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Abstract

We study (stationary) Laplacian transport by the Dirichlet-to-Neumann formal-
ism. Our results concerns a formal solution of the geometrical inverse problem
for localisation and reconstruction of the form of absorbing domains. Here we
restrict our analysis to the one- and two-dimension cases. We show that the last
case can be studied by the conformal mapping technique. To illustrate it we
scrutinize constant boundary conditions and analyse a numeric example.
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1. Introduction

1. Is is known (see e.g. [LeUl]) that the problem of determining a conductiv-
ity matrix field γ(p) = [γi,j(p)]di,j=1, for p in a bounded open domain Ω ⊂ Rd,
is related to ”measuring” the elliptic Dirichlet-to-Neumann map for associated
conductivity equation. Notice that solution of this problem has a lot of practical
applications in various domains: geophysics, electrochemistry etc. It is also an
important diagnostic tool in medicine, e.g. in the electrical impedance tomogra-
phy ; the tissue in the human body is an example of highly anisotropic conductor
[BaBr].

Under assumption that there is no sources or sinks of current the potential
v(p), p ∈ Ω, for a given voltage f(ω), ω ∈ ∂Ω, on the (smooth) boundary ∂Ω of
Ω is a solution of the Dirichlet problem:

(P1)

{
div(γ∇v) = 0 in Ω,

v|∂Ω = f on ∂Ω.

Then the corresponding to (P1) Dirichlet-to-Neumann map (operator) Λγ,∂Ω is
(formally) defined by [Tay1]

Λγ,∂Ω : f 7→ ∂vf/∂νγ := ν · γ ∇vf |∂Ω . (1.1)

Here ν is the unit outer-normal vector to the boundary at ω ∈ ∂Ω and the
function v := vf is a solution of the Dirichlet problem (P1).

The Dirichlet-to-Neumann operator (1.1) is also called the voltage-to-current
map, since the function Λγ,∂Ωf gives the induced current flux trough the boundary
∂Ω. The key (inverse) problem is whether on can determine the conductivity
matrix γ by knowing electrical boundary measurements, i.e. the corresponding
Dirichlet-to-Neumann operator? In general this operator does not determine the
matrix γ uniquely, see e.g. [GrUl].

The main question in this context is to find sufficient conditions insuring that
the inverse problem is uniquely soluble.

2. The problem of electrical current flux in the form (P1) is an example of so-
called diffusive Laplacian transport [Zag]. Besides the voltage-to-current problem



DIFFUSION AND LAPLACIAN TRANSPORT FOR ABSORBING DOMAINS 3

the motivation to study of this kind of transport comes for instance from the
transfer across biological membranes, see e.g. [Sap], [GrFiSap].

Let some ”species” of concentration C(p), x ∈ Rd, diffuse stationary in the
isotropic bulk (γ = I) from a (distant) source localised on the closed boundary
∂Ω towards a semipermeable compact interface ∂B of the cell B ⊂ Ω, where
they disappear at a given rate W ≥ 0. Then the steady field of concentrations
(Laplacian transport with a diffusion coefficient D ≥ 0) obeys the set of equations:

(P2)∗


∆C = 0, p ∈ Ω \B ,

C |∂Ω (p) = C0, a constant concentration at the source ∂Ω ,

−D ∂νC |∂B (ω) = W (C − C∗) |∂B (ω), on the interface ω ∈ ∂B

Usually one supposes that C(p) = C∗ ≥ 0, p ∈ B, is a constant concentration of
the ”species” inside the cell B.

This example motivates the following abstract stationary diffusive Laplacian
transport problem with absorption on the surface ∂B:

(P2)


∆u = 0, p ∈ Ω \B , (u(p) = Const , p ∈ B),

u |∂Ω (p) = f(p), p ∈ ∂Ω ,

(α u + ∂νu) |∂B (ω) = h(ω), ω ∈ ∂B .

This is the Dirichlet problem for domain Ω ⊃ B with the Dirichlet-Neumann
(or Robin [Kell]) boundary condition on the absorbing surface ∂B. Varying α
between α = 0 and α = +∞ one recovers respectively the Neumann and the
Dirichlet boundary conditions.

Now similar to (1.1) we can associate with the problem (P2) a Dirihlet-to-
Neumann operator

Λγ=I,∂Ω : f 7→ ∂νuf |∂Ω=: g . (1.2)

Domain dom(ΛI,∂Ω) belongs to a certain Sobolev space of functions on the bound-

ary ∂Ω, which contains uf := U
(α,h)
f , the solutions of the problem (P2) for given

f and for the Robin boundary condition on ∂B fixed by α and h.
Then there are at least two (in fact related) geometrical inverse problems that

make interest:
(a) Given Dirichlet data f and the corresponding (measured) Neumann data g
(1.2) on the accessible outer boundary ∂Ω, to reconstruct the shape of the interior
boundary ∂B.
(b) A simpler inverse problem concerns to localisation of the domain (cell) B
with a given shape and the fixed parameters α and h.

3. The aim of the present paper is to study the above problems (a) and (b) in
the framework of application outlined in the problem (P2)* and to work out the
corresponding formalism based on the Dirichlet-to-Neumann operators.

In Section 2.1 we formulate the mathematical setup of the these problems, and
we consider uniqueness of the forward boundary value problem (P2) solution.
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There we illustrate our strategy by an explicit example of one-dimensional inverse
problem for Ω ⊂ R1 and B = (a, b).

Our main results (Section 3) concerns the two-dimensional case, when the
compact Ω ⊂ R2. Notice that there are three points that need a particular
attention. The first is that the problems (P2)* and (P2) are formulated for not
simply connected domains Ω \ B. The second point concerns the peculiarity of
the combination of Dirichlet and Robin boundary conditions. As the third point
one has to mention that the geometrical inverse problem is ill-posed.

The present paper presents first of all the formal solution for the case when
α = +∞, i.e. the Dirichlet boundary conditions u |∂B (ω) = 0, ω ∈ ∂B. For this
case our approach is motivated by important papers [LiuLu], [R]. Here we refine
their results in the framework of the Dirichlet-to-Neumann formalism and add
certain observations in the case of a fixed geometry of domains B and Ω following
[BayZag].

