symmetric SU(2) Yang-Mills field propagating

outside the Schwarzschild black hole. Although solutions starting from smooth finite energy initial

data remain smooth for all times, not all of them scatter since there are non-generic solutions which

asymptotically tend to unstable static solutions. We show that a static solution with one unstable

mode appears as an intermediate attractor in the evolution of initial data near a border between

basins of attraction of two different vacuum states. We study the saddle-point dynamics near this

attractor, in particular we identify the universal phases of evolution: the ringdown approach, the

exponential departure, and the eventual decay to one of the vacuum states.
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I. INTRODUCTION

It is well known that solutions of Yang-Mills equations in four dimensional Minkowski

spacetime are globally regular in time for reasonable initial data. This fact was first proved

by Eardley and Moncrief for smooth data [1] and later strengthened by Klainerman and

Machedon for finite energy data [2]. Due to the work of Christodoulou [3] and Glassey and

Strauss [4] it is also known that the energy of the Yang-Mills field in any bounded region of

flat spacetime decays to zero and that all solutions scatter.

A natural question is whether these properties remain valid in a curved background. Part

of this question was answered affirmatively by Chruściel and Shatah who proved global regu-

larity of Yang-Mills equations on arbitrary globally hyperbolic four dimensional spacetimes

[5]. However, studies of Yang-Mills equations on the Schwarzschild background revealed

a key difference in comparison with the flat spacetime case: the equations admit static

solutions [6, 7], which implies that not all solutions scatter.

The quantitative behavior of Yang-Mills fields on curved spacetimes seems under-

explored. The only results we are aware of are concerned with late-time tails for small

data solutions on the Schwarzschild background [8, 9].

The aim of this paper is to examine the Cauchy problem for large data solutions of the

Yang-Mills equations on the exterior Schwarzschild background. We investigate thoroughly

the role static solutions play in the dynamics. These solutions are unstable and therefore

they are not observed in the Cauchy development of generic initial data. We show, however,

that static solutions do participate in the evolution of specially prepared initial data. In

particular, the static solution with one unstable mode appears as an intermediate attractor in

the evolution of initial data near a border between basins of attraction of two different copies

of the vacuum solution. Solutions with data lying on this borderline tend asymptotically to

the static solution and therefore they do not scatter.

This behavior bears many similarities with critical phenomena in gravitational collapse

for the coupled Einstein-Yang-Mills system [10, 11], where the colored black hole with one

unstable mode appears as an intermediate attractor. In the case of fixed background the

problem is much simpler and thus amenable to a more detailed analytical description. In

particular, we show that for intermediate times the convergence to the static solution along

the codimension-one stable manifold proceeds via quasinormal ringing. We look also at the
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nonlinear bi-instability of the perturbed attractor and compute the energy fluxes through

the horizon and null infinity during its decay to vacuum.

The rest of the paper is organized as follows. In Section II we introduce the model and

discuss its basic properties. In Section III we discuss static solutions, their linearized insta-

bility and quasinormal modes. Our main results, based on mixed analytical and numerical

arguments, are presented in Section IV. We conclude with general remarks in Section V.

II. PRELIMINARIES

A. The Schwarzschild metric

The Schwarzschild metric with mass m > 0 in standard coordinates (t̄, r, ϑ, ϕ) reads

g = −N dt̄2 + N−1 dr2 + r2 (dϑ2 + sin2 ϑdϕ2) , with N = 1 − 2m

r
. (1)

We restrict our attention to the exterior region r ≥ rh = 2m. Hypersurfaces of constant

time coordinate all meet at the bifurcation sphere near the black hole and at spatial infinity

in the asymptotic domain. This pathological behavior, which is inconvenient for certain

applications, can be removed by introducing a new time coordinate

t = t̄ − h(r) , (2)

with a suitable height function h ([12]). Note that the new foliation by t respects the

stationarity of Schwarzschild spacetime, that is, the representation of the timelike Killing

vector field of Schwarzschild spacetime is invariant under the transformation (2), i.e. ∂t̄ = ∂t.

