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We study (stationary) Laplacian transport by the Dirichlet-to-Neumann formalism. Our results concerns a formal solution of the geometrical inverse problem for localisation and reconstruction of the form of absorbing domains. Here we restrict our analysis to the one-and two-dimension cases. We show that the last case can be studied by the conformal mapping technique. To illustrate it we scrutinize constant boundary conditions and analyse a numeric example.

1. Introduction 1. Is is known (see e.g. [LeUl]) that the problem of determining a conductivity matrix field γ(p) = [γ i,j (p)] d i,j=1 , for p in a bounded open domain Ω ⊂ R d , is related to "measuring" the elliptic Dirichlet-to-Neumann map for associated conductivity equation. Notice that solution of this problem has a lot of practical applications in various domains: geophysics, electrochemistry etc. It is also an important diagnostic tool in medicine, e.g. in the electrical impedance tomography; the tissue in the human body is an example of highly anisotropic conductor [BaBr].

Under assumption that there is no sources or sinks of current the potential v(p), p ∈ Ω, for a given voltage f (ω), ω ∈ ∂Ω, on the (smooth) boundary ∂Ω of Ω is a solution of the Dirichlet problem: (P1) div(γ∇v) = 0 in Ω, v| ∂Ω = f on ∂Ω.

Then the corresponding to (P1) Dirichlet-to-Neumann map (operator) Λ γ,∂Ω is (formally) defined by [START_REF] Taylor | Preudodifferential Operators[END_REF] Λ γ,∂Ω : f → ∂v f /∂ν γ := ν • γ ∇v f | ∂Ω .

(1.1)

Here ν is the unit outer-normal vector to the boundary at ω ∈ ∂Ω and the function v := v f is a solution of the Dirichlet problem (P1).

The Dirichlet-to-Neumann operator (1.1) is also called the voltage-to-current map, since the function Λ γ,∂Ω f gives the induced current flux trough the boundary ∂Ω. The key (inverse) problem is whether on can determine the conductivity matrix γ by knowing electrical boundary measurements, i.e. the corresponding Dirichlet-to-Neumann operator? In general this operator does not determine the matrix γ uniquely, see e.g. [GrUl].

The main question in this context is to find sufficient conditions insuring that the inverse problem is uniquely soluble.

2. The problem of electrical current flux in the form (P1) is an example of socalled diffusive Laplacian transport [Zag]. Besides the voltage-to-current problem the motivation to study of this kind of transport comes for instance from the transfer across biological membranes, see e.g. [Sap], [GrFiSap].

Let some "species" of concentration C(p), x ∈ R d , diffuse stationary in the isotropic bulk (γ = I) from a (distant) source localised on the closed boundary ∂Ω towards a semipermeable compact interface ∂B of the cell B ⊂ Ω, where they disappear at a given rate W ≥ 0. Then the steady field of concentrations (Laplacian transport with a diffusion coefficient D ≥ 0) obeys the set of equations: (ω), on the interface ω ∈ ∂B Usually one supposes that C(p) = C * ≥ 0, p ∈ B, is a constant concentration of the "species" inside the cell B.

(P2) *      ∆C = 0, p ∈ Ω \ B , C | ∂Ω (p) = C 0 , a constant concentration at the source ∂Ω , -D ∂ ν C | ∂B (ω) = W (C -C * ) | ∂B
This example motivates the following abstract stationary diffusive Laplacian transport problem with absorption on the surface ∂B:

(P2)      ∆u = 0, p ∈ Ω \ B , (u(p) = Const , p ∈ B), u | ∂Ω (p) = f (p), p ∈ ∂Ω , (α u + ∂ ν u) | ∂B (ω) = h(ω), ω ∈ ∂B .
This is the Dirichlet problem for domain Ω ⊃ B with the Dirichlet-Neumann (or Robin [Kell]) boundary condition on the absorbing surface ∂B. , the solutions of the problem (P2) for given f and for the Robin boundary condition on ∂B fixed by α and h.

Then there are at least two (in fact related) geometrical inverse problems that make interest: (a) Given Dirichlet data f and the corresponding (measured) Neumann data g (1.2) on the accessible outer boundary ∂Ω, to reconstruct the shape of the interior boundary ∂B. (b) A simpler inverse problem concerns to localisation of the domain (cell) B with a given shape and the fixed parameters α and h.

3.

The aim of the present paper is to study the above problems (a) and (b) in the framework of application outlined in the problem (P2)* and to work out the corresponding formalism based on the Dirichlet-to-Neumann operators.

In Section 2.1 we formulate the mathematical setup of the these problems, and we consider uniqueness of the forward boundary value problem (P2) solution.

There we illustrate our strategy by an explicit example of one-dimensional inverse problem for Ω ⊂ R 1 and B = (a, b).

Our main results (Section 3) concerns the two-dimensional case, when the compact Ω ⊂ R 2 . Notice that there are three points that need a particular attention. The first is that the problems (P2)* and (P2) are formulated for not simply connected domains Ω \ B. The second point concerns the peculiarity of the combination of Dirichlet and Robin boundary conditions. As the third point one has to mention that the geometrical inverse problem is ill-posed.

The present paper presents first of all the formal solution for the case when α = +∞, i.e. the Dirichlet boundary conditions u | ∂B (ω) = 0, ω ∈ ∂B. For this case our approach is motivated by important papers [LiuLu], [R]. Here we refine their results in the framework of the Dirichlet-to-Neumann formalism and add certain observations in the case of a fixed geometry of domains B and Ω following [BayZag].

In Section 4 we consider an explicit example and give numerical calculation for constant external boundary condition f = 1 to illustrate abstract results for α = +∞.

For finite α ≥ 0 and h = 0 we restrict ourself only by few remarks (Section 5) and we reserve the rest for the future publications. The same concerns our formal scheme for d = 2, since the corresponding inverse problem is ill-posed.

The case d = 1 allows explicit calculations and serves for illustration of our main ideas. Whereas for solution of the inverse problems for d = 2 we use a method of conformal mappings for harmonic functions in doubly connected domains Ω \ B.