In Section 4 we consider an explicit example and give numerical calculation
for constant external boundary condition f = 1 to illustrate abstract results for
α = +∞.

For finite α ≥ 0 and h = 0 we restrict ourself only by few remarks (Section
5) and we reserve the rest for the future publications. The same concerns our
formal scheme for d = 2, since the corresponding inverse problem is ill-posed.

The case d = 1 allows explicit calculations and serves for illustration of our
main ideas. Whereas for solution of the inverse problems for d = 2 we use
a method of conformal mappings for harmonic functions in doubly connected
domains Ω \B.

2. Setup of the Problems and Uniqueness

1. Below we suppose that Ω and B ⊂ Ω be open bounded domains in Rd with
C2-smooth disjoint boundaries ∂Ω and ∂B, that is ∂(Ω \ B) = ∂Ω ∪ ∂B and
∂Ω ∩ ∂B = ∅.

Then the unit outer-normal to the boundary ∂(Ω\B) vector-field ν(p)p∈∂(Ω\B)

is well-defined, and we consider the normal derivative in (P2) as the interior
limit:

(∂νu) |∂B (ω) := lim
p→ω

ν(ω) · (∇u)(p) , p ∈ Ω \B . (2.1)

The existence of the limit (2.1) as well as the restriction u |∂B (ω) := limp→ω u(p)
is insured since u has to be harmonic solution of the problem (P2) for C2-smooth
boundaries ∂(Ω \B), [Tay].

Now we introduce some indispensable standard notations and definitions [HuNa].
Let H be Hilbert space L2(M) on domain M ⊂ Rd and ∂H := L2(∂M) denote
the corresponding boundary space. By W s

2 (M) we denote the Sobolev space of
L2(M)-functions, whose s-derivatives are also in L2(M), and similar, W s

2 (∂M) is
the Sobolev space of L2(∂M)-functions on the C2-smooth boundary ∂M .
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Proposition 2.1. Let f, h ∈ W
1/2
2 (∂Ω) for C2-smooth boundaries ∂(Ω \ B). If

α ≥ 0, then the Dirichlet-Robin problem (P2) has a unique (harmonic) solution
in domain Ω \B.

Proof. For existence we refer to [Tay]. To prove the uniqueness we consider the
problem (P2) for f = 0 and h = 0. Then by the Gauss-Ostrogradsky theorem
one gets that the corresponding solution u yields:∫

Ω\B
dp (∇u(p) · ∇u)(p)) =

∫
Ω\B

dp div(u(p) (∇u)(p)) =∫
∂B

dσ(ω) u(ω) (∂νu)(ω) = −α

∫
∂B

dσ(ω) |u(ω)|2 ≤ 0 . (2.2)

The estimate (2.2) implies that u(x ∈ Ω \ B) = Const. Hence by the Robin
boundary condition one gets (α u) |∂B (ω) = 0, and by virtue of u |∂Ω (p) =
f(x ∈ ∂Ω) = 0 we obtain that for α ≥ 0 the harmonic function u(p) = 0 for
x ∈ Ω \B. �

The next statement is a key for analysis of the inverse geometrical problems (a)
and (b). Since below we use it in the case R2, our formulation is two-dimensional.

Proposition 2.2. Consider two problems (P2) corresponding to a bounded do-
main Ω ⊂ R2 with C2-smooth boundary ∂Ω and to two subsets B1 and B2 with

the same smoothness of the boundaries ∂B1, ∂B2. If for solutions u
(1)
f,h, u

(2)
f,h of

these problems one has

∂νu
(1)
f,h |∂Ω= ∂νu

(2)
f,h |∂Ω , (2.3)

then ∂B1 = ∂B2.

Proof. By virtue of u
(1)
f,h |∂Ω= u

(2)
f,h |∂Ω= f and by condition (2.3), the problem

(P2) has two solutions for identical external (on ∂Ω) and internal (on ∂B1 and
∂B2) Robin boundary conditions. Then by the standard arguments based on the
Holmgren uniqueness theorem [Tat] for harmonic functions on R2 one obtains
that ∂B1 = ∂B2. �
2. We finish this section by a simple illustration of the explicit solution of the
Inverse Problems (a) and (b) in one-dimensional case. Motivated by the Laplace
transport (P2)* we consider the case: f = c0, h = α c∗, and α = W/D ≥ 0, for
Ω := (−R,R) ⊂ R1 and B := (a, b):

(Pd=1)


∆u = 0, x ∈ (−R,R) \ [a, b] ,

u |∂Ω (x = ∓R) = f(∓R) =: c∓,

(α u + ∂νu) |∂[a,b] (a) = (α u + ∂νu) |∂[a,b] (b) = α c∗ ,

where R > 0 and −R < a < b < R.
The solution of the problem (a) is straightforward, since in the one-dimensional

case the shape of absorbing cell is trivial: it is the interval B := (a, b).
Now notice that a general solution of the problem (Pd=1) is a combination of

linear functions supported in domain Ω := (−R,R) \ [a, b] and a constant c∗ in
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the interval [a, b]:

−R < x < a : u(x) = − c− − c∗

(R + a) + α−1
(R + x) + c− , (2.4)

a ≤ x ≤ b : u(x) = c∗ ,

b < x < R : u(x) = − c+ − c∗

(R− b) + α−1
(R− x) + c+ . (2.5)

Given Dirichlet data c0 on the boundary ∂Ω and measuring on this boundary the
Neumann data in the form of the flux currents:

j− := −∂νu |∂Ω (x = −R) =
c− − c∗

(R + a) + α−1

j+ := −∂νu |∂Ω (x = +R) = − c+ − c∗

(R− b) + α−1

one can solve explicitly the both problems (a) and (b).
In the one-dimensional case the shape of the cell is defined by its size: (b− a),

whereas localization is fixed by the points:

a = (c− − c∗)/j− −R− α−1 ,

b = (c+ − c∗)/j+ + R + α−1 .

3. Two-Dimensional Inverse Problem: Conformal Mapping and
the Shape of ∂B

1. The relevance of the conformal mapping in the study of the boundary value
problems for harmonic functions (solutions of the Laplace equation) is well-
known, see e.g. [LaCh] (Ch.III), or [Mih] (Ch.13).