The transformed metric takes the form

g = −N dt2 − 2 NH dt dr +
1 − (NH)2

N
dr2 + r2 (dϑ2 + sin2 ϑdϕ2) , (3)

where H(r) = h′(r). Most commonly employed coordinatizations of the Schwarzschild space-

time lead to a metric of the above form. For example, the ingoing Eddington-Finkelstein

coordinates correspond to H = − 1
N

2m
r

. This choice of the height function removes the patho-

logical behavior at the horizon: the constant time hypersurfaces, instead of intersecting at

the bifurcation sphere as for Schwarzschild coordinates, foliate the event horizon. Conse-

quently, all metric components are regular at the event horizon. The Painlevé-Gullstrand

coordinates are similar with H = − 1
N

√
2m
r

.
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Analogously, hyperboloidal foliations with a suitable asymptotic behavior avoid the

pathological behavior at spatial infinity: the constant time hypersurfaces, instead of meeting

at spatial infinity, foliate future null infinity [13]. A special class of hyperboloidal foliations

is given by constant mean curvature (CMC) hypersurfaces [14]. For a suitable choice of

parameters they lead to constant time hypersurfaces which are regular both at the event

horizon and at infinity. The derivative of the height function for the CMC hypersurfaces

reads

H =
1

N

J√
J2 + N

, with J =
Kr

3
− C

r2
, (4)

where K is the mean extrinsic curvature and C is an integration constant. For the foliation

to approach the future event horizon and the future null infinity, we choose K > 0 and

C > 8m3K/3. The hyperboloidal CMC foliation is very well suited for our purposes and

will be used throughout the rest of the paper (though many expressions below are valid in

any foliation (2)).

B. Yang-Mills equations and the energy

For the SU(2) Yang-Mills potential A we assume the spherically symmetric ’purely mag-

netic’ ansatz [15]

A = W τ1 dϑ + (cot ϑ τ3 + W τ2) sin ϑ dϕ , (5)

where τi are the generators of SU(2) and W = W (t, r). For this ansatz the Yang-Mills

curvature F = dA + [A, A] takes the form (hereafter ˙= ∂t and ′ = ∂r)

F = Ẇ dt ∧ Ω + W ′dr ∧ Ω − (1 − W 2) τ3 dϑ ∧ sin ϑ dφ , (6)

where Ω = τ1 dϑ + τ2 sin ϑ dϕ, and the Yang-Mills equation ∇αF αβ + [Aα, F αβ] = 0 on the

Schwarzschild background with metric (3) becomes a scalar semilinear wave equation

1 − (NH)2

N
Ẅ + 2NHẆ ′ + (NH)′Ẇ = (NW ′)

′
+

W (1 − W 2)

r2
. (7)

We are interested in the Cauchy problem for smooth compactly supported initial data. We

stress that no boundary condition is imposed at the horizon and the field W (t, rh) can

evolve freely which, in particular, allows for dynamical connections between two vacuum

states W = ±1. This behavior should be contrasted with the flat spacetime case where
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the vacuum states are disconnected since the value of field at the origin is rigidly fixed to

|W (t, r = 0)| = 1 by the smoothness condition.

Note that Eq.(7) has the reflection symmetry: if W (t, r) is a solution, so is −W (t, r). As

we shall see below, this discrete symmetry is a key feature which shapes the structure of the

phase space for Eq.(7).

Using the energy momentum tensor

Tαβ =
1

4π
Tr

(
F µ

α F β
µ − 1

4
gαβFµνF

µν

)
(8)

and the timelike Killing vector field ξ = ∂t, one can define the conserved current

Jα = T α
β ξβ , ∇αJα = 0 . (9)

Integration of the current over a constant time spatial hypersurface Σt yields the energy

E(t) :=

∫

Σt

JαdSα = −4π

∫ ∞

rh

T t
t r2dr =

∫ ∞

rh

[
1 − (NH)2

N
Ẇ 2 + NW ′2 +

(1 − W 2)2

2r2

]
dr .