Setup of the Problems and Uniqueness

1. Below we suppose that Ω and

B ⊂ Ω be open bounded domains in R d with C 2 -smooth disjoint boundaries ∂Ω and ∂B, that is ∂(Ω \ B) = ∂Ω ∪ ∂B and ∂Ω ∩ ∂B = ∅.
Then the unit outer-normal to the boundary ∂(Ω \ B) vector-field ν(p) p∈∂(Ω\B) is well-defined, and we consider the normal derivative in (P2) as the interior limit:

(

∂ ν u) | ∂B (ω) := lim p→ω ν(ω) • (∇u)(p) , p ∈ Ω \ B .
(2.1)

The existence of the limit (2.1) as well as the restriction u | ∂B (ω) := lim p→ω u(p) is insured since u has to be harmonic solution of the problem (P2) for C 2 -smooth boundaries ∂(Ω \ B), [Tay]. Now we introduce some indispensable standard notations and definitions [HuNa]. Let H be Hilbert space L 2 (M ) on domain M ⊂ R d and ∂H := L 2 (∂M ) denote the corresponding boundary space. By W s 2 (M ) we denote the Sobolev space of L 2 (M )-functions, whose s-derivatives are also in L 2 (M ), and similar, W s 2 (∂M ) is the Sobolev space of L 2 (∂M )-functions on the C 2 -smooth boundary ∂M .

Proposition 2.1. Let f, h ∈ W 1/2 2 (∂Ω) for C 2 -smooth boundaries ∂(Ω \ B). If α ≥ 0, then the Dirichlet-Robin problem (P2) has a unique (harmonic) solution in domain Ω \ B.
Proof. For existence we refer to [Tay]. To prove the uniqueness we consider the problem (P2) for f = 0 and h = 0. Then by the Gauss-Ostrogradsky theorem one gets that the corresponding solution u yields:

Ω\B dp (∇u(p) • ∇u)(p)) = Ω\B dp div(u(p) (∇u)(p)) = ∂B dσ(ω) u(ω) (∂ ν u)(ω) = -α ∂B dσ(ω) |u(ω)| 2 ≤ 0 .
(2.2)

The estimate (2.2) implies that u(x ∈ Ω \ B) = Const. Hence by the Robin boundary condition one gets (α u) | ∂B (ω) = 0, and by virtue of u | ∂Ω (p) = f (x ∈ ∂Ω) = 0 we obtain that for α ≥ 0 the harmonic function u(p) = 0 for

x ∈ Ω \ B.
The next statement is a key for analysis of the inverse geometrical problems (a) and (b). Since below we use it in the case R 2 , our formulation is two-dimensional.

Proposition 2.2. Consider two problems (P2) corresponding to a bounded domain Ω ⊂ R 2 with C 2 -smooth boundary ∂Ω and to two subsets B 1 and B 2 with the same smoothness of the boundaries ∂B 1 , ∂B 2 . If for solutions u

(1) f,h , u (2) 
f,h of these problems one has ∂ ν u

(1)

f,h | ∂Ω = ∂ ν u (2) f,h | ∂Ω , (2.3) then ∂B 1 = ∂B 2 . Proof. By virtue of u (1) f,h | ∂Ω = u (2)
f,h | ∂Ω = f and by condition (2.3), the problem (P2) has two solutions for identical external (on ∂Ω) and internal (on ∂B 1 and ∂B 2 ) Robin boundary conditions. Then by the standard arguments based on the Holmgren uniqueness theorem [Tat] for harmonic functions on R 2 one obtains that ∂B 1 = ∂B 2 . 2. We finish this section by a simple illustration of the explicit solution of the Inverse Problems (a) and (b) in one-dimensional case. Motivated by the Laplace transport (P2)* we consider the case: f = c 0 , h = α c * , and α = W/D ≥ 0, for Ω := (-R, R) ⊂ R 1 and B := (a, b):

(P d=1 )      ∆u = 0, x ∈ (-R, R) \ [a, b] , u | ∂Ω (x = ∓R) = f (∓R) =: c ∓ , (α u + ∂ ν u) | ∂[a,b] (a) = (α u + ∂ ν u) | ∂[a,b] (b) = α c * , where R > 0 and -R < a < b < R.
The solution of the problem (a) is straightforward, since in the one-dimensional case the shape of absorbing cell is trivial: it is the interval B := (a, b).

Now notice that a general solution of the problem (P d=1 ) is a combination of linear functions supported in domain Ω

:= (-R, R) \ [a, b] and a constant c * in the interval [a, b]: -R < x < a : u(x) = - c --c * (R + a) + α -1 (R + x) + c -, (2.4) a ≤ x ≤ b : u(x) = c * , b < x < R : u(x) = - c + -c * (R -b) + α -1 (R -x) + c + .
(2.5)

Given Dirichlet data c 0 on the boundary ∂Ω and measuring on this boundary the Neumann data in the form of the flux currents:

j -:= -∂ ν u | ∂Ω (x = -R) = c --c * (R + a) + α -1 j + := -∂ ν u | ∂Ω (x = +R) = - c + -c * (R -b) + α -1
one can solve explicitly the both problems (a) and (b).

In the one-dimensional case the shape of the cell is defined by its size: (b -a), whereas localization is fixed by the points:

a = (c --c * )/j --R -α -1 , b = (c + -c * )/j + + R + α -1 .

Two-Dimensional Inverse Problem: Conformal Mapping and the Shape of ∂B

1. The relevance of the conformal mapping in the study of the boundary value problems for harmonic functions (solutions of the Laplace equation) is wellknown, see e.g. [LaCh] (Ch.III), or [Mih] (Ch.13).

Recall that if the complex function w : z → C is holomorphic in the open domain {Ω ⊂ C : z = x + i y ∈ Ω}, then by the Cauchy-Riemann conditions the functions u(x, y) := (Re w)(x, y) and v(x, y) := (Im w)(x, y) are harmonic in Ω. Here w(z) = u(x, y) + i v(x, y).

