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Université de Marne-la-Vallée
77454 Marne-la-Vallée Cedex 2 - France

received 10 Apr 2006, revised, accepted.

We present a bijection between the setAn of deterministic and accessible automata withn states on ak-letters
alphabet and some diagrams, which can themselves be represented as partitions of the set[[ 1..(kn + 1) ]] into n non-
empty parts. This combinatorial construction shows that the asymptotic order of the cardinality ofAn is related to
the Stirling number{kn

n }. Our bijective approach also yields an efficient random sampler of automata withn states,
of complexityO(n3/2), using the framework of Boltzmann samplers.

Keywords: finite automata, bijection, asymptotic enumeration, random generation, Boltzmann samplers

1 Introduction
To any regular language, one can associate in a unique way itsminimal automaton, that minimizes the
number of states. Therefore the space complexity of a regular language can be seen as the number of states
of its minimal automaton. The worst case complexity of algorithms handling finite automata is most of
time known [23]. But the average case analysis of algorithmsrequires the enumeration of the objects that
are handled [7] and a good knowledge of their combinatorial properties. From a theoretical and practical
point of view, a precise enumeration (see [5]) and algorithms of random generation of minimal automata
is useful for the study of regular languages.

In this paper we address the problem of the enumeration of thesetAn of non-isomorphic accessible
(also called initially connected) complete and deterministic automata withn states on ak-letters alphabet.
These automata are not all minimal, but they contain minimalautomata and experimentally, a constant
proportion of them seems to be minimal [18, 3]. Moreover these automata constitute a very often used
representation of regular languages even if they have more states than minimal automata. Empirically
again, the minimization of such an automaton provides in average a gain of only one or two states.

The enumeration of finite automata according to various criteria (with or without initial state [13], non-
isomorphic [11], up to permutation of the labels of the edges[11], with a strongly connected underlying
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graph [16, 13, 21, 14], acyclic [17], accessible [15, 13, 21],...) is a problem that was studied since 1959
[22]. In particular Korshunov obtained [13] an asymptotic estimate of the cardinality|An| of An by
successive estimations of the cardinalities of classes of graphs that approximate the underlying graphs of
this class of automata.

In the following, we present a bijection between the setAn of deterministic and accessible automata
with n states on ak-letters alphabet and some diagrams, which can themselves be represented as partitions
of the set[[ 1..(kn + 1) ]] into n non-empty parts. Making use of these combinatorial transformations, we
establish by a simple, but technical, estimation of the exact enumeration formula [18, 3] that|An| is
Θ

(

n2n {kn
n }

)

, where{kn
n } is a number of Stirling of second kind. We also reformulate the asymptotic

estimate due to Korshunov [13] in the same terms as the boundswe obtained.
To generate uniformly at random accessible complete and deterministic automata withn states one can

use a recursive algorithm [18, 3]. But this kind of method, introduced by Nijenhuis and Wilf [19] and
systematized by Flajolet, Zimmermann and Van Custem [9], requires an important memory space. In this
paper we present an algorithm, based on Boltzmann samplers [6], for the uniform random generation of
the elements ofAn that runs inO(n3/2) time complexity with almost no precalculus.

This paper is an extended abstract of [2] in which the proofs of the results mentionned in the following
can be found.

2 Bijective construction of automata
For everyn, m ∈ N with n ≥ m, we denote by[[ m, n ]] the set of integers{i ∈ N | m ≤ i ≤ n}.

First recall some definitions about finite automata. Basic elements of theory of finite automata can
be found in [12]. Adeterministic finite automatonA on the finite alphabetA is a quintupleA =
(A, Q, ·, q0, F ) whereQ is a finite set ofstates, q0 ∈ Q is the initial state,F ⊂ Q is the set of final
states and thetransition function· is an element ofQ×A 7→ Q. If A = (A, Q, ·, q0, F ) is a deterministic
finite automaton, we extend by induction its transition function to Q × A∗ 7→ Q. A deterministic finite
automatonA is accessiblewhen for each stateq of A, there exists a wordu ∈ A∗ such thatq0 · u = q. A
finite automatonA is completewhen for each(q, α) ∈ Q × A, q · α is defined.