(10)

Differentiating the energy with respect to time and using Eq.(7) we get

Ė = 2
(
−NHẆ 2 + NW ′Ẇ

) ∣∣∣
∞

rh

. (11)

In the hyperboloidal CMC coordinates (4) we have H(r) ∼ −N−1 near rh and H(∞) = 1,

hence

Ė = −2Ẇ 2(t, rh) − 2Ẇ 2(t,∞) . (12)

This expression shows that the energy is monotonically decreasing due to the energy flux

through the horizon and through future null infinity.

As mentioned above, solutions starting from smooth initial data remain smooth for all

future times and generically they scatter. However, the asymptotic completeness fails be-

cause there exist non-generic solutions which do not disperse. Our goal is to analyze the

non-dispersive solutions in detail. It follows from the monotonicity formula for the total en-

ergy (12) that the only possible mechanism of avoiding complete dispersion to vacuum is the

stabilization of evolution on a nontrivial static solution. The discussion of static solutions

is a subject of the next section.

We choose m/2 as a unit of length so hereafter rh = 2m = 1.
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III. STATIC SOLUTIONS AND THEIR PERTURBATIONS

A. Static solutions

For static solutions Eq.(7) reduces to the ordinary differential equation

(
1 − 1

r

)
W ′′ +

1

r2
W ′ +

W (1 − W 2)

r2
= 0 . (13)

Note that this is the Euler-Lagrange equation for the static energy functional

E(W ) =

∫ ∞

1

[(
1 − 1

r

)
W ′2 +

(1 − W 2)2

2r2

]
dr . (14)

Solutions of Eq.(13) that are smooth at the horizon behave near r = 1 as

W (r) = a − a(1 − a2)(r − 1) + O
(
(r − 1)2

)
, (15)

where a is a free parameter. It is not difficult to show using shooting methods that there

is a countable sequence of positive parameters an (n = 0, 1, ...) such that the corresponding

solutions, denoted by Wn(r), exist for all r ≥ 1 and tend to Wn(∞) = (−1)n. The index

n denotes the number of nodes of the solution Wn(r). These solutions can be obtained in

the decoupling limit from colored black hole solutions of the coupled Einstein-Yang-Mills

system [16] and the proof of their existence is implicit in the proof of existence of colored

black holes given in [17] (see also [7] for a variational argument). The solution W0 = 1 is the

ground state for which the energy has the global minimum E(W0) = 0. The solutions with

indices n > 0 can be viewed as excitations of the ground state; their energies En = E(Wn)

grow monotonically with n (E1 = 0.4795, E2 = 0.4994, E3 = 0.4999, ...) and tend to the

limit E∞ = 1/2 which is the energy of the singular solution W∞ = 0. Note that due to

the reflection symmetry each static solution (except W∞) exists in two copies ±Wn. It is

remarkable that the n = 1 solution has been found in closed form [6]

W1(r) =
c − r

r + 3(c − 1)
, c =

1

2
(3 +

√
3) . (16)

B. Linear perturbations

In order to understand the role of static solutions in the evolution we first need to examine

their linearized stability. To this end we substitute W (t, r) = Wn(r) + w(t, r) into Eq.(7).
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Dropping quadratic and higher terms in w, we get the linear evolution equation for small

perturbations about the static solution Wn

1 − (NH)2

N
ẅ + 2NHẇ′ + (NH)′ẇ = (Nw′)

′
+

1 − 3W 2
n

r2
w , (17)

which after separation of variables, w(t, r) = eλtv(r), leads to the eigenvalue problem

λ2 1 − (NH)2

N
v + 2λNHv′ + λ(NH)′v = (Nv′)

