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On a versal deformation of the Bautin bifurcation it is possible to find dynamical systems that undergo Hopf or non-hyperbolic limit cycle bifurcations. Our paper concerns a nonlinear control system in the plane whose nominal vector field has a pair of purely imaginary eigenvalues. We find conditions to control the Hopf and Bautin bifurcation using the symmetric multilinear vector functions that appear in the Taylor expansion of the vector field around the equilibrium. The control law designed by us depends on two bifurcation parameters and four control parameters, which establish the stability of the equilibrium point and the orientation and stability of the limit cycles. Two examples are given.

Introduction

During the recent years many publications in the field of dynamical systems focus on bifurcations control. Different control systems were designed in order to create different types of bifurcation and to manipulate the bifurcation characteristics such as the stability and orientation of limit cycles or the stability of equilibria [START_REF] Carrillo | Control of the planar Takens-Bogdanov bifurcation with applications[END_REF].

Many authors developed control laws for linear or nonlinear systems with one or more uncontrollable modes.

Although there exist many papers in the literature concerning the control of the codimension one Hopf bifurcation [START_REF] Verduzco | Hopf bifurcation control for affine systems[END_REF], [START_REF] Hamzi | Analysis and control of Hopf bifurcation[END_REF], [START_REF] Wen | Control algorithm for creation of Hopf bifurcations in continuous-time systems of arbitrary dimension[END_REF], there are few results concerning the control of the generalized Hopf bifurcation of codimension two (Bautin) [START_REF] Braga | Contollable Hopf bifurcations of codimension one and two in linear control systems[END_REF].

In this paper we study a nonlinear planar control system with two uncontrollable modes on the imaginary axis. We design a control law such that the resulting control system undergoes controllable Hopf or Bautin bifurcation. Our analysis is based on the normal form theory [START_REF] Yu | Elements of applied bifurcation theory[END_REF], [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems and bifurcations of vector fields[END_REF]. We prove that our control law determines the orientation and stability of periodic solutions for both Hopf and Bautin bifurcations.

Consider the planar nonlinear control system ẋ = F (x) + G (x) u, [START_REF] Braga | Contollable Hopf bifurcations of codimension one and two in linear control systems[END_REF] where x = (x 1 , x 2 ) T ∈ R 2 is the state vector, F, G : R 2 → R 2 are smooth vector fields, u = u (x; μ, β) , μ ∈ R 2 , β ∈ R 3 , and G (x) u is the control input. Assume that F (0) = 0, G (0) = 0 and J = dF (0) has purely imaginary eigenvalues λ 1,2 = ±ω 0 i, ω 0 ≥ 0, and

M = dG (0) = ∂G1 ∂x1 ∂G1 ∂x2 ∂G2 ∂x1 ∂G2 ∂x2 |x=0 = (m ij ) i,j=1,2 .
In the following μ = (μ 1 , μ 2 ) ∈ R 2 is the Bautin bifurcation parameter, β = (β 1 , β 2 , β 3 ) ∈ R 3 and tr (M ) are the control parameters. Here β 1 determines the stability of the equilibrium point, β 2 determines the orientation and the stability of the limit cycle emerging at a Hopf bifurcation, whilst β 3 and tr (M ) establish the orientation and the stability of the limit cycles emerging at the Bautin bifurcation.

Consider the following expression for the scalar function u:

u (x, μ, β) = β 1 μ 1 +(β 2 + μ 2 ) x 2 1 + x 2 2 +β 3 x 2 1 + x 2 2 2 .
(

) 2 
The aim of the paper is to find values of the control parameters β 1 , β 2 , β 3 and tr (M ) such that system (1) undergoes controllable Hopf or Bautin bifurcations.

In order to do this, two well known theorems from the bifurcation theory [START_REF] Yu | Elements of applied bifurcation theory[END_REF] are used.