Remark 3.1. There is an elementary inverse problem of the complex analysis : given a harmonic function u(x, y) in Ω to construct in this domain the harmonic function v(x, y) (harmonic conjugate to u) such that the complex function w = u+i v is holomorphic. In fact one finds the harmonic conjugate from the Cauchy-Riemann conditions

∂ x u = ∂ y v , ∂ y u = -∂ x v , ( 3 
.1) since for a given u this is a system of partial differential equations for v. Notice that for a simply connected domain Ω the solution of this system always exists and it is unique up to a constant, whereas in non-simply connected domains the harmonic conjugate may not be a single-valued function. On the other hand, in any simply connected subset Ω 0 ⊂ Ω one can select a single-valued branch of this function. By consequence this means a selection of the single-valued branch of the total complex function w.

Application of conformal mappings to analysis of harmonic functions and Laplace equation is based on the following observations:

Proposition 3.2. Let ζ : z → ζ(z) be a conformal mapping ζ(z) : N → M by a holomorphic function ζ(z) = ξ(x, y)+iη(x, y). If the function u(ξ, η) is harmonic in M , then the composition u(x, y) := ( u • ζ)(x, y) = u(ξ(x, y), η(x, y)) , (3.2)
is a harmonic function of x, y in N .

In particular one obtains:

(∆ z u)(x, y) = |∂ z ζ(z)| 2 (∆ ζ u)(ξ(x, y), η(x, y)) . (3.3) (Here we explicitly distinguish Laplacians in different coordinates, ∆ z := ∂ 2 x + ∂ 2 y and ∆ ζ := ∂ 2 ξ + ∂ 2
η , but we ignore these subindexes below, since it will not produce any confusion.) Notice that this statement is based only on a straight forward application of the Cauchy-Riemann conditions for the mapping ζ(z), i.e. it does not assume the existence of a harmonic conjugate neither for u, nor for u. Although for a simply connected N 0 ⊂ N one can show that every harmonic function is a real part of a branch of holomorphic in N 0 function.

The second observation is related to the Dirichlet-to-Neumann formalism and makes clear the importance of the notion of the harmonic conjugate function, [LaCh], Ch.III. 

(P N ) ∆u = 0, p ∈ Ω \ B , ∂ ν u | ∂Ω (p) = g(p), p ∈ ∂Ω .
reduces to the Dirichet problem for the function v, which is harmonic conjugate to the function u.

To make this evident, notice first that the normal derivative here is defined in the sense of (2.1). Let the boundary ∂Ω be parameterized by the natural parameter of its arc-length:

∂Ω = {Γ(τ ) ∈ C} τ ∈[0,l) .
Then the Cauchy-Riemann conditions (3.1) imply that

∂ τ v | ∂Ω (p) = ∂ ν u | ∂Ω (p) = g(p). (3.4)
Since by integration along the contour Γ one obtains

v(p 1 ) = v(p 0 ) + τ 1 τ 0 dτ ∂ τ v(Γ(τ )) = v(p 0 ) + τ 1 τ 0 ds g(Γ(τ )) =: f (p 1 ) ,
the solution of (P N ) is equivalent to the Dirichlet problem (P D ) for v and the boundary condition f .

2.

To outline the main steps in reconstructing the unknown boundary ∂B, we consider first the problem (P2) for the Dirichlet case α = +∞:

(P ∞ d=2 )      ∆u = 0, p ∈ Ω \ B , u | ∂Ω (p) = f (p), p ∈ ∂Ω , u | ∂B (ω) = 0, ω ∈ ∂B .
It is well-known, see e.g. [LaCh], [Mar], that the doubly connected bounded domain Ω \ B is the image of a conformal mapping of an annulus To this end, let u f be solution of the problem (P ∞ d=2 ). Then by Proposition 3.2 the function u f := u f • ζ is harmonic in the annulus A B and it is solution of the Dirichlet problem

A B := {z ∈ C : 0 < ρ B < |z| < 1} (3.
( P ∞ d=2 )      ∆ u = 0, p ∈ A B , u | C 1 (p) = f (p) , p ∈ C 1 , u | Cρ B (ω) = 0, ω ∈ C ρ B .
Here

f (p) = (f • ζ)(p) = f (ζ(p)) = f (ξ(x, y), η(x, y)) and p = (x, y) ∈ C 1 .
Consider the solution u f of the Dirichlet problem (P ∞ d=2 ). Then the Dirichletto-Neumann operator Λ ∂Ω for the external boundary ∂Ω is defined similar to (1.2):

Λ ∂Ω f = ∂ ν u f | ∂Ω =: g .
(3.7) Let v f be harmonic conjugate to u f . Then by (3.4) we obtain that for external boundary ∂Ω

∂ τ v f | ∂Ω (τ ) = ∂ τ v f (Γ(τ )) = ∂ ν u f (Γ(τ )) = (Λ ∂Ω f )(Γ(τ )) = (Λ ∂Ω f )(ζ(e iφ(τ ) )) = (Λ ∂Ω f • ζ)(e iφ(τ ) ) .
(3.8)

With conformal mapping ζ the relation (3.8) can be rewritten as: 3. Hence, for a fixed boundary Γ one can in principle find the trace ζ(z) | C 1 using the scheme outlined above. To this end let f ∈ W 1 2 (C 1 ), where we identify C 1 with [0, 2π], see problem ( P ∞ d=2 ). Then solution of this problem gets the form:

∂ τ v f (Γ(τ )) = ∂ τ v f (ζ(e iφ(τ ) )) = ∂ φ (v f • ζ)(e iφ(τ ) ))∂ τ φ(τ ) . (3.9) Since u f := u f • ζ and v f := v f • ζ, see ( P ∞ d=2 ), by (3.4), we obtain that ∂ φ (v f • ζ)(e iφ )) = ∂ φ v f (φ) = ∂ ν u f | C 1 (φ) = Λ C 1 (f • ζ)(e iφ
∂ τ φ = (Λ ∂Ω f • ζ)(e iφ ) Λ C 1 (f • ζ)(e iφ ) . ( 3 
u f (ρ, φ) = a 0 ln ρ + b 0 + (3.13) ∞ n=1 (a n ρ n + b n ρ -n ) cos nφ + (c n ρ n + d n ρ -n ) sin nφ ,
The coefficients in expansion (3.13) are equal to

a n = f 1,n (1 -ρ 2n B ) , b n = - ρ 2n B f 1,n (1 -ρ 2n B ) , a 0 = - f 1,0 ln ρ B , b 0 = f 1,0 , (3.14) c n = f 2,n (1 -ρ 2n B ) , d n = - ρ 2n B f 2,n (1 -ρ 2n B )
.