′
+

1 − 3W 2
n

r2
v . (18)

For the eigenvalues to come about we must identify the admissible behavior of eigenmodes

at the endpoints r = 1 and r = ∞. This rather subtle issue has a particularly simple answer

in the hyperboloidal CMC foliation, where ’admissible’ simply means ’smooth’. The horizon

r = 1 is the regular singular point with the two linearly independent solutions behaving

as v ∼ (r − 1)α, where α = 0 or −2λ. Thus, assuming that −2λ is not a positive integer

(the absence of such algebraically special eigenvalues has been checked separately), only the

solution with α = 0 is admissible. Near the irregular singular point at infinity the admissible

solution behaves as v ∼ 1 (the second solution behaves as v ∼ e2λr).

Remark. In terms of the new dependent variable u(r) = e−λh(r)v(r) (recall that h(r) is

the height function of the foliation (2)) the eigenvalue problem (18) takes the standard

Sturm-Liouville form (which is the same as in Schwarzschild coordinates)

Au = −λ2u , A = −N∂r (N∂r) −
N

r2
(1 − 3W 2

n) . (19)

The operator A is self-adjoint in the Hilbert space X = L2 ([1,∞), N−1dr). For Re(λ) > 0

the admissible solution belongs to X, hence Re(λ) > 0 implies that λ2 is real, and therefore

λ is real as well. However, for Re(λ) ≤ 0 the admissible solution does not belong to X so in

this case no self-adjoint formulation is available and eigenvalues are in general complex.

Solving the eigenvalue problem (18) numerically for the first few solutions Wn we found

that the nth solution has exactly n positive eigenvalues (hence n unstable modes). Denoting

the spectrum of eigenvalues for the solution Wn by {λ(n)
k } and ordering it by a decreasing

real part, we thus have

λ
(n)
0 > λ

(n)
1 > · · · > λ

(n)
n−1 > 0 > Re(λ(n)

n ) > Re(λ
(n)
n+1) > . . . (20)

Below we shall suppress the superscript (n) on eigenvalues whenever it is clear from the

context which static solution is considered.
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The eigenfunctions with Re(λ) < 0 are called quasinormal modes. Numerical calculation

of quasinormal modes is difficult because for Re(λ) < 0 the ”bad” solutions, v ∼ (r − 1)−2λ

near r = 1 and v ∼ e2λr near r = ∞, are subdominant with respect to smooth solutions and

consequently it is hard to keep track thereof. For solutions that are known in closed form

(like W0 and W1 in our case) an ingenious method of calculating quasinormal modes was

developed by Leaver [18]. In the case at hand this method works as follows. The mode which

is smooth at the horizon is represented by a power series v(z) =
∑

anzn, where z = (r−1)/r.

Since there are no singularities inside the circle |z| < 1 in the complex plane, this power

series expansion is absolutely convergent for |z| < 1 but, in general, it diverges at z = 1.

The quantization of eigenvalues comes from the condition of convergence of the power series

at z = 1 which is fulfilled if and only if the coefficients an form a minimal solution of the

recurrence relation. Due to Pincherle’s theorem, relating the existence of a minimal solution

to the convergence of an infinite continued fraction, this leads to a transcendental equation

which is solved numerically. Using this method we calculated the first few eigenvalues for

solutions W0 and W1. The results are shown in Table I.

n λ
(n)
0 λ

(n)
1 λ

(n)
2 λ

(n)
3 λ

(n)
4

0 −0.1849 ± 0.4965i −0.5873 ± 0.4290i −1.0504 ± 0.3495i −1.5438 ± 0.2923i −2.0451 ± 0.2531i

1 0.23243 −0.0401 ± 0.0422i −0.6282 ± 0.0139i −1.0770 ± 0.0214i −1.5495 ± 0.0223i

TABLE I: The first five eigenvalues for linear perturbations about solutions W0 and W1. The

eigenvalues λ
(0)
k are well known in the literature as ` = 1 electromagnetic quasinormal modes [19].