Theorem (Hopf ) [START_REF] Yu | Elements of applied bifurcation theory[END_REF]. Suppose the planar system

ẋ = f (x, α) , x ∈ R 2 , α ∈ R, (3) 
with smooth f, has for all sufficiently small |α| the equilibrium x = 0 with eigenvalues

λ 1,2 (α) = μ (α) ± iω (α) , ( 4 
)
where μ (0) = 0, ω (0) = ω 0 > 0. Let the following conditions be satisfied: (H.1) l 1 (0) = 0, where l 1 (α) is the first Lyapunov coefficient;

(H.2) μ (0) = 0. Then, there are invertible coordinate and parameter changes and a time reparametrization transforming (3) into the complex form

ż = (b 1 + i) z + sz |z| 2 + O |z| 4 , ( 5 
)
where s = sign (l 1 (0)) = ±1.

Theorem (Bautin) [START_REF] Yu | Elements of applied bifurcation theory[END_REF]. Suppose the planar system

ẋ = f (x, α) , x ∈ R 2 , α ∈ R 2 , ( 6 
)
with smooth f, has the equilibrium x = 0 with eigenvalues

λ 1,2 (α) = μ (α) ± iω (α) , (7) 
for all α sufficiently small, where ω (0) = ω 0 > 0. For α = 0, let the Bautin bifurcation conditions hold:

μ (0) = 0, l 1 (0) = 0, (8) 
where l 1 (α) is the first Lyapunov coefficient. Assume that the following general conditions are satisfied: (B.1) l 2 (0) = 0, where l 2 (α) is the second Lyapunov coefficient;

(B.2) the map α → (μ (α) , l 1 (α)) T is regular at α = 0.

Then, by the introduction of a complex variable, applying smooth invertible coordinate transformation that depend smoothly on the parameters, and performing smooth parameter and time changes, the system can be reduced to the complex form

ż = (b 1 + i) z + b 2 z |z| 2 + sz z 4 + O |z| 6 , ( 9 
)
where s = sign (l 2 (0)) = ±1.

Control of the Hopf bifurcation

In this section we find sufficient conditions such that system (1) undergoes a Hopf bifurcation that can be controlled. To this aim we shall use a complex variable form of a two-dimensional system, following the lines in [START_REF] Yu | Elements of applied bifurcation theory[END_REF].

Expanding system (1) around x = 0 we get

ẋ = Ax + F (x) (10) 
where

A = J + β 1 μ 1 M, F (x) = 1 2 B (x, x) + 1 3! C (x, x, x) + 1 4! D (x, x, x, x) + 1 5! E (x, x, x, x, x) + O ||x| | 6
and B, C, D, E are multilinear symmetric forms, with

B (x, x) = d 2 F (0) (x, x) + β 1 μ 1 d 2 G (0) (x, x) , C (x, x, x) = d 3 F (0) (x, x, x) + β 1 μ 1 d 3 G (0) (x, x, x) +6 (β 2 + μ 2 ) x 2 1 + x 2 2 M x, D (x, x, x, x) = d 4 F (0) (x, x, x, x) + β 1 μ 1 d 4 G (0) (x, x, x, x) +12 (β 2 + μ 2 ) x 2 1 + x 2 2 d 2 G (0) (x, x) , E (x, x, x, x, x) = d 5 F (0) (x, x, x, x, x) +β 1 μ 1 d 5 G (0) (x, x, x, x, x) +20 (β 2 + μ 2 ) x 2 1 + x 2 2 d 3 G (0) (x, x, x) +120β 3 x 2 1 + x 2 2 2 M x. ( 11 
)
In the following we find sufficient conditions for the parameters β 1 , β 2 such that the conditions of the Hopf bifurcation theorem are fulfilled for system [START_REF] Braga | Contollable Hopf bifurcations of codimension one and two in linear control systems[END_REF].