Recall that if the complex function w : z 7→ C is holomorphic in the open
domain {Ω ⊂ C : z = x + i y ∈ Ω}, then by the Cauchy-Riemann conditions the
functions u(x, y) := (Re w)(x, y) and v(x, y) := (Im w)(x, y) are harmonic in Ω.
Here w(z) = u(x, y) + i v(x, y).

Remark 3.1. There is an elementary inverse problem of the complex analysis :
given a harmonic function u(x, y) in Ω to construct in this domain the harmonic
function v(x, y) (harmonic conjugate to u) such that the complex function w =
u+i v is holomorphic. In fact one finds the harmonic conjugate from the Cauchy-
Riemann conditions

∂xu = ∂yv , ∂yu = −∂xv , (3.1)

since for a given u this is a system of partial differential equations for v. Notice
that for a simply connected domain Ω the solution of this system always exists
and it is unique up to a constant, whereas in non-simply connected domains the
harmonic conjugate may not be a single-valued function. On the other hand, in
any simply connected subset Ω0 ⊂ Ω one can select a single-valued branch of this
function. By consequence this means a selection of the single-valued branch of
the total complex function w.
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Application of conformal mappings to analysis of harmonic functions and Laplace
equation is based on the following observations:

Proposition 3.2. Let ζ : z 7→ ζ(z) be a conformal mapping ζ(z) : N → M by a
holomorphic function ζ(z) = ξ(x, y)+iη(x, y). If the function ũ(ξ, η) is harmonic
in M , then the composition

u(x, y) := (ũ ◦ ζ)(x, y) = ũ(ξ(x, y), η(x, y)) , (3.2)

is a harmonic function of x, y in N .

In particular one obtains:

(∆zu)(x, y) = |∂zζ(z)|2 (∆ζ ũ)(ξ(x, y), η(x, y)) . (3.3)

(Here we explicitly distinguish Laplacians in different coordinates, ∆z := ∂2
x + ∂2

y

and ∆ζ := ∂2
ξ + ∂2

η , but we ignore these subindexes below, since it will not
produce any confusion.) Notice that this statement is based only on a straight
forward application of the Cauchy-Riemann conditions for the mapping ζ(z), i.e.
it does not assume the existence of a harmonic conjugate neither for ũ, nor for
u. Although for a simply connected N0 ⊂ N one can show that every harmonic
function is a real part of a branch of holomorphic in N0 function.

The second observation is related to the Dirichlet-to-Neumann formalism and
makes clear the importance of the notion of the harmonic conjugate function,
[LaCh], Ch.III.

Proposition 3.3. Let Ω be open simply connected bounded domain in R2 with a
C2-smooth boundary ∂Ω. Then solution of the Neumann problem

(PN)

{
∆u = 0, p ∈ Ω \B ,

∂νu |∂Ω (p) = g(p), p ∈ ∂Ω .

reduces to the Dirichet problem for the function v, which is harmonic conjugate
to the function u.

To make this evident, notice first that the normal derivative here is defined in the
sense of (2.1). Let the boundary ∂Ω be parameterized by the natural parameter
of its arc-length: ∂Ω = {Γ(τ) ∈ C}τ∈[0,l). Then the Cauchy-Riemann conditions
(3.1) imply that

∂τv |∂Ω (p) = ∂νu |∂Ω (p) = g(p). (3.4)

Since by integration along the contour Γ one obtains

v(p1) = v(p0) +

∫ τ1

τ0

dτ ∂τv(Γ(τ)) = v(p0) +

∫ τ1

τ0

ds g(Γ(τ)) =: f(p1) ,

the solution of (PN) is equivalent to the Dirichlet problem (PD) for v and the
boundary condition f .
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2. To outline the main steps in reconstructing the unknown boundary ∂B, we
consider first the problem (P2) for the Dirichlet case α = +∞:

(P∞
d=2)


∆u = 0, p ∈ Ω \B ,

u |∂Ω (p) = f(p), p ∈ ∂Ω ,

u |∂B (ω) = 0, ω ∈ ∂B .

It is well-known, see e.g. [LaCh], [Mar], that the doubly connected bounded
domain Ω \B is the image of a conformal mapping of an annulus

AB := {z ∈ C : 0 < ρB < |z| < 1} (3.5)

produced by a bijective holomorphic function ζ(z). This function maps bound-
aries to boundaries: ζ : CρB

→ ∂B and ζ : Cr=1 → ∂Ω.

(i) The first step is to find the trace ζ |C1 of the unknown function ζ(z) on the
external unit circle Cr=1.
(ii) Then the next step is to reconstruct the function ζ(z) in the whole annulus AB,
which solves the geometrical inverse problem (see Introduction 1.2 (a)) by tracing
the boundary ∂B as the limit of ζ from inside: ∂B = {ζ(z)} |z→CρB

:= ζ(CρB
).

(i) Let external boundary in the problem (P∞
d=2) be parameterized by the natural

parameter of its arc-length: ∂Ω = {Γ(τ) ∈ C}τ∈[0,l). Then the trace of the
conformal mapping ζ : C1 → ∂Ω defines by the equation:

ζ(eiφ) = Γ(τ) , for φ ∈ [0, 2π) , (3.6)

with the condition ζ(eiφ) |φ=0= Γ(0), a bijective function φ : τ 7→ φ(τ) ∈ [0, 2π).
Therefore, to calculate the trace of the function ζ(z) on the external unit circle

Cr=1 is equivalent to find a solution φ(τ) of (3.6), or the corresponding inverse
function τ(φ).

To this end, let uf be solution of the problem (P∞
d=2). Then by Proposition

3.2 the function ũ
ef := uf ◦ ζ is harmonic in the annulus AB and it is solution of

the Dirichlet problem

(P̃∞
d=2)


∆ũ = 0, p ∈ AB ,

ũ |C1 (p) = f̃(p) , p ∈ C1 ,

ũ |CρB
(ω) = 0, ω ∈ CρB

.