(3.15)

They are related to coefficients of the Fourier series for f (φ):

f 1,0 = 1 2π 2π 0 dφ f (φ), f 1,n = 1 π 2π 0 dφ f (φ) cos nφ, f 2,n = 1 π 2π 0 dφ f (φ) sin nφ.
Then the corresponding Dirichlet-to-Neumann operator (3.10) acts as a bounded operator from

W 1 2 (C 1 ) to L 2 (C 1 ): Λ C 1 f (φ) = ∂ ν u f | C 1 (φ) = (3.16) - f 1,0 ln ρ B + ∞ n=1 n [(a n -b n ) cos nφ + (c n -d n ) sin nφ] .
By (3.10) and (3.16) we obtain the identity

2π 0 dφΛ C 1 f (φ) = - 1 ln ρ B 2π 0 dφ f (φ) ,
which implies by (3.8)-(3.10) that the radius of the internal circle is defined as

ρ B = exp - 2π 0 dφ (f • ζ)(e iφ ) ∂Ω dτ ∂ τ φ(τ )∂ φ (v f • ζ)(e iφ(τ ) ) -1 = exp - 2π 0 dφ (f • ζ)(e iφ ) ∂Ω dτ ∂ ν u f (Γ(τ )) -1
.

(3.17)

The relation (3.17 

l = 2π 0 dφ Λ Cρ B ,C 1 (f • ζ)(e iφ ) (Λ ∂B,∂Ω f • ζ)(e iφ ) , ( 
Λ ∂B,∂Ω : f → ∂ ν u f | C R = 1 R (ln R -ln r B ) f =: g . ( 3 
Λ Cρ B ,C ρ=1 : f → ∂ ν u f | C 1 = - 1 ln ρ B f . (3.21)
Then by (3.20) we get for numerator in (3.11):

(Λ ∂B,∂Ω f • ζ) = 1 R (ln R -ln r B ) f • ζ = R ln R r B -1 f , (3.22)
and by (3.21) one obtains for denominator in (3.11): 4. This example shows that τ (φ) is a 2π-periodic extension of the linear function

Λ Cρ B ,C ρ=1 (f • ζ) = - 1 ln ρ B f . ( 3 
τ 0 (φ) := l 2π φ , φ ∈ [0, 2π) . (3.24)
The reason is a simple linear form of the corresponding conformal mapping. Any deviation from the concentric domains ∂Ω = C R and ∂B = C r B makes the function τ (φ) non-linear, but obeying the condition (3.18). As a less trivial application of the scheme presented above is the example of non-concentric domains ∂Ω = C R and ∂B = C r B . In this case the conformal mapping ζ is a priori known: it is the Möbius transformation, and one can proceed with this trial ζ along the same line of reasoning as in Example 3.4, see [BayZag]. Although illustration of the inverse geometrical problem solution needs a complete application of the above formalism, since now one has to solve two coupled equations (3.11) and (3.17) with condition (3.18). (ii) We rewrite these equations (incorporating the constraint (3.18)) in the following form: and (3.26), together with relations ζ n (e iφ ) = Γ(τ n (φ)), see (3.12), as a non-linear iterative scheme to obtain ρ B and the function τ (φ) (or ζ(z)), cf [LiuLu]:

ρ B = exp - 2π 0 dφ (f • ζ)(e iφ ) ∂Ω dτ ∂ ν u f (Γ(τ )) -1 . (3.25) ∂ φ τ = l 2π + Λ Cρ B ,C 1 (f • ζ) (Λ ∂B,∂Ω f • ζ) - 1 2π 2π 0 dφ Λ Cρ B ,C 1 (f • ζ)(e iφ ) (Λ ∂B,∂Ω f • ζ)(e iφ ) . ( 
ρ n = exp - 2π 0 dφ(f • ζ n )(e iφ ) ∂Ω dτ ∂ ν u f (Γ(τ )) -1
, (3.27) Remark 4.1. Notice that one can always find a conformal mapping that transforms domain Ω into unit disc. Therefore, we put for simplicity Ω = D r=1 , the unit disc, i.e. ∂Ω = C 1 , is the unit circle.

∂ φ τ n+1 = l 2π + Λ Cρ n ,C 1 (f • ζ n ) (Λ ∂B,∂Ω f • ζ n ) - 1 2π 2π 0 dφ Λ Cρ n ,C 1 (f • ζ n )(e iφ ) (Λ ∂B,∂Ω f • ζ n )(e iφ ) , ( 
(P f ± =1,0 )      ∆u = 0, p ∈ Ω \ B , u | ∂Ω (p) = f + (p) = 1, p ∈ ∂Ω , u | ∂B (p) = f -(p) = 0, p ∈ ∂B ,
Remark 4.2. Since below we use a conformal map approach to localisation the internal boundary ∂B, we identify the R 2 -points p = (x, y) with those of the complex plane C by: p → z(p) := x + iy ∈ C. Then it is known, see e.g. [LaCh], that the harmonic function solving (P f ± =1,0 ) can be viewed as the real part of a holomorphic in domain Ω \ B function u(z) , i.e., u(p) = Re u(z(p)). We put u(z) = u(x, y) + iv(x, y), where v(x, y) is harmonic conjugate to u(x, y), [LaCh].