Condition (H.1)

At μ 1 = 0, in [START_REF] Wen | Control algorithm for creation of Hopf bifurcations in continuous-time systems of arbitrary dimension[END_REF] we have

A = J, B (x, x) = d 2 F (0) (x, x) , (12) C (x, x, x) = d 3 F (0) (x, x, x) + 6 (β 2 + μ 2 ) H (x) ,
where

H (x) = x 2 1 + x 2 2 M x. ( 13 
)
In the previous assumptions, the Jacobian matrix A of system (1) at x = 0 and μ 1 = 0, possesses a pair of purely imaginary eigenvalues λ 1,2 = ±iω 0 . Let q ∈ C 2 be an eigenvector of A associated with the eigenvalue λ 1 = iω 0 and p ∈ C 2 an eigenvector of A T associated with λ1 , such that p, q = 1. Using the complex variable z = p, x , we get x = zq + z q, and equation [START_REF] Wen | Control algorithm for creation of Hopf bifurcations in continuous-time systems of arbitrary dimension[END_REF] at μ 1 = 0 reads:

ż = λ 1 z + g (z, z) ,
where g (z, z) = p, F (zq + z q) . Function g can be written as a formal Taylor series in two complex variables as:

g (z, z) = k+l≥2 1 k!l! g kl z k zl ,
where

g kl = ∂ k+l ∂ k z∂ l z g (z, z) |z=0 = ∂ k+l ∂ k z∂ l z p, F (zq + z q) |z=0 .
The first Lyapunov coefficient at the bifurcation point can be expressed as [START_REF] Yu | Elements of applied bifurcation theory[END_REF], p. 99,

l 1 (0) = 1 2ω 2 0 Re (ig 20 g 11 + ω 0 g 21 ) , (14) 
where [START_REF] Yu | Elements of applied bifurcation theory[END_REF], p. 93-94,

g 20 = p, B (q, q) , g 11 = p, B (q, q) , ( 15 
)
g 21 = p, C (q, q, q) .
For system (1) we have

g 20 = p, d 2 F (0) (q, q) , g 11 = p, d 2 F (0) (q, q) , ( 16 
)
g 21 = p, d 3 F (0) (q, q, q) + 6 (β 2 + μ 2 ) p, H (q, q, q) .
Taking into account the expression of the quadratic form H given by (13), we get

H (x, x, y) = 1 3 x 2 1 + x 2 2 M y + 2 3 (x 1 y 1 + x 2 y 2 ) M x, (17) 
where

x = (x 1 , x 2 ) T , y = (y 1 , y 2 ) T ∈ C 2 .
Thus, at μ 1 = 0, we obtain:

l 1 (0, μ 2 ) = δ + 3 ω 0 (β 2 + μ 2 ) Re ( p, H (q, q, q) ) , (18) with δ = 1 2ω 2 0 Re i p, d 2 F (0) (q, q) p, d 2 F (0) (q, q) +ω 0 p, d 3 F (0) (q, q, q) (19) 
depending only on F. Remark that δ is the first Lyapunov coefficient corresponding to the vector field F . For every μ 2 ∈ R, there exists a unique value

β 2crit (μ 2 ) = -δω 0 3Re ( p, H (q, q, q) ) -μ 2 (20) of β 2 such that l 1 (0, μ 2 ) = 0, provided that Re ( p, H (q, q, q) ) = 0. Considering β 2 = β 2crit (μ 2 ), condition (H.1) is satisfied.
Remark. If the matrix J has the particular form

J = 0 -ω 0 ω 0 0 we can choose the eigenvectors q = (1, -i) T , p = 1 2 , -i 2 T , thus H (q, q, q) = 4 3 M q.
and the first Lyapunov coefficient in (18) reads

l 1 (0, μ 2 ) = δ + 2 ω 0 (β 2 + μ 2 ) tr (M ) . ( 21 
)
In this particular case we get

β 2crit (μ 2 ) = - δω 0 2tr (M ) -μ 2 , ( 22 
)
provided that tr (M ) = 0.