Here f̃(p) = (f ◦ ζ)(p) = f(ζ(p)) = f(ξ(x, y), η(x, y)) and p = (x, y) ∈ C1.
Consider the solution uf of the Dirichlet problem (P∞

d=2). Then the Dirichlet-
to-Neumann operator Λ∂Ω for the external boundary ∂Ω is defined similar to
(1.2):

Λ∂Ωf = ∂νuf |∂Ω=: g . (3.7)

Let vf be harmonic conjugate to uf . Then by (3.4) we obtain that for external
boundary ∂Ω

∂τvf |∂Ω (τ) = ∂τvf (Γ(τ)) = ∂νuf (Γ(τ)) = (Λ∂Ωf)(Γ(τ)) =

(Λ∂Ωf)(ζ(eiφ(τ))) = (Λ∂Ωf ◦ ζ)(eiφ(τ)) . (3.8)
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With conformal mapping ζ the relation (3.8) can be rewritten as:

∂τvf (Γ(τ)) = ∂τvf (ζ(eiφ(τ))) = ∂φ(vf ◦ ζ)(eiφ(τ)))∂τφ(τ) . (3.9)

Since ũ
ef := uf ◦ ζ and ṽ

ef := vf ◦ ζ, see (P̃∞
d=2), by (3.4), we obtain that

∂φ(vf ◦ ζ)(eiφ)) = ∂φṽ ef (φ) = ∂ν ũ ef |C1 (φ) = ΛC1(f ◦ ζ)(eiφ) , (3.10)

with a usual convention about the normal derivative ∂ν(·) |C1 on the unit circle

C1. Here ΛC1 : f̃ 7→ ∂ν ũ ef |C1 is the Dirichlet-to-Neumann operator corresponding

to the problem (P̃∞
d=2).

Relations (3.8)-(3.10) yield differential equation for φ = φ(τ):

∂τφ =
(Λ∂Ωf ◦ ζ)(eiφ)

ΛC1(f ◦ ζ)(eiφ)
. (3.11)

For a given boundary Γ the solution φ(τ) of equation (3.11) gives the trace of the
function ζ(z) on the circle C1. Indeed, by (3.6) we obtain that on C1 it is defined
by

ζ(eiφ) = Γ(τ(φ)) , for φ ∈ [0, 2π) , (3.12)

where τ(φ) is the function, which is inverse to φ(τ).

3. Hence, for a fixed boundary Γ one can in principle find the trace ζ(z) |C1

using the scheme outlined above. To this end let f̃ ∈ W 1
2 (C1), where we identify

C1 with [0, 2π], see problem (P̃∞
d=2). Then solution of this problem gets the form:

ũ
ef (ρ, φ) = a0 ln ρ + b0 + (3.13)
∞∑

n=1

[
(anρ

n + bnρ
−n) cos nφ + (cnρ

n + dnρ
−n) sin nφ

]
,

The coefficients in expansion (3.13) are equal to

an =
f̃1,n

(1− ρ2n
B )

, bn = − ρ2n
B f̃1,n

(1− ρ2n
B )

, a0 = − f̃1,0

ln ρB

, b0 = f̃1,0 , (3.14)

cn =
f̃2,n

(1− ρ2n
B )

, dn = − ρ2n
B f̃2,n

(1− ρ2n
B )

. (3.15)

They are related to coefficients of the Fourier series for f̃(φ):

f̃1,0 =
1

2π

∫ 2π

0

dφf̃(φ), f̃1,n =
1

π

∫ 2π

0

dφf̃(φ) cos nφ, f̃2,n =
1

π

∫ 2π

0

dφf̃(φ) sin nφ.

Then the corresponding Dirichlet-to-Neumann operator (3.10) acts as a bounded
operator from W 1

2 (C1) to L2(C1):

ΛC1 f̃(φ) = ∂ν ũ ef |C1 (φ) = (3.16)

− f̃1,0

ln ρB

+
∞∑

n=1

n [(an − bn) cos nφ + (cn − dn) sin nφ] .
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By (3.10) and (3.16) we obtain the identity∫ 2π

0

dφΛC1 f̃(φ) = − 1

ln ρB

∫ 2π

0

dφf̃(φ) ,

which implies by (3.8)-(3.10) that the radius of the internal circle is defined as

ρB = exp

{
−

(∫ 2π

0

dφ (f ◦ ζ)(eiφ)

) (∫
∂Ω

dτ ∂τφ(τ)∂φ(vf ◦ ζ)(eiφ(τ))

)−1
}

= exp

{
−

(∫ 2π

0

dφ (f ◦ ζ)(eiφ)

) (∫
∂Ω

dτ ∂νuf (Γ(τ))

)−1
}

. (3.17)

The relation (3.17) allows to calculate ρB if one knows the trace ζ(z) |C1 , but
since by (3.12) we have ζ(eiφ(τ)) = Γ(τ), the first equation to solve is (3.11).
Notice that by definition ∂Ω = {Γ(τ) ∈ C}τ∈[0,l) and by (3.6),(3.11) one gets that
there is a constraint:

l =

∫ 2π

0

dφ
ΛCρB

,C1(f ◦ ζ)(eiφ)

(Λ∂B,∂Ωf ◦ ζ)(eiφ)
, (3.18)

as well as that solution τ(φ) of (3.11) must be a 2π-periodic function of φ. Here
we explicitly recall the second boundary dependence for the both Dirichlet-to-
Neumann operators: ΛC1 = ΛCρB

,Cρ=1 and Λ∂Ω = Λ∂B,∂Ω.

Example 3.4. We illustrate the above by a trivial example of the round Dirichlet
absorbing cell. Let boundaries ∂Ω = CR and ∂B = CrB

be two concentric circles
with radius rB, which the only unknown parameter that should be defined as a
solution of the inverse geometrical problem.