IV. NUMERICAL RESULTS

A. Evolution of generic data

We solve numerically the Cauchy problem for Eq.(7) for a compactly supported gaussian

pulse around the vacuum state W = 1 with amplitude p. The numerical techniques are

similar to those applied in [9]. We use the method of lines with a fourth order Runge-

Kutta time integration and eighth order spatial finite differences. We employ hyperboloidal

scri fixing coordinates ([20]) based on the CMC foliation given in (4) with the parameters

K = 0.5, C = 0.5. We use the radial coordinate ρ = r/(r + 1), which compactifies the

exterior Schwarzschild region 1 ≤ r < ∞ into the finite interval 1/2 ≤ ρ ≤ 1. There are no

incoming characteristics into the simulation domain, therefore no boundary conditions are
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applied. At the boundaries of the simulation domain we use one-sided finite differencing.

We refer an interested reader to [9] for more details about the numerical method and the

concrete form of the symmetric hyperbolic system corresponding to Eq.(7).

For generic amplitudes the energy in any bounded region decays to zero and the solution

approaches one of the vacuum states W = ±1. The quantitative description of the late stages

of this relaxation process has been given in [8, 9]. For intermediate times the decay to vacuum

has the form of quasinormal ringing with the fundamental eigenvalue λ0 = −0.1849+0.4965i.

For late times, the nonlinear tail decaying as t−4 becomes uncovered.

0 50 100 150 200
t10-11

10-9

10-7

10-5

0.001

0.1

 W  ¤

0 50 100 150 200
t10-9

10-7

10-5

0.001

0.1

10

 W  ¤

10 20 30

10
1

0.1

FIG. 1: The evolution of generic initial data (observed at ρobs = 2/3) with small (left) and

large (right) energy. After an initial transient phase depending on initial data, the solution goes

through a phase of exponentially damped oscillations (quasinormal ringing) and then a polynomial

decay (tail) to one of the vacuum states. The first quasinormal mode has the eigenvalue λ0 =

−0.1849 + 0.4965i. The tail falls off as t−4. For large energy the initial transient phase takes

longer: after the direct signal from the data passes through, there appear nonlinear oscillations

with exponentially decreasing amplitude and frequency (see the inset on the right plot).

Let us point out in passing an interesting difference between the evolution of small and

large energy initial data, as shown in Fig. 1. Namely, for large energy data, after the

direct signal passes through but before the ringdown, there is a clearly pronounced phase of

evolution during which an excess energy is radiated away in the form of nonlinear oscillations

with exponentially decreasing amplitude and frequency (see the inset on the right plot in

Fig. 1). The time span of this phase increases with energy. Such nonlinear oscillations are

characteristic for large energy solutions of defocusing nonlinear wave equations and in our

opinion they deserve further investigation, but it will not be pursued here.
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FIG. 2: The vacuum endstate of evolution as a function of initial amplitude p. The plot indicates

that the flip of vacuum state is asymptotically periodic in p (with the period depending on a family

of initial data).

Since initial datum is a perturbation of W = 1, for small amplitudes p all solutions tend

asymptotically to W = 1. However, as p grows, the endstate flips back and forth from one

vacuum state to another, which indicates that the curve of initial data repeatedly intersects

a borderline between basins of attractions of two vacuum states. Fig. 2 shows the final

state of evolution against the amplitude of initial data. The parameter space is partitioned

into windows of generic evolution. Somewhat surprisingly, the appearance of these windows

seems asymptotically periodic in p (although the period is not universal).

A natural question is what happens at the borderline between basins of attraction of two

vacuum states. This question is the subject of the next section.