Condition (H.2) Since for μ 1 = 0 we have Reλ 1,2 (μ 1 ) = 1 2 β 1 μ 1 tr (M ) , it follows that dReλ 1,2 dμ 1 | μ1=0 = 1 2 β 1 tr (M ) , ( 23 
)
thus dReλ dμ1 | μ1=0 = 0 iff β 1 = 0, provided tr (M ) = 0. We have proved the following result.

Theorem 1. Consider the planar nonlinear control system

ẋ = F (x) + G (x) u (x, μ, β) , ( 24 
)
where x ∈ R 2 , F, G : R 2 → R 2 are smooth vector fields,

F (0) = 0, G (0) = 0, J = dF (0) = 0 -ω 0 ω 0 0
, and tr (dG (0)) = 0. Then there exist β 1 , β 2 ∈ R such that with the control law G (x) u (x, μ, β) , where

u (x, μ, β) = β 1 μ 1 +(β 2 + μ 2 ) x 2 1 + x 2 2 +β 3 x 2 1 + x 2 2 2 , ( 25 
)
system (24) undergoes a Hopf bifurcation at μ 1 = 0, provided that β 2 = β 2crit (μ 2 ) . In addition it is possible to control the stability and the direction of the limit cycles emerging near the origin by selecting positive or negative β 1 and

β 2 > β 2crit (μ 2 ) or β 2 < β 2crit (μ 2 ),
where β 2crit (μ 2 ) is given by ( 22).

Remark. According to (21) and ( 22), it follows that

l 1 (0, μ 2 ) > 0 ⇔ ⎧ ⎨ ⎩ β 2 > β 2crit , if tr (M ) > 0, or β 2 < β 2crit , if tr (M ) < 0, while l 1 (0, μ 2 ) < 0 ⇔ ⎧ ⎨ ⎩ β 2 < β 2crit , if tr (M ) > 0, or β 2 > β 2crit , if tr (M ) < 0.
Using Theorem 1, and selecting appropriate values for the control parameters β 1 , β 2 , all the possible Hopf bifurcation diagrams, considering μ 1 as the bifurcation parameter, can be obtained. See Figure 1. In this figure the cases (i) and (iii) correspond to l 1 < 0, thus to a supercritical Hopf bifurcation, while the cases (ii) and (iv) correspond to l 1 > 0, thus to a subcritical Hopf bifurcation.

Control of the Bautin bifurcation

In this section we find the critical value of the control parameter β 3 such that system (1) undergoes all kind of Bautin bifurcation.

Assume that the first Lyapunov coefficient is zero at μ 2 = 0, that is β 2 = β 2crit (0).

Condition (B.1)

In order to compute the second Lyapunov coefficient at (μ 1 , μ 2 ) = (0, 0) , we use the following formula [START_REF] Yu | Elements of applied bifurcation theory[END_REF], p. 310:

12l 2 (0, 0) = 1 ω 0 Reg 32 + 1 ω 2 0 Im[g 20 ḡ31 -g 11 (4g 31 + 3ḡ 22 ) -1 3 g 02 (g 40 + ḡ13 ) -g 30 g 12 ] + 1 ω 3 0 {Re[g 20 (ḡ 11 (3g 12 -ḡ30 )
+g 02 (ḡ 12 -1 3 g 30 ) + The coefficients g kl used in the above formula can be written in terms of the functions C, D, E. Thus, from

1 3! p, C (zq + z q, zq + z q, zq + z q) = k+l=3 1 k!l! g kl z k zl ,
we obtain: g 30 = p, C (q, q, q) , g 21 = p, C (q, q, q) , g 12 = p, C (q, q, q) , g 03 = p, C (q, q, q) .