Recall that for a double connected domain the function u(z) may be multi-valued. Then we consider for u(z) only one (principle) branch.

Remark 4.3. Recall that in polar coordinates z = re iφ ∈ C the measured Neumann data g on C 1 take the form

g(φ) = e r • ∇u | z∈C 1 = (cos φ ∂ x u + sin φ ∂ y u) | z∈C 1 = = ∂ r u(r cos φ, r sin φ) | r=1 . (4.1)
We also recall that the Cauchy-Riemann conditions in these coordinates can be written as Then the problem (P f ± =1,0 ) transfers into

∂ r u = 1 r ∂ φ v , 1 r ∂ φ u = -∂ r v . (4.2) 1.2 Problem (P * f ± =1,0 ). Let holomorphic function w : z = (x + iy) → (w 1 + iw 2 ) maps doubly connected bounded domain D 1 \ B ⊂ C into annulus A B := {w ∈ C : 0 < ρ B < |w| < 1} .
(P * f ± =1,0 )      ∆U = 0, p ∈ D 1 \ D ρ B , U | C 1 (p) = 1, p ∈ C 1 , U | Cρ B (p) = 0, p ∈ C ρ B ,
with the exterior normal derivative:

∂ ν U | z∈C 1 (w(z)) = 1 |w (z)| g(z) z∈C 1 . (4.5)
Notice that the value of the normal derivative (4.5) is B-dependent via conformal mapping w.

1.3 Solution of the Problem (P * f ± =1,0 ). For the general solution one easily finds a representation in the (complex) polar coordinates w = ρeiϕ:

U (ρ, ϕ) = a + b ln ρ + n∈Z\0 (a n ρ n e inϕ + b n ρ -n e -inϕ ) ,
which is nothing but the standard Fourier-series representation. By virtue of the boundary conditions we obtain

a = 1 , b = - 1 ln ρ B , a n = b n = 0 .
Then, consequently, we get for the solution the explicit form:

U (w 1 , w 2 ) = U (ρ, ϕ) = ln(ρ/ρ B ) ln(1/ρ B ) = 1 ln(1/ρ B ) ln |w| ρ B , (4.6) 
and the corresponding B-dependent normal derivative on the external boundary C 1 , cf. (4.5):

∂ ν U | C 1 (w) = ∂ ρ U (ρ, ϕ) | ρ=1 = 1 ln(1/ρ B ) . (4.7)
Notice that in contrast to the Problem (P f ± =1,0 ), the Neumann data (4.7) for the Problem (P * f ± =1,0 ) are isotropic and they depend on B only via radius ρ B . It is clear that to proceed with localisation of the internal boundary ∂B one has to find the conformal mapping w(z). The relations (4.5) and (4.7) yield a functional equation

1 ln(1/ρ B ) = 1 |w (z)| g(z) z∈C 1 (4.8)
for w. This equation is insufficient, since it is localised only on the boundary C 1 .

To overcome this difficulty we use complex extensions of (P f ± =1,0 ) and (P * f ± =1,0 ) indicated in Remark 4.2. 2.1 Complex extension. Let us define the complex extension of (4.6) by

U (w = w 1 + iw 2 ) := 1 ln(1/ρ B ) ln w ρ B = (U + iV )(w) , (4.9) 
where V = arg w is harmonic conjugate to U = ln |w| and corresponds to the principle branch of the logarithm. Hence, one can similarly introduce the function

u(z) := U (w(z)) = (u + iv)(z) = 1 ln(1/ρ B ) ln w(z) ρ B , (4.10) 
where v is harmonic conjugate to u.

2.2 Complex extension and the Problem (P f ± =1,0 ). By (4.10) one gets

u(x, y) = Re u(z) = 1 ln(1/ρ B ) ln |w(z)| ρ B .
Let z = re iφ . Then by virtue of (4.1), (4.10) and by

∂ r u(z) = (∂ r u + i∂ r v)(z) = u (z) e iφ = 1 ln(1/ρ B ) w (z) w(z) e iφ , (4.11) 
we obtain the following equation:

∂ r u | C 1 = Re 1 ln(1/ρ B )
w (e iφ ) w(e iφ ) e iφ = g(φ) . (4.12)

Notice that the Cauchy-Riemann conditions (4.2) implies

∂ r v(z = re iφ ) = - 1 r ∂ φ u(re iφ ) = - 1 r ln(1/ρ B ) ∂ φ ln |w(re iφ )| . (4.13)
Since for r = 1 we have |w(e iφ )| = 1, one gets ∂ r v(z) | C 1 = 0, i.e. the condition Re in (4.12) is superfluous as soon as we stick to the external boundary C 1 :

1 ln(1/ρ B )
w (e iφ ) w(e iφ ) e iφ = g(φ) .

(4.14)

2.3 Solution for conformal mapping w(z). Motivated by (4.14) we define a continuation of (4.12) from the external boundary C 1 into domain Ω \ B. To this end we introduce a holomorphic in Ω \ B function F with the corresponding Laurent series:

F (z) := 1 ln(1/ρ B ) w (z) w(z) z = F 0 + ∞ n=1 (F n z n + F -n z -n ) . (4.15)
Then by periodicity of g and by (4.14), (4.15) we obtain the relation

g(φ) = n∈Z g n e inφ = F (z = e iφ ) , (4.16) 
which implies F n = g n and g n = g -n , for n ∈ Z, as well as equation

1 ln(1/ρ B ) w (z) w(z) z = g 0 + ∞ n=1 (g n z n + g -n z -n ) .
(4.17)

Therefore, one has

∂ z ln w(z) = ln(1/ρ B ) g 0 z + ∞ n=1 (g n z n-1 + g -n z -n-1 ) . (4.18)
Hence, we obtain that

w(z) = w 0 z g 0 ln(1/ρ B ) exp ln(1/ρ B ) ∞ n=1 (g n z n -g -n z -n )/n . (4.19) Since w : C 1 → C 1 ,

one obviously gets

w(e iφ ) = e iϕ(φ) and w(e i(φ+2π) ) = e iϕ(φ+2π) = e iϕ(φ) , (4.20) that implies g 0 ln(1/ρ B ) = 1 and ρ B = e -1/g 0 , (4.21)

i.e., we must put g 0 > 0. Notice that |w(e iφ )| = 1 and (4.21) yield |w 0 | = 1, which we can choose to be real. Therefore, finally one obtains for the conformal mapping w the expression:

w(z) = z exp (1/g 0 ) ∞ n=1 (g n z n -g -n z -n )/n , (4.22)
which is completely defined by the measured Neumann data g(p) on the external boundary C 1 .