B. Approach to and departure from the static solution W1

In this section we give a quantitative description of non-generic solutions which do not

disperse. Using bisection we fine-tune the amplitude to one of the critical values of the

amplitude, which we denote by p∗. The evolution of such nearly critical initial data exhibits

a universal intermediate phase during which the solution hangs around the static solution

W1, first approaching it and then departing from it. This is a typical behavior around a

saddle point. In other words, the solution W1 plays the role of an intermediate attractor

and its codimension-one stable manifold separates the basins of attraction of two vacuum

states.
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FIG. 3: The evolution of initial data fine-tuned in quadruple precision to the border between basins

of attraction of two different vacuum states. To show pointwise convergence to and departure

from the static solution W1 we plot the time derivative of the Yang-Mills potential Ẇ (t, ρ0) at

an arbitrarily chosen ρobs = 2/3 in half-logarithmic scale. On the left panel, after an initial

transient signal coming from initial data, one can distinguish three universal phases of evolution:

quasinormal ringdown to the attractor, exponential departure from the attractor, and finally an

approach to one of the vacuum states. On the right panel we fit the function (21) to the numerical

solution (small squares). Only the parameters c, A, and δ are fitted; the remaining parameters

Re(λ1) = −0.040103, Im(λ1) = 0.042173, and λ0 = 0.23243 are supplied by the linear stability

analysis from Section IIIB.

The evolution near the intermediate attractor can be described quantitatively using the

results from Section III B. We claim that for intermediate times the following approximation

is valid

W (t, ρ) − W1(ρ) ' c (p − p∗) eλ0t v0(ρ) + A e−|Re(λ1)|t sin(Im(λ1)t + δ) v1(ρ) , (21)

where v0(ρ) and v1(ρ) are, respectively, the eigenfunction of the single unstable mode

with eigenvalue λ0 = 0.23243 and the first quasinormal mode with the eigenvalue λ1 =

−0.040103+0.042173i. Other quasinormal modes are not included in (21) because they are

damped much faster (see Table I). In principle, the expression (21) should also include the

contribution from the tail, however, for the intermediate times involved in our simulations,

the tail is negligible in comparison with the quasinormal mode so we omit it. The numer-

ical verification of the approximation (21) is shown in Fig. 3 where we plot the result of a

quadruple precision bisection study.
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FIG. 4: The lifetime T of the intermediate attractor W1 as a function of the distance from the

critical amplitude in a half-logarithmic plot. The small squares correspond to numerical evolutions.

The simple least square fit depicted by the thin line gives λfit = 0.23246, in excellent agreement

with the formula (22) and the eigenvalue λ0 = 0.23243 obtained via linear stability analysis.

We can define a ”lifetime” T of the intermediate attractor as a span of time during which

the solution stays in some given neighborhood of the static solution W1. The lifetime is

determined by the time in which the amplitude of the unstable mode grows to a given size,

that is |p − p∗|eλ0T = O(1), which yields

T ∼ − 1

λ0

ln |p − p∗| as p → p∗ . (22)

The numerical verification of this scaling law is shown in Fig. 4.

It follows from (22) that during the lifetime T the first quasinormal mode decays by the

factor

e−|Re(λ1)|T ∼ |p − p∗|
|Re(λ1)|

λ0 , (23)

hence, for a given precision of bisection, the closest approach to the unstable attractor is

determined by the ratio of the damping rate of the first quasinormal mode (which governs

the rate of convergence to the attractor) and the eigenvalue of the unstable mode (which

governs the rate of departure from the attractor).

C. Nonlinear bi-instability of W1

Having described the evolution for intermediate times we turn now to the description of

nonlinear decay of the intermediate attractor to one of the vacuum states. We ask: what

is the ratio of energy that falls into the black hole to the energy that disperses to infinity?
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To study this question accurately we do not perform bisection, but start the evolution from

initial data having the form of the solution W1 plus a small perturbation. Depending on the

direction of the perturbation, the endstate of evolution is W = −1 or W = +1. Note that in

the hyperboloidal scri fixing foliation (in contrast to foliations whose leaves meet at spatial

infinity), the asymptotic value of the filed at scri, W (t, ρ = 1), can change continuously

during the evolution, in particular the vacuum state at scri can change from one to another.