From 1 4! p, D (zq + z q, zq + z q, zq + z q, zq + z q) = k+l=4 1 k!l! g kl z k zl , we obtain: g 40 = p, D (q, q, q, q) , g 31 = p, D (q, q, q, q) , g 22 = p, D (q, q, q, q) , g 13 = p, D (q, q, q, q) . Similarly we get g 32 = p, E (q, q, q, q, q) . From (11) we have:

D = d 4 F (0) + 12β 2 S, E = d 5 F (0) + 20β 2 K + 120β 3 R,
where S (x, y, z, t) , K (x, y, z, t, u) and R (x, y, z, t, u) are multilinear symmetric forms such that:

S (x, x, x, x) = x 2 1 + x 2 2 d 2 G (0) , K (x, x, x, x, x) = x 2 1 + x 2 2 d 3 G (0) , R (x, x, x, x, x) = x 2 1 + x 2 2 2 M x,
respectively. Applying the above formula, the coefficients g kl can be split as: g 30 = γ 30 + 6β 2 ρ 30 , where γ 30 = p, d 3 F (0) (q, q, q) , ρ 30 = p, H (q, q, q) ; g 21 = γ 21 + 6β 2 ρ 21 , where γ 21 = p, d 3 F (0) (q, q, q) , ρ 21 = p, H (q, q, q) ; g 12 = γ 12 + 6β 2 ρ 12 , where γ 12 = p, d 3 F (0) (q, q, q) , ρ 12 = p, H (q, q, q) ; g 03 = γ 03 + 6β 2 ρ 03 , where γ 03 = p, d 3 F (0) (q, q, q) , ρ 03 = p, H (q, q, q) ; g 13 = γ 13 + 12β 2 ρ 13 , where γ 13 = p, d 4 F (0) (q, q, q, q) , ρ 13 = p, S (q, q, q, q) ; g 40 = γ 40 + 12β 2 ρ 40 , where γ 40 = p, d 4 F (0) (q, q, q, q) , ρ 40 = p, S (q, q, q, q) ; g 22 = γ 22 + 12β 2 ρ 22 , where γ 22 = p, d 4 F (0) (q, q, q, q) , ρ 22 = p, S (q, q, q, q) ; g 31 = γ 31 + 12β 2 ρ 31 , where γ 31 = p, d 4 F (0) (q, q, q, q) , ρ 31 = p, S (q, q, q, q) ; g 32 = γ 32 + 20β 2 ρ 32 + 120β 3 τ 32 , where γ 32 = p, d 5 F (0) (q, q, q, q, q) , ρ 32 = p, K (q, q, q, q, q) , and τ 32 = p, R (q, q, q, q, q) . Substituting into (26) the expressions of the coefficients g kl we get

l 2 (0, 0) = δ + 1 12ω 0 Re (120β 3 τ 32 ) , ( 27 
)
where δ depends only on F and G. Hence

l 2 (0, 0) = δ + 10 ω 0 β 3 Re (τ 32 ) . ( 28 
)
Consequently, there exists a unique value

β 3crit = - δ ω 0 10Re (τ 32 ) ( 29 
)
of β 3 such that l 2 (0, 0) = 0, provided that Re (τ 32 ) = 0.

Considering Proof. It follows from direct computations.

β 3 = β 3crit , condition (B.1) is satisfied. Lemma 1. If Q : R 2 5 → R is a multilinear sym- metric form with Q (x, x, x, x, x) = 5 j=0 c 5-j,j x 5-j 1 x j 2 , then Q (x,
Remark. In the particular case when

J = dF (0) = 0 -ω 0 ω 0 0 , we can choose q = (1, -i) T , p = 1 2 , -i 2 T .
Thus from ( 22) we have

β 2crit (0) = - ω 0 δ 2tr (M ) . ( 30 
)
Using Lemma 1, we get R (q, q, q, q, q) = and the second Lyapunov coefficient in (28) reads:

l 2 (0, 0) = δ + 8 ω 0 β 3 tr (M ) . ( 32 
)
In this case we have

β 3crit = - δ ω 0 8tr (M ) , ( 33 
)
if tr (M ) = 0.