Following our scheme the domain Ω \ B is the image of a conformal mapping
of an annulus

AB := {z ∈ C : 0 < ρB < |z| < 1} (3.19)

produced by a bijective holomorphic function ζ(z). This function maps boundaries
to boundaries: ζ : CρB

→ ∂B and ζ : Cr=1 → ∂Ω.
By virtue of the rotational symmetry one can try to solve this problem for ∂B

via (P∞
d=2) with boundary condition u |∂Ω (p) = f independent of arg(p). Then

solution of the direct problem (P∞
d=2) is given by the n = 0 version of (3.13):

uf (ρ, φ) = a ln ρ + b for rB < ρ < R. Taking into account boundary conditions
one finds a and b and the explicit form of the corresponding Dirichlet-to-Neumann
operator:

Λ∂B,∂Ω : f 7→ ∂νuf |CR
=

1

R (ln R− ln rB)
f . (3.20)

(Note that our example is so simple that the one-measure of the ”voltage-current”
couple {f, j := Λ∂B,∂Ωf} is enough to define uniquely the operator Λ∂B,∂Ω that
solves the problem of rB explicitly.)
Since the conformal mapping gives for the exterior boundaries gives ζ(eiφ) =

R eiφ, for p ∈ C1 (trace ζ |C1), one gets f̃(p) := (f ◦ ζ)(p) = f(ζ(eiφ)) =
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f(Reiφ) = f . Then by (3.13) the Dirichlet-to-Neumann operator for the problem

(P̃∞
d=2) has the form:

ΛCρB
,Cρ=1 : f̃ 7→ ∂ν ũ ef |C1= − 1

ln ρB

f̃ . (3.21)

Then by (3.20) we get for numerator in (3.11):

(Λ∂B,∂Ωf ◦ ζ) =
1

R (ln R− ln rB)
f ◦ ζ =

{
R ln

R

rB

}−1

f̃ , (3.22)

and by (3.21) one obtains for denominator in (3.11):

ΛCρB
,Cρ=1(f ◦ ζ) = − 1

ln ρB

f̃ . (3.23)

Inserting (3.22) and (3.23) into (3.17) (or into (3.18), where l = 2π R) we
obtain that ρB = rB/R, i.e. for internal boundaries the conformal mapping gives:
ζ(ρBeiφ) = rBeiφ = R ρBeiφ. This implies that the mapping is ζ(z) = R z (see
(ii)), and also the evident final result about the form of the boundary ∂B as the
trace of ζ(z) on the CρB

.

4. This example shows that τ(φ) is a 2π-periodic extension of the linear function

τ0(φ) :=
l

2π
φ , φ ∈ [0, 2π) . (3.24)

The reason is a simple linear form of the corresponding conformal mapping. Any
deviation from the concentric domains ∂Ω = CR and ∂B = CrB

makes the
function τ(φ) non-linear, but obeying the condition (3.18).

As a less trivial application of the scheme presented above is the example of
non-concentric domains ∂Ω = CR and ∂B = CrB

. In this case the conformal
mapping ζ is a priori known: it is the Möbius transformation, and one can
proceed with this trial ζ along the same line of reasoning as in Example 3.4, see
[BayZag]. Although illustration of the inverse geometrical problem solution needs
a complete application of the above formalism, since now one has to solve two
coupled equations (3.11) and (3.17) with condition (3.18).

(ii) We rewrite these equations (incorporating the constraint (3.18)) in the fol-
lowing form:

ρB = exp

{
−

(∫ 2π

0

dφ (f ◦ ζ)(eiφ)

) (∫
∂Ω

dτ ∂νuf (Γ(τ))

)−1
}

. (3.25)

∂φτ =
l

2π
+

ΛCρB
,C1(f ◦ ζ)

(Λ∂B,∂Ωf ◦ ζ)
− 1

2π

∫ 2π

0

dφ
ΛCρB

,C1(f ◦ ζ)(eiφ)

(Λ∂B,∂Ωf ◦ ζ)(eiφ)
. (3.26)

Notice that by (3.22) and (3.23) for concentric domains ∂Ω = CR and ∂B = CrB

the last two terms in (3.26) cancels. Therefore, one can consider this case as the
zero-order approximation τ = τ0(φ) for the solution of (3.26) with ζ = ζ0(z) := z
and ρB = ρ0 := rB/R. This observation inspires to consider equations (3.25)
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and (3.26), together with relations ζn(eiφ) = Γ(τn(φ)), see (3.12), as a non-linear
iterative scheme to obtain ρB and the function τ(φ) (or ζ(z)), cf [LiuLu]:

ρn = exp

{
−

[∫ 2π

0

dφ(f ◦ ζn)(eiφ)

] [∫
∂Ω

dτ∂νuf (Γ(τ))

]−1
}

, (3.27)

∂φτn+1 =
l

2π
+

ΛCρn ,C1(f ◦ ζn)

(Λ∂B,∂Ωf ◦ ζn)
− 1

2π

∫ 2π

0

dφ
ΛCρn ,C1(f ◦ ζn)(eiφ)

(Λ∂B,∂Ωf ◦ ζn)(eiφ)
, (3.28)

ζn(eiφ) = Γ(τn(φ)) . (3.29)

Remark 3.5. Suppose that for n → ∞ the iterations converge: ρn → ρB,
τn(φ) → τ(φ) and for given Γ: ζn(z) → ζ(z). Then the function Γ(τ(φ)) can
be presented as the Fourier series:

Γ(τ(φ)) =
∑
s∈Z

γse
isφ . (3.30)

Since Γ(τ(φ)) is the image of the external boundary C1 by the seeking function
ζ(z), the coefficients γs are the same as in the Laurent series for this function in
the annulus AB:

ζ(z) =
∑
s∈Z

γsz
s . (3.31)

Now the final step is to observe that the unknown internal boundary ∂B coin-
cides with the conformal image {Γ∂B(φ)}0≤φ<2π = ζ(CρB

) of the internal AB-circle
CρB

with the radius ρB < 1 calculated by iterations (3.27):

Γ∂B(φ) =
∑
s∈Z

(ρB)s γse
isφ . (3.32)

The relation (3.32) solves formally the inverse geometrical problem for Dirichlet
boundary conditions on the unknown contour ∂B = {Γ∂B(φ)}0≤φ<2π.

4. Constant boundary conditions

1.1 Problem (Pf±=1,0). Below we suppose that Ω and B ⊂ Ω be open bounded

domains in R2 with C2-smooth disjoint boundaries ∂Ω and ∂B, that is ∂(Ω\B) =
∂Ω ∪ ∂B and ∂Ω ∩ ∂B = ∅.