Remark 4.4. In spite of the obvious remark: ∂ φ |w(e iφ )| = 0, which we used to establish (4.14), the derivative ∂ φ w(e iφ ) = e iϕ(φ) ∂ φ ϕ(φ) = 0. This means that ϕ(φ) is a nontrivial periodic function on C 1 , see (4.20).

3.1 Inverse conformal mapping. According to our contraction (see 1.2) the inverse function z(w) maps C ρ B into the contour ∂B, i.e. formally ∂B = {z(w = ρ B e iϕ )} ϕ∈[0,2π) . Notice that using (4.15) we can introduce the holomorphic function:

G(w) := F (z(w)) -1 = ln(1/ρ B ) z (w) z(w) w = G 0 + ∞ n=1 (G n w n + G -n w -n ) , (4.23)
where the last sum is the corresponding Laurent series. Hence, following the same line of reasoning as in Section 2, we obtain:

z(w) = z 0 w G 0 / ln(1/ρ B ) exp (ln(1/ρ B )) -1 ∞ n=1 (G n w n -G -n w -n )/n . (4.24)
Notice that on the circle C 1 the function z(w = e iϕ ) is periodic. Then the same is true for G. By the arguments similar to those in Section 2, this function has the Fourier coefficients satisfying the same properties as g n in (4.16), i.e. by (4.23) one gets:

G n = G -n = 1 2π π -π
dϕ G(e iϕ ) e -inϕ . (4.25)

3.2 Localisation of ∂B. Since z : C 1 → C 1 , then similar to Section 2, the representation (4.24) for this periodic function implies that we can choose z 0 = 1 and that G 0 / ln(1/ρ B ) = 1, or G 0 = 1/g 0 . By virtue of (4.16) and (4.23) the other coefficients are given by

G m = 1 2πi C 1 dw 1 w m+1 1 F (z(w)) = 1 2π 2π 0 dφ e iφ g(φ)
w (e iφ ) w m+1 (e iφ ) . which is uniquely defined by (4.24),(4.26) and auxiliary radius ρ B = e -1/g 0 . 3.3 Existence and uniqueness. Notice that existence and uniqueness of the solution (4.27) follow from the explicit contraction 3.2. This statement is not connectionless. The first necessary condition has been already mentioned: (i) g 0 > 0, see (4.21).

Another restriction follows directly from the f ± -boundary conditions for the Problem (P f ± =1,0 ):

(ii) g(φ) > 0, see (4.5) and (4.7).

(iii) A more subtle constrain for the given Neumann data g(φ) follows from the conditions insuring the invertibility of the conformal mapping w. We study this restriction first for the particular example in the next subsection 4.1. w(e iφ ) = e iφ exp [2i(g 1 /g 0 ) sin φ] .

(4.30)

The equation (4.30) yields for the function ϕ(φ), see (4.20), the expression:

ϕ(φ) = φ + 2(g 1 /g 0 ) sin φ . (4.31)
4.2 Conditions on the external current. Notice first that general conditions on g(φ) imply: g 0 > 0 and g 0 > 2g 1 , see (i) and (ii). For example, the importance of g 0 > 2g 1 is directly related to monotonicity of the function (4.31).

A more delicate condition (iii) requires that w : ∂B → C ρ B and in particular:

w(z = r(φ)) | φ=0 = r(φ) exp (g 1 /g 0 )(r(φ) -r(φ) -1 ) | φ=0 = ρ B , (4.32) w(z = -r(φ)) | φ=π = -r(φ) exp (g 1 /g 0 )(-r(φ) + r(φ) -1 ) | φ=π = -ρ B . (4.33)
Notice that for given g 0 > 0 and g 0 > 2g 1 , the solution of (4.32) for r(φ = 0) always exists and it is unique. Whereas for r(φ = π) it is not true. Indeed, for any r < 1 the function defined by the left-hand side of (4.33):

F ε (r) := r exp ε(-r + r -1 ) > 0 , ε := g 1 /g 0 < 1/2 ,
is monotonously increasing, for increasing ε. Hence, there is a critical value

ε cr : 0 < ε cr < 1/2, corresponding to condition min r≤1 F εcr (r) = ρ B , (4.34) 
and there are no solutions r(φ = π) < 1 of (4.33) for ε > ε cr . Let g 0 = 1. Then one obtains from (4.34) the equation for ε cr in the form:

ln[(1 - √ 1 -4ε 2 )/2ε] + √ 1 -4ε 2 + 1 = 0 . (4.35)
Equation (4.35) implies that solution for r(φ = π) does not exist, when 1/2 > g 1 , but g 1 > g cr = 0, 13796148... . This means that for g 1 > g cr the conformal map w is not invertible, i.e. the image ∂B is not correctly defined.

We illustrate this evolution of conformal mapping and the form of the internal absorbing boundary ∂B as a function of g 1 for g 0 = 1 by Figures 12345. On the last two figure one observes that the boundary ∂B is not closed because of small gaps for ϕ(φ = π) = π, see (4.31). This is a numerical indication that the conformal map w is not invertible for g 1 > g cr . It is clear that now our scheme must be considerably modified (simplified), since actual boundary conditions depend on unknown conformal mapping ζ. Note that we can not get a help from Proposition 3.3 to reduce the Neumann boundary condition to Dirichlet, since our domain is not simply connected. The external data for solution of the inverse geometrical problem correspond to f (p). So, we prefer to simplify the conditions on the cell surface ∂B and to put g = 0, which excludes the appearance of annoying dependence on derivative ∂ z ζ of the Neumann boundary condition. Λ ∂B,∂Ω :

(P α=0 d=2 )      ∆u = 0, p ∈ Ω \ B , u | ∂Ω (p) = f (p), p ∈ ∂Ω , ∂ ν u | ∂B (ω) = g(ω), ω ∈ ∂B .
f (φ) → ∂ ν u f | C R = R 2 -r 2 B R (R 2 + r 2 B )
f (φ) .