Condition (B.2)

The map 

(μ 1 , μ 2 ) → (Reλ (μ 1 , μ 2 ) , l 1 (μ 1 , μ 2 )) is regular at (μ 1 , μ 2 ) = (0, 0) provided Δ = ∂ ∂μ1 Reλ (μ 1 , μ 2 ) ∂ ∂μ2 Reλ (μ 1 , μ 2 ) ∂ ∂μ1 l 1 (μ 1 , μ 2 ) ∂ ∂μ2 l 1 (μ 1 , μ 2 ) = 0 (34)
β 1 < 0, β 3 < β 3crit , tr(M ) < 0. at (μ 1 , μ 2 ) = (0, 0) . Since Reλ (μ 1 , μ 2 ) = 1 2 β 1 μ 1 tr (M ) , ( 35 
)
we have ∂ ∂μ2 Reλ (μ 1 , μ 2 ) = 0, hence only the term ∂ ∂μ2 l 1 (μ 1 , μ 2 ) have to be evaluated. The first Lyapunov coefficient corresponding to the Hopf bifurcation in (1) can be written in terms of the derivatives of the functions in the right hand side in (1) as [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems and bifurcations of vector fields[END_REF] 

l 1 (μ 1 , μ 2 ) = R 1 16ω 2 0 + R 2 16ω 0 , ( 36 
)
where R 1 contains only terms from the second order derivatives of the vector field F (x) + G (x) u, and

R 2 = ∂ 3 F 1 ∂x 3 1 + ∂ 3 F 1 ∂x 1 ∂x 2 2 + ∂ 3 F 2 ∂x 2 1 ∂x 2 + ∂ 3 F 2 ∂x 3 2 , ( 37 
)
where by F 1 , F 2 we denote the components of the two dimensional vector field F (x) + G (x) u. Taking into account (11) we obtain ∂R1 ∂μ2 = 0, and

R 2 = 8 (β 2 + μ 2 ) tr (M ) , (38) 
thus ∂R2 ∂μ2 = 8tr (M ) . It follows NODY9779_source.tex; 16/07/2010; 10:46 p. 9

Δ = 1 4ω 0 β 1 (tr (M )) 2 . ( 39 
)
Consequently the transversality condition (B.2) is fulfilled, provided

β 1 tr (M ) = 0. ( 40 
)
We have proved the following result.

Theorem 2. Consider the planar nonlinear control system

ẋ = F (x) + G (x) u (x, μ, β) , ( 41 
)
where x ∈ R 2 , F, G : R 2 → R 2 are smooth vector fields, F (0) = 0, G (0) = 0, J = dF (0) having purely imaginary eigenvalues, M = dG (0) and tr(M ) = 0. Then there exist β 1 , β 2 , β 3 ∈ R, where β 2 = β 2crit (0) is given by ( 30), such that with the control law G (x) u (x, μ, β) , where

u (x, μ, β) = β 1 μ 1 +(β 2 + μ 2 ) x 2 1 + x 2 2 +β 3 x 2 1 + x 2 2 2 , ( 42 
)
system (41) undergoes a Bautin bifurcation at μ 1 = μ 2 = 0, for β 3 = β 3crit . In addition it is possible to control the stability and the direction of the limit cycles emerging near the origin by selecting positive or negative β 1 , tr (M ) and β 3 > β 3crit or β 3 < β 3crit , where β 3crit is given by (33).

Remark. According to (32) and (33), it follows that

l 2 (0, 0) > 0 ⇔ ⎧ ⎨ ⎩ β 3 > β 3crit , if tr (M ) > 0, or β 3 < β 3crit , if tr (M ) < 0, while l 2 (0, 0) < 0 ⇔ ⎧ ⎨ ⎩ β 3 < β 3crit , if tr (M ) > 0, or β 3 > β 3crit , if tr (M ) < 0.
Using Theorem 3, and selecting appropriate values for the control parameters β 1 , β 3 and tr (M ), all the possible Bautin bifurcation diagrams, considering (μ 1 , μ 2 ) as the bifurcation parameter, can be obtained. See Figures 23456789. In these figures, the curve C NH contains values of parameters corresponding to non-hyperbolic limit cycle bifurcation. Remark that the curve C NH is tangent to the μ 2 semi-axis, corresponding to l 1 (0, μ 2 ) > 0 as l 2 (0, 0) < 0 or to the μ 2 semi-axis, corresponding to l 1 (0, μ 2 ) < 0 as l 2 (0, 0) > 0. In addition, as μ 1 = μ 2 = 0, the first Lyapunov coefficient is zero, for all Figures 23456789we have β 2 = β 2crit (0). Remark that in Figures 2,4, 6, 8 we have l 2 > 0, while in Figures 3,5 where