The unknown internal boundary ∂B should be find from the solution u of the
Dirichlet problem:

(Pf±=1,0)


∆u = 0, p ∈ Ω \B ,

u |∂Ω (p) = f+(p) = 1, p ∈ ∂Ω ,

u |∂B (p) = f−(p) = 0, p ∈ ∂B ,

with help of the given (measured) Neumann data: g(p) = ∂νu |∂Ω (p), exterior
normal derivative on the external boundary p ∈ ∂Ω.
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Remark 4.1. Notice that one can always find a conformal mapping that trans-
forms domain Ω into unit disc. Therefore, we put for simplicity Ω = Dr=1, the
unit disc, i.e. ∂Ω = C1, is the unit circle.

Remark 4.2. Since below we use a conformal map approach to localisation the
internal boundary ∂B, we identify the R2-points p = (x, y) with those of the
complex plane C by: p 7→ z(p) := x + iy ∈ C. Then it is known, see e.g. [LaCh],
that the harmonic function solving (Pf±=1,0) can be viewed as the real part of a

holomorphic in domain Ω \ B function û(z) , i.e., u(p) = Re û(z(p)). We put
û(z) = u(x, y) + iv(x, y), where v(x, y) is harmonic conjugate to u(x, y), [LaCh].
Recall that for a double connected domain the function û(z) may be multi-valued.
Then we consider for û(z) only one (principle) branch.

Remark 4.3. Recall that in polar coordinates z = reiφ ∈ C the measured Neu-
mann data g on C1 take the form

g(φ) = er · ∇u |z∈C1= (cos φ ∂xu + sin φ ∂yu) |z∈C1=

= ∂ru(r cos φ, r sin φ) |r=1 . (4.1)

We also recall that the Cauchy-Riemann conditions in these coordinates can be
written as

∂ru =
1

r
∂φv ,

1

r
∂φu = − ∂rv . (4.2)

1.2 Problem (P ∗
f±=1,0). Let holomorphic function w : z = (x+ iy) 7→ (w1 + iw2)

maps doubly connected bounded domain D1 \B ⊂ C into annulus

AB := {w ∈ C : 0 < ρB < |w| < 1} . (4.3)

This function maps boundaries to boundaries: w : ∂B → CρB
and w : ∂Ω =

C1 → C1 and define the function U(w1, w2) by

u(x, y) = (U ◦ w)(x, y) = U(w1(x, y), w2(x, y)) . (4.4)

Then the problem (Pf±=1,0) transfers into

(P∗
f±=1,0)


∆U = 0, p ∈ D1 \DρB

,

U |C1 (p) = 1, p ∈ C1 ,

U |CρB
(p) = 0, p ∈ CρB

,

with the exterior normal derivative:

∂νU |z∈C1 (w(z)) =

(
1

|w′(z)|
g(z)

) ∣∣∣
z∈C1

. (4.5)

Notice that the value of the normal derivative (4.5) is B-dependent via conformal
mapping w.
1.3 Solution of the Problem (P ∗

f±=1,0). For the general solution one easily

finds a representation in the (complex) polar coordinates w = ρeiϕ:

U(ρ, ϕ) = a + b ln ρ +
∑

n∈Z\0

(anρ
neinϕ + bnρ

−ne−inϕ) ,
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which is nothing but the standard Fourier-series representation. By virtue of the
boundary conditions we obtain

a = 1 , b = − 1

ln ρB

, an = bn = 0 .

Then, consequently, we get for the solution the explicit form:

U(w1, w2) = U(ρ, ϕ) =
ln(ρ/ρB)

ln(1/ρB)
=

1

ln(1/ρB)
ln
|w|
ρB

, (4.6)

and the corresponding B-dependent normal derivative on the external boundary
C1, cf. (4.5):

∂νU |C1 (w) = ∂ρU(ρ, ϕ) |ρ=1=
1

ln(1/ρB)
. (4.7)

Notice that in contrast to the Problem (Pf±=1,0), the Neumann data (4.7) for the
Problem (P ∗

f±=1,0) are isotropic and they depend on B only via radius ρB.
It is clear that to proceed with localisation of the internal boundary ∂B one

has to find the conformal mapping w(z). The relations (4.5) and (4.7) yield a
functional equation

1

ln(1/ρB)
=

(
1

|w′(z)|
g(z)

) ∣∣∣
z∈C1

(4.8)

for w. This equation is insufficient, since it is localised only on the boundary C1.
To overcome this difficulty we use complex extensions of (Pf±=1,0) and (P ∗

f±=1,0)
indicated in Remark 4.2.
2.1 Complex extension. Let us define the complex extension of (4.6) by

Û(w = w1 + iw2) :=
1

ln(1/ρB)
ln

w

ρB

= (U + iV )(w) , (4.9)

where V = arg w is harmonic conjugate to U = ln |w| and corresponds to the
principle branch of the logarithm. Hence, one can similarly introduce the function

û(z) := Û(w(z)) = (u + iv)(z) =
1

ln(1/ρB)
ln

w(z)

ρB

, (4.10)

where v is harmonic conjugate to u.
2.2 Complex extension and the Problem (Pf±=1,0). By (4.10) one gets

u(x, y) = Re û(z) =
1

ln(1/ρB)
ln
|w(z)|

ρB

.

Let z = reiφ. Then by virtue of (4.1), (4.10) and by

∂rû(z) = (∂ru + i∂rv)(z) = û
′
(z) eiφ =

1

ln(1/ρB)

w
′
(z)

w(z)
eiφ , (4.11)

we obtain the following equation:

∂ru |C1= Re

{
1

ln(1/ρB)

w
′
(eiφ)

w(eiφ)
eiφ

}
= g(φ) . (4.12)
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Notice that the Cauchy-Riemann conditions (4.2) implies

∂rv(z = reiφ) = −1

r
∂φu(reiφ) = − 1

r ln(1/ρB)
∂φ ln |w(reiφ)| . (4.13)

Since for r = 1 we have |w(eiφ)| = 1, one gets ∂rv(z) |C1= 0, i.e. the condition
Re in (4.12) is superfluous as soon as we stick to the external boundary C1:

1

ln(1/ρB)

w
′
(eiφ)

w(eiφ)
eiφ = g(φ) . (4.14)

2.3 Solution for conformal mapping w(z). Motivated by (4.14) we define
a continuation of (4.12) from the external boundary C1 into domain Ω \ B. To
this end we introduce a holomorphic in Ω \B function F with the corresponding
Laurent series:

F (z) :=
1

ln(1/ρB)

w
′
(z)

w(z)
z = F0 +

∞∑
n=1

(Fn zn + F−n z−n) . (4.15)

Then by periodicity of g and by (4.14), (4.33) we obtain the relation

g(φ) =
∑
n∈Z

gne
inφ = F (z = eiφ) , (4.16)

which implies Fn = gn and gn = g−n, for n ∈ Z, as well as equation

1

ln(1/ρB)

w
′
(z)

w(z)
z = g0 +

∞∑
n=1

(gnz
n + g−nz

−n) . (4.17)

Therefore, one has

∂z ln w(z) = ln(1/ρB)

[
g0

z
+

∞∑
n=1

(gnz
n−1 + g−nz

−n−1)

]
. (4.18)

Hence, we obtain that

w(z) = w0 zg0 ln(1/ρB) exp

[
ln(1/ρB)

∞∑
n=1

(gnz
n − g−nz

−n)/n

]
. (4.19)

Since w : C1 → C1, one obviously gets

w(eiφ) = eiϕ(φ) and w(ei(φ+2π)) = eiϕ(φ+2π) = eiϕ(φ) , (4.20)

that implies g0 ln(1/ρB) = 1 and

ρB = e−1/g0 , (4.21)

i.e., we must put g0 > 0. Notice that |w(eiφ)| = 1 and (4.21) yield |w0| = 1,
which we can choose to be real. Therefore, finally one obtains for the conformal
mapping w the expression:

w(z) = z exp

[
(1/g0)

∞∑
n=1

(gnz
n − g−nz

−n)/n

]
, (4.22)
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which is completely defined by the measured Neumann data g(p) on the external
boundary C1.

Remark 4.4. In spite of the obvious remark: ∂φ|w(eiφ)| = 0, which we used to
establish (4.14), the derivative ∂φw(eiφ) = eiϕ(φ) ∂φϕ(φ) 6= 0. This means that
ϕ(φ) is a nontrivial periodic function on C1 , see (4.20).

3.1 Inverse conformal mapping. According to our contraction (see 1.2) the
inverse function z(w) maps CρB

into the contour ∂B, i.e. formally ∂B = {z(w =
ρBeiϕ)}ϕ∈[0,2π).

Notice that using (4.33) we can introduce the holomorphic function:

G(w) := F (z(w))−1 = ln(1/ρB)
z
′
(w)

z(w)
w = G0 +

∞∑
n=1

(Gnw
n + G−nw

−n) , (4.23)

where the last sum is the corresponding Laurent series. Hence, following the
same line of reasoning as in Section 2, we obtain:

z(w) = z0 wG0/ ln(1/ρB) exp

[
(ln(1/ρB))−1

∞∑
n=1

(Gnw
n −G−nw

−n)/n

]
. (4.24)

Notice that on the circle C1 the function z(w = eiϕ) is periodic. Then the same is
true for G. By the arguments similar to those in Section 2, this function has the
Fourier coefficients satisfying the same properties as gn in (4.16), i.e. by (4.23)
one gets:

Gn = G−n =
1

2π

∫ π

−π

dϕ G(eiϕ) e−inϕ . (4.25)

3.2 Localisation of ∂B. Since z : C1 → C1, then similar to Section 2, the
representation (4.24) for this periodic function implies that we can choose z0 = 1
and that G0/ ln(1/ρB) = 1, or G0 = 1/g0. By virtue of (4.16) and (4.23) the
other coefficients are given by

Gm =
1

2πi

∫
C1

dw
1

wm+1

1

F (z(w))
=

1

2π

∫ 2π

0

dφ
eiφ

g(φ)

w′(eiφ)

wm+1(eiφ)
. (4.26)

Since the conformal mapping w has been already calculated in (4.22) for given
Neumann data g, formulae (4.26) solve the problem of inversion z(w) , see (4.24).

Hence in the case f+ = 1 and f− = 0 the position of unknown boundary ∂B is
defined for a given Neumann data g as a set

∂B = {z(w = ρBeiϕ)}ϕ∈[0,2π) , (4.27)

which is uniquely defined by (4.24),(4.26) and auxiliary radius ρB = e−1/g0 .
3.3 Existence and uniqueness. Notice that existence and uniqueness of the
solution (4.27) follow from the explicit contraction 3.2. This statement is not
connectionless. The first necessary condition has been already mentioned:
(i) g0 > 0, see (4.21).
Another restriction follows directly from the f±-boundary conditions for the Prob-
lem (Pf±=1,0):
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(ii) g(φ) > 0, see (4.5) and (4.7).
(iii) A more subtle constrain for the given Neumann data g(φ) follows from the
conditions insuring the invertibility of the conformal mapping w. We study this
restriction first for the particular example in the next subsection 4.1. 4.1 Let

g0 > 0 and g1 > 0. By (4.22) one gets

w(z) = z exp
[
(g1/g0)(z − z−1)

]
, (4.28)

but our aim is to inverse the function w(z), i.e. to find (4.24) and then to calculate
the unknown boundary ∂B (4.27).

Remark that in spite of |w(z = eiφ)| = 1, the conformal mapping (4.28) acts
nontrivially on C1 since:

w(eiφ) = eiφ exp [2i(g1/g0) sin φ] . (4.29)

The equation (4.29) yields for the function ϕ(φ), see (4.20), the expression:

ϕ(φ) = φ + 2(g1/g0) sin φ . (4.30)

4.2 Notice first that general conditions on g(φ) imply: g0 > 0 and g0 > 2g1,
see (i) and (ii). For example, the importance of g0 > 2g1 is directly related to
monotonicity of the function (4.30).