In the case at hand we have W (0, ρ = 1) = −1 (since W1(ρ = 1) = −1 and the small

perturbation is compactly supported). Using the expression (12) we compute the energy

flux through the horizon and through scri during the nonlinear decay of W1 until the time

t = 200. The results of this computation are shown in Fig. 5 and Table II.
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0.06

2 W2
 

FIG. 5: Energy fluxes through the event horizon (dashed curve) and through scri (solid curve)

during the nonlinear decay of the static solution W1. The endstate of evolution is W = −1 (left)

and W = +1 (right). The corresponding integrated energy fluxes are given in Table II.

Endstate Ehorizon Escri Eradiated Einitial − Eradiated

−1 0.3422522541 0.1372383912 0.479490645 +1.9 × 10−8

+1 0.0851824567 0.3943078254 0.479490282 +3.8 × 10−7

TABLE II: The amount of energy radiated through the horizon and through scri obtained by

integration of energy fluxes shown in Fig. 5 up to t = 200. The initial energy of the static solution

W1 plus a small perturbation is Einitial = 0.479490664.

We find that if the endstate is W = −1 (no change of the vacuum state at scri) then

most of the total energy falls into the black hole (71%), while if the endstate is W = +1

most of the energy escapes to infinity (82%). The total balance of radiated energy calculated
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numerically is accurate up to 10−7, which is very reassuring. The remaining tiny fraction

of energy is radiated for t > 200 in the form of a tail. Since the tail at the horizon falls off

faster than the tail along scri, the error shown in the last column of Table II is larger for

the endstate +1 where most of the energy is radiated to infinity.

V. DISCUSSION

The dynamics of the Yang-Mills field on four dimensional Minkowski spacetime is rather

indistinctive as all solutions evolve in the same manner dispersing asymptotically to vacuum.

We hope to have convinced the reader that in the case of Schwarzschild background the

dynamics is much more interesting. This is due to the presence of the horizon which affects

the Cauchy problem in several respects. First, the horizon breaks scale invariance and

thereby allows for existence of nontrivial static solutions. Second, the horizon makes the

phase space simply connected, in particular the two vacuum states W = ±1 are homotopic

which makes it possible to perform bisection between their basins of attraction (in contrast

to flat space where the two vacuum states are separated by an infinite energy barrier).

Finally, the horizon acts as an absorption boundary and thus provides an additional (besides

dispersion to infinity) mechanism of dissipation of energy.

All the above features, combined with the fact that the static solution with single un-

stable mode is known is closed form, make the Yang-Mills equation on the Schwarzschild

background an attractive toy-model for gaining better understanding of codimension-one

stationary attractors for nonlinear wave equations. Previous studies of such attractors, per-

formed mainly in the context of Type I critical phenomena in gravitational collapse (see, e.g.

[10, 21]), have focused on the dynamics of departure from the attractor along the unstable

manifold1. To our knowledge, the present paper is the first one where convergence to an

unstable stationary attractor has been shown to proceed via quasinormal ringing for inter-

mediate times. Apart from the theoretical importance, this result has practical implications

for numerical searches of unstable attractors, as follows from the formula (23).

1 A notable exception is Master’s thesis of N. Szpak [22] in which he analyzed the saddle-point dynamics
around the unstable static solution for the focusing semilinear wave equation utt − ∆u − u5 = 0 in
four dimensional Minkowski spacetime and conjectured that the rate of convergence is exponential for
intermediate times, however as yet the alleged purely damped quasinormal mode has not been confirmed
in a perturbative calculation.
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[7] P. Bizoń, Acta Phys. Polon. B 25, 877 (1994).
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