F (x) = -x 2 -x 1 x 2 2 x 1 .
It possesses the nonhyperbolic equilibrium x = 0, and

J = dF (0) = 0 -1 1 0 .
Consider the control u (x, μ, β) G (x) , with u (x, μ, β) given by ( 2), and G (x) = sx, s = 0. We have G (0) = 0, M = dG (0) = s 0 0 s and tr (M ) = 2s = 0. Thus the hypothesis of Theorems 1 and 2 are fulfilled for the nonlinear control system (1), which in our case is written as

ẋ1 = -x 2 -x 1 x 2 2 + sx 1 u (x, μ, β) ẋ2 = x 1 + sx 2 u (x, μ, β) (44) 
with bifurcation parameter μ = (μ 1 , μ 2 ). Following the lines in Section 2, the first Lyapunov coefficient at μ 1 = 0 has the expression:

l 1 (0, μ 2 ) = - 1 2 + 4s (β 2 + μ 2 ) , (45) 
and we obtain the following critical value for β 2 :

β 2crit (μ 2 ) = 1 8s -μ 2 . ( 46 
)
For β 2 = β 2crit (0) = 1 8s , applying the formula in Section 3, we find l 2 (0, 0) = 16sβ 3 and β 3crit = 0.

According to our results concerning the Hopf bifurcation control in Section 2, by choosing different values for β 1 , β 2 , s, we can manipulate the behavior of the system (44) in order to obtain all the diagrams from Figure 1. For instance, if In this figure we plotted, using [START_REF] Ermentrout | XPPAUT[END_REF], [START_REF] Ermentrout | Simulating, analyzing and animating dynamical systems: a guide to xppaut for researchers and students[END_REF], the trajectory through the initial point (0.2, 0.25), for three different values of μ 1 , showing the supercritical Hopf bifurcation. Our study is a local one, thus the Hopf bifurcation is emphasized only in a neighborhood of the point (x 1 , x 2 , μ 1 ) = (0, 0, 0) . For parameter values of μ 1 far of the bifurcation value μ 1 = 0, the limit cycle does not exist any longer, since it disappeared by another type of bifurcation (Figure 10 (iv)). 

β 1 = 1, β 2 = -1, s = 1, β 3 = 0.
where

F (x) = -x 2 + x 2 1 + 1 3 x 3 1 x 1 ,
which possesses the nonhyperbolic equilibrium x = 0, and J = dF (0) = 0 -1 1 0 .

Consider the control u (x, μ, β) G (x) , with u (x, μ, β) given by ( 2), and

G (x) = sx 1 + x 1 x 2 2 sx 2 + x 3 2 , s = 0.
We have G (0) = 0, M = dG (0) = s 0 0 s and tr (M ) = 2s = 0. Thus the hypothesis of Theorems 1 and 2 are fulfilled for the nonlinear control system ẋ = F (x) + u (x, μ, β) G (x) , (

with bifurcation parameter μ = (μ 1 , μ 2 ) . The first Lyapunov coefficient at μ 1 = 0 has the expression:

l 1 (0, μ 2 ) = 1 2 + 4s (β 2 + μ 2 ) , ( 49 
)
and the critical value for β 2 is

β 2crit (μ 2 ) = - 1 8s -μ 2 . ( 50 
)
For β 2 = β 2crit (0) = -1 8s , we find 11 The trajectory through the initial point (x 1 , x 2 ) = (0.5, 0.5) and parameters (i) (μ 1 , μ 2 ) = (-0.2, -1), region 1 in Figure 3; (ii) (μ 1 , μ 2 ) = (0, -1), region 3; (iii) (μ 1 , μ 2 ) = (0.5, 1), region 3; (iv) (μ 1 , μ 2 ) = (0, 1), region 4; (v) (μ 1 , μ 2 ) = (-0.2, 1), region 5; (vi) (μ 1 , μ 2 ) = (-0.5, 1), region 1, close to the nonhyperbolic limit cycle bifurcation curve C NH .