(5.1)

Similarly one obtains for for the problem ( P 0 d=2 ):

Λ Cρ B ,C ρ=1 : f (φ) → ∂ ν u f | C 1 = 1 -ρ 2 B (1 + ρ 2 B )
f (φ) .

(5.2)

By virtue of ρ B = r B /R, (5.1) and (5.2) imply that relations (3.17 This example shows that following through verbatim along the arguments of Section 3.4 one obtains the same iterative scheme (3.27)-(3.29), but with Dirichlet-to-Neumann operators that are defined by the Neumann problems (P α=0 d=2 ) and ( P 0 d=2 ). Example 5.1 gives zero-order approximation for the solution. 3. Recall that the aim of present note is to advocate a formal solution of some d = 2 inverse geometrical problems, see e.g. Remark 3.5. Since the error in calculations of the coefficients {γ s } s∈Z , see (3.30), can be exponentially amplified in expression (3.32) for the boundary ∂B, it is clear that the problem is ill-posed, i.e. it demands some further analysis.

We plan to return to numerical implementations of this formal iterative scheme elsewhere. This needs to study cut-offs and regularizations, as well as their possible generalisations to the Robin boundary conditions,

  Varying α between α = 0 and α = +∞ one recovers respectively the Neumann and the Dirichlet boundary conditions. Now similar to (1.1) we can associate with the problem (P2) a Dirihlet-to-Neumann operator Λ γ=I,∂Ω : f → ∂ ν u f | ∂Ω =: g . (1.2) Domain dom(Λ I,∂Ω ) belongs to a certain Sobolev space of functions on the boundary ∂Ω, which contains u f := U (α,h) f

  Proposition 3.3. Let Ω be open simply connected bounded domain in R 2 with a C 2 -smooth boundary ∂Ω. Then solution of the Neumann problem

  5) produced by a bijective holomorphic function ζ(z). This function maps boundaries to boundaries: ζ : C ρ B → ∂B and ζ : C r=1 → ∂Ω. (i) The first step is to find the trace ζ | C 1 of the unknown function ζ(z) on the external unit circle C r=1 . (ii) Then the next step is to reconstruct the function ζ(z) in the whole annulus A B , which solves the geometrical inverse problem (see Introduction 1.2 (a)) by tracing the boundary ∂B as the limit of ζ from inside: ∂B = {ζ(z)} | z→Cρ B := ζ(C ρ B ). (i) Let external boundary in the problem (P ∞ d=2 ) be parameterized by the natural parameter of its arc-length: ∂Ω = {Γ(τ ) ∈ C} τ ∈[0,l) . Then the trace of the conformal mapping ζ : C 1 → ∂Ω defines by the equation: ζ(e iφ ) = Γ(τ ) , for φ ∈ [0, 2π) , (3.6) with the condition ζ(e iφ ) | φ=0 = Γ(0), a bijective function φ : τ → φ(τ ) ∈ [0, 2π). Therefore, to calculate the trace of the function ζ(z) on the external unit circle C r=1 is equivalent to find a solution φ(τ ) of (3.6), or the corresponding inverse function τ (φ).

  ) , (3.10) with a usual convention about the normal derivative ∂ ν (•) | C 1 on the unit circle C 1 . Here Λ C 1 : f → ∂ ν u f | C 1 is the Dirichlet-to-Neumann operator corresponding to the problem ( P ∞ d=2 ). Relations (3.8)-(3.10) yield differential equation for φ = φ(τ ):

  .11) For a given boundary Γ the solution φ(τ ) of equation (3.11) gives the trace of the function ζ(z) on the circle C 1 . Indeed, by (3.6) we obtain that on C 1 it is defined byζ(e iφ ) = Γ(τ (φ)) , for φ ∈ [0, 2π) , (3.12) where τ (φ) is the function, which is inverse to φ(τ ).

  ) allows to calculate ρ B if one knows the trace ζ(z) | C 1 , but since by (3.12) we have ζ(e iφ(τ ) ) = Γ(τ ), the first equation to solve is (3.11). Notice that by definition ∂Ω = {Γ(τ ) ∈ C} τ ∈[0,l) and by (3.6),(3.11) one gets that there is a constraint:

  3.18)as well as that solution τ (φ) of (3.11) must be a 2π-periodic function of φ. Here we explicitly recall the second boundary dependence for the both Dirichlet-to-Neumann operators:Λ C 1 = Λ Cρ B ,C ρ=1 and Λ ∂Ω = Λ ∂B,∂Ω .Example 3.4. We illustrate the above by a trivial example of the round Dirichlet absorbing cell. Let boundaries ∂Ω = C R and ∂B = C r B be two concentric circles with radius r B , which is the only unknown parameter that should be defined as a solution of the inverse geometrical problem.Following our scheme the domain Ω \ B is the image of a conformal mapping of an annulusA B := {z ∈ C : 0 < ρ B < |z| < 1} (3.19) producedby a bijective holomorphic function ζ(z). This function maps boundaries to boundaries: ζ : C ρ B → ∂B and ζ : C r=1 → ∂Ω. By virtue of the rotational symmetry one can try to solve this problem for ∂B via (P ∞ d=2 ) with boundary condition u | ∂Ω (p) = f independent of arg(p). Then solution of the direct problem (P ∞ d=2 ) is given by the n = 0 version of (3.13): u f (ρ, φ) = a ln ρ + b for r B < ρ < R. Taking into account boundary conditions one finds a and b and the explicit form of the corresponding Dirichlet-to-Neumann operator, cf (3.7):