A more delicate condition (iii) requires that w : ∂B → CρB
and in particular:

w(z = r(φ)) |φ=0= r(φ) exp
[
(g1/g0)(r(φ)− r(φ)−1)

]
|φ=0= ρB ,(4.31)

w(z = −r(φ)) |φ=π= −r(φ) exp
[
(g1/g0)(−r(φ) + r(φ)−1)

]
|φ=π= −ρB .(4.32)

Notice that for given g0 > 0 and g0 > 2g1, the solution of (4.31) for r(φ = 0)
always exists and it is unique. Whereas for r(φ = π) it is not true. Indeed, for
any r < 1 the function defined by the left-hand side of (4.32):

Fε(r) := r exp
[
ε(−r + r−1)

]
> 0 , ε := g1/g0 < 1/2 , (4.33)

is monotonously increasing, for increasing ε. Hence, there is a critical value
εcr : 0 < εcr < 1/2, corresponding to condition

min
r≤1

Fεcr(r) = ρB , (4.34)

and there are no solutions r(φ = π) < 1 of (4.32) for ε > εcr. Let g0 = 1. Then
one obtains from (4.34) the equation for εcr in the form:

ln[(1−
√

1− 4ε2)/2ε] +
√

1− 4ε2 + 1 = 0 . (4.35)

Equation (4.35) implies that solution for r(φ = π) does not exist, when 1/2 > g1,
but g1 > gcr = 0, 13796148... . This means that for g1 > gcr the conformal map
w is not invertible, i.e. the image ∂B is not correctly defined.

We illustrate this evolution of conformal mapping and the form of the internal
absorbing boundary ∂B as a function of g1 for g0 = 1 by Figures 1-5.
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Figure 1. Internal boundary ∂B for g0 = 1 and g1 = 0, 125 < gcr

Figure 2. Internal boundary ∂B for g0 = 1 and g1 = 0, 135 < gcr

On the last two figure one observes that the boundary ∂B is not closed because
of small gaps for ϕ(φ = π) = π, see (4.30). This is a numerical indication that
the conformal map w is not invertible for g1 > gcr.
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Figure 3. Internal boundary ∂B for g0 = 1 and g1 =
0, 13796148 < gcr

Figure 4. Internal boundary ∂B for g0 = 1 and g1 = 0, 1382 > gcr

5. Concluding remarks

1. First we comment the case α = 0, i.e. the Neumann boundary conditions on
the absorbing cell ∂B, see (P2). Then (P∞

d=2) transforms into the problem

(Pα=0
d=2)


∆u = 0, p ∈ Ω \B ,

u |∂Ω (p) = f(p), p ∈ ∂Ω ,

∂νu |∂B (ω) = g(ω), ω ∈ ∂B .
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Figure 5. Internal boundary ∂B for g0 = 1 and g1 = 0, 1387 > gcr

To map domain Ω \B onto annulus (4.3) we use the same holomorphic function
ζ(z). Since conformal mappings preserve angles, the corresponding problem gets
the form:

(P̃α=0
d=2)


∆ũ = 0, p ∈ AB ,

ũ |C1 (p) = f̃(p) , p ∈ C1 ,

∂ν ũ |CρB
(ω) = |∂zζ(ω)|g̃(ω), ω ∈ CρB

.

Here ∂ν(·) |CρB
is external normal derivative at the point ω ∈ CρB

= ζ(∂B) for a
value proportional to g̃(ω) = (g ◦ ζ)(ω).

It is clear that now our scheme must be considerably modified (simplified),
since actual boundary conditions depend on unknown conformal mapping ζ. Note
that we can not get a help from Proposition 3.3 to reduce the Neumann boundary
condition to Dirichlet, since our domain is not simply connected. The external

data for solution of the inverse geometrical problem correspond to f̃(p). So,
we prefer to simplify the conditions on the cell surface ∂B and to put g = 0,
which excludes the appearance of annoying dependence on derivative ∂zζ of the
Neumann boundary condition.

2. Consider the problem (P̃α=0
d=2) for g̃ = 0.

(P̃0
d=2)


∆ũ = 0, p ∈ AB ,

ũ |C1 (p) = f̃(p) , p ∈ C1 ,

∂ν ũ |CρB
(ω) = 0 , ω ∈ CρB

.

Example 5.1. As above (see Example 3.4) we first illustrate a possible strategy

to solve (P̃0
d=2) by a simple example of the round Neumann absorbing cell.
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Let boundaries ∂Ω = CR and ∂B = CrB
be two concentric circles with radius

rB, which is the only unknown parameter that should be defined as a solution
of the inverse geometrical problem. Moreover, since ζ : CρB

→ ∂B = CrB
and

ζ : Cr=1 → ∂Ω = CR, we find this conformal mapping concises with the same
linear mapping, ζ(z) = R z, as in Example 3.4, i.e. ρB = rB/R.

Notice that the constant external condition f̃(p) = (f ◦ ζ)(p) = f(Reiφ) = f ,
p ∈ C1, implies a trivial constant solution uf = ũf = f . Therefore, we consider

the one-mode boundary condition defined by f̃(eiφ) = (f ◦ ζ)(eiφ) = f(Reiφ) =
f(φ) := f cos φ. Then by general solution (3.13) in annulus one gets for the
Dirichlet-to-Neumann operator, (Pα=0

d=2) with g = 0:

Λ∂B,∂Ω : f(φ) 7→ ∂νuf |CR
=

R2 − r2
B

R (R2 + r2
B)

f(φ) . (5.1)

Similarly one obtains for for the problem (P̃0
d=2):

ΛCρB
,Cρ=1 : f(φ) 7→ ∂ν ũ ef |C1=

1− ρ2
B

(1 + ρ2
B)

f(φ) . (5.2)

By virtue of ρB = rB/R, (5.1) and (5.2) imply that relations (3.17) and (3.18),
where l = 2π R, are valid with solution (3.24): τ0(φ) := (l/2π) φ , φ ∈ [0, 2π) .

This example shows that following through verbatim along the arguments
of Section 3.4 one obtains the same iterative scheme (3.27)-(3.29), but with
Dirichlet-to-Neumann operators that are defined by the Neumann problems (Pα=0

d=2)

and (P̃0
d=2). Example 5.1 gives zero-order approximation for the solution.

3. Recall that the aim of present note is to advocate a formal solution of some
d = 2 inverse geometrical problems, see e.g. Remark 3.5. Since the error in
calculations of the coefficients {γs}s∈Z, see (3.30), can be exponentially amplified
in expression (3.32) for the boundary ∂B, it is clear that the problem is ill-posed,
i.e. it demands some further analysis.

We plan to return to numerical implementations of this formal iterative scheme
elsewhere. This needs to study cut-offs and regularizations, as well as their
possible generalisations to the Robin boundary conditions,
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