Conclusions

In this paper we consider a nonlinear planar system with a non-hyperbolic equilibrium at the origin, which possesses a pair of imaginary uncontrollable modes. We design a control law such that the resulting control system undergoes controllable Hopf or Bautin bifurcation. By two control parameters (β 1 , β 2 ) the stability and orientation of the limit cycle in the Hopf case can be controlled by feedback, obtaining four possible cases. Similarly, the characteristics of the limit cycles in the Bautin case, as β 2 = β 2crit , can be controlled by three control parameters (β 1 , β 3 and tr (M )), obtaining all the eight possible cases. Two examples emphasizing the validity of our theoretical results are given.
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 1 Fig. 1 Hopf bifurcation diagrams:(i) β 1 > 0, β 2 < β 2crit (μ 2 ), tr(M ) > 0 or β 1 < 0, β 2 > β 2crit (μ 2 ), tr(M ) < 0; (ii) β 1 > 0, β 2 > β 2crit (μ 2 ), tr(M ) > 0 or β 1 < 0, β 2 < β 2crit (μ 2 ), tr(M ) < 0; (iii) β 1 < 0, β 2 < β 2crit (μ 2 ), tr(M ) > 0 or β 1 > 0, β 2 > β 2crit (μ 2 ), tr(M ) < 0; (iv) β 1 < 0, β 2 > β 2crit (μ 2 ), tr(M ) > 0 or β 1 > 0, β 2 < β 2crit (μ 2 ), tr(M ) < 0.

8 5 (m 11 -im 12 ) 8 5

 88 (m 21im 22 )

Fig. 2 Fig. 3 Fig. 4 7 Fig. 5 Fig. 6

 234756 Fig. 2 Bautin bifurcation diagram: β 1 > 0, β 3 > β 3crit , tr(M ) > 0.

Fig. 7 Fig. 8 Fig. 9

 789 Fig. 7 Bautin bifurcation diagram: β 1 < 0, β 3 > β 3crit , tr(M ) < 0.

  , 7, 9 we have l 2 < 0.

4 ApplicationsExample 1 .

 41 Consider the planar system ẋ = F (x) , (43)

  3, μ 2 = 0.5, three characteristic phase portraits similar to those from Figure 1(i) are obtained in Figure 10(i)-(iii).

Fig. 10 2 .

 102 Fig. 10 The trajectory through the initial point (x 1 , x 2 ) = (0.2, 0.25) and parameters (i) μ 1 = -0.1; (ii) μ 1 = 0; (iii) μ 1 = 0.1; (iv) μ 1 = 0.5.

l 2 ( 3 .

 23 Choosing appropriate values for the control parameters β 1 , β 2 , β 3 , s =1 2 tr (M ) , all the four types of Hopf and all eight types of Bautin bifurcation diagrams can be obtained.

Fig.

  Fig.11The trajectory through the initial point (x 1 , x 2 ) = (0.5, 0.5) and parameters (i) (μ 1 , μ 2 ) = (-0.2, -1), region 1 in Figure3;(ii) (μ 1 , μ 2 ) = (0, -1), region 3; (iii) (μ 1 , μ 2 ) = (0.5, 1), region 3; (iv) (μ 1 , μ 2 ) = (0, 1), region 4; (v) (μ 1 , μ 2 ) = (-0.2, 1), region 5; (vi) (μ 1 , μ 2 ) = (-0.5, 1), region 1, close to the nonhyperbolic limit cycle bifurcation curve C NH .
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