  .20) (Note that our example is so simple that the one-measure of the "voltage-current" couple {f, J}, where {J := Λ ∂B,∂Ω f = g}, is enough to define uniquely the operator Λ ∂B,∂Ω that solves the problem of r B explicitly.) Since the conformal mapping gives for the exterior boundaries givesζ(e iφ ) = R e iφ , for p ∈ C 1 (trace ζ | C 1 ), one gets f (p) := (f • ζ)(p) = f (ζ(e iφ )) =f (Re iφ ) = f . Then by (3.13) the Dirichlet-to-Neumann operator for the problem ( P ∞ d=2 ) has the form:

  .23) Inserting (3.22) and (3.23) into (3.17) (or into (3.18), where l = 2π R) we obtain that ρ B = r B /R, i.e. for internal boundaries the conformal mapping gives: ζ(ρ B e iφ ) = r B e iφ = R ρ B e iφ . This implies that the mapping is ζ(z) = R z (see (ii)), and also the evident final result about the form of the boundary ∂B as the trace of ζ(z) on the C ρ B .

  3.26) Notice that by (3.22) and (3.23) for concentric domains ∂Ω = C R and ∂B = C r B the last two terms in (3.26) cancels. Therefore, one can consider this case as the zero-order approximation τ = τ 0 (φ) for the solution of (3.26) with ζ = ζ 0 (z) := z and ρ B = ρ 0 := r B /R. This observation inspires to consider equations (3.25)

  3.28)ζ n (e iφ ) = Γ(τ n (φ)) .(3.29)Remark 3.5. Suppose that for n → ∞ the iterations converge:ρ n → ρ B , τ n (φ) → τ (φ) and for given Γ: ζ n (z) → ζ(z).Then the function Γ(τ (φ)) can be presented as the Fourier series:Γ(τ (φ)) = s∈Z γ s e isφ . (3.30) Since Γ(τ (φ)) is the image of the external boundary C 1 by the seeking function ζ(z), the coefficients γ s are the same as in the Laurent series for this function in the annulus A B : ζ(z) = s∈Z γ s z s . (3.31) Now the final step is to observe that the unknown internal boundary ∂B coincides with the conformal image {Γ ∂B (φ)} 0≤φ<2π = ζ(C ρ B ) of the internal A B -circle C ρ B with the radius ρ B < 1 calculated by iterations (3.27): Γ ∂B (φ) = s∈Z (ρ B ) s γ s e isφ . (3.32) The relation (3.32) solves formally the inverse geometrical problem for Dirichlet boundary conditions on the unknown contour ∂B = {Γ ∂B (φ)} 0≤φ<2π . 4. Example: Constant boundary conditions 1.1 Problem (P f ± =1,0 ). Below we suppose that Ω and B ⊂ Ω be open bounded domains in R 2 with C 2 -smooth disjoint boundaries ∂Ω and ∂B, that is ∂(Ω\B) = ∂Ω ∪ ∂B and ∂Ω ∩ ∂B = ∅. The unknown internal boundary ∂B should be find from the solution u of the Dirichlet problem:

  with help of the given (measured) Neumann data: g(p) = ∂ ν u | ∂Ω (p), exterior normal derivative on the external boundary p ∈ ∂Ω.

  boundaries to boundaries: w : ∂B → C ρ B and w : ∂Ω = C 1 → C 1 and define the function U (w 1 , w 2 ) by u(x, y) = (U • w)(x, y) = U (w 1 (x, y), w 2 (x, y)) .(4.4)

  mapping w has been already calculated in (4.22) for given Neumann data g, formulae (4.26) solve the problem of inversion z(w) , see (4.24). Hence in the case f + = 1 and f -= 0 the position of unknown boundary ∂B is defined for a given Neumann data g as a set ∂B = {z(w = ρ B e iϕ )} ϕ∈[0,2π) , (4.27)

Figure 1 .

 1 Figure 1. Internal boundary ∂B for g 0 = 1 and g 1 = 0, 125 < g cr

Figure 2 .

 2 Figure 2. Internal boundary ∂B for g 0 = 1 and g 1 = 0, 135 < g cr

Figure 3 .

 3 Figure 3. Internal boundary ∂B for g 0 = 1 and g 1 = 0, 13796148 < g cr

Figure 4 .

 4 Figure 4. Internal boundary ∂B for g 0 = 1 and g 1 = 0, 1382 > g cr

Figure 5 .

 5 Figure 5. Internal boundary ∂B for g 0 = 1 and g 1 = 0, 1387 > g cr

  p ∈ A B , u | C 1 (p) = f (p) , p ∈ C 1 , ∂ ν u | Cρ B (ω) = 0 , ω ∈ C ρ B .Example 5.1. As above (see Example 3.4) we first illustrate a possible strategy to solve ( P 0 d=2 ) by a simple example of the round Neumann absorbing cell.Let boundaries ∂Ω = C R and ∂B = C r B be two concentric circles with radius r B , which is the only unknown parameter that should be defined as a solution of the inverse geometrical problem. Moreover, since ζ :C ρ B → ∂B = C r B and ζ : C r=1 → ∂Ω = C R ,we find this conformal mapping concises with the same linear mapping, ζ(z) = R z, as in Example 3.4, i.e. ρ B = r B /R.Notice that the constant external conditionf (p) = (f • ζ)(p) = f (Re iφ ) = f , p ∈ C 1 , implies a trivial constant solution u f = u f = f . Therefore,we consider the one-mode boundary condition defined by f (e iφ ) = (f • ζ)(e iφ ) = f (Re iφ ) = f (φ) := f cos φ. Then by general solution (3.13) in annulus one gets for the Dirichlet-to-Neumann operator, (P α=0 d=2 ) with g = 0:

  ) and(3.18), where l = 2π R, are valid with solution (3.24): τ 0 (φ) := (l/2π) φ , φ ∈ [0, 2π) .
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