Two complete deterministic finite automataA = (A, Q, ·, q0, F ) andA′ = (A, Q′, ·, q′0, F ′) on the
same alphabet areisomorphicwhen there exists a bijectionφ from Q to Q′ such that,φ(q0) = q′0,
φ(F ) = F ′ and for each(q, α) ∈ Q × A, φ(q · α) = φ(q) · α. Two isomorphic automata only differ by
the labels of their states.

Our goal is to count the number|An| of accessible complete and deterministic automata withn states
up to isomorphism and to generate these automata at random for the uniform distribution onAn.

2.1 The set D
n

of structure automata

We introduce a representation of the elements ofAn, that allows us to enumerate them easily. Asimple
pathin a deterministic automatonA is a path labelled by a wordu such that for every prefixv andv′ of u
such thatv 6= v′, q0 · v 6= q0 · v′. In other words, on the graphical representation ofA the path labelled
by u does not go twice through the same state. LetA be an accessible complete and deterministic finite
automaton on the alphabetA andw be the map fromQ to A∗ defined for every stateq of Q by

w(q) = min
lex

{u ∈ A∗ | q0 · u = q andu is a simple path inA},
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where the mininum is taken according to the lexicographic order. Note thatw(q) always exists sinceA is
accessible. An automatonA = (A, Q, ·, q0, F ) is abase automatonwhenQ ⊂ A∗ (the states are labelled
by words) and for allu ∈ Q, w(u) = u. As two distinct base automata cannot be isomorphic, we can
directly work on isomorphism classes using base automata.

The transition structureof an automatonA = (A, Q, ·, q0, F ) is D = (A, Q, ·, q0): in D there is no
more distinguished final states. We can define similarly accessible complete and deterministic transition
structures. Such structures exactly correspond to2n automata, since accessibility and determinism prevent
distinct choices of final sets to form the same automaton. Denote byDn the set of all the accessible
complete and deterministic transition structures of base automata withn states, then|An| = 2n|Dn|.
Note that forbiding or not the set of final states to be empty does not basically change the results, since
the probability of this event is1/2n.

Our purpose is to enumerate the elements inDn and to generate them at random for the uniform
distribution onDn.

2.2 A bijection

In the following we establish a bijection between the transition structures ofDn and couples of inte-
ger sequences represented by boxed diagrams. Adiagram of width m and heightn is a sequence
(x1, . . . , xm) of weakly increasing nonnegative integers such thatxm = n, represented classically as
a diagram of boxes, see Figure 1; Ak-Dyck diagramof sizen is a diagram of width(k − 1)n + 1 and
heightn such thatxi ≥ ⌈i/(k − 1)⌉ for eachi ≤ (k − 1)n. A boxed diagramis a couple of sequences
((x1, . . . , xm), (y1, . . . , ym)) where(x1, . . . , xm) is a diagram and for eachi ∈ [[ 1..m ]], theyith box of
the columni of the diagram is marked, see Figure 1. As a consequence, a diagram gives rise to

∏m
i=1 xi

boxed diagrams. Ak-Dyck boxed diagramof sizen is a boxed diagram such that its first coordinate
(x1, . . . , x(k−1)n+1) is ak-Dyck diagram of sizen.

Fig. 1: A diagram of width5 and height4, a boxed diagram, a2-Dyck diagram and a2-Dyck boxed diagram

Theorem 1 ([18]) The setDn of accessible, complete and deterministic transition structures of sizen on
a k-letters alphabet is in bijection with the setBn of k-Dyck boxed diagrams of sizen.

As a consequence, we get the following exact enumeration formula for An due to Nicaud [18] for
two-letter alphabets and generalized to finite alphabets in[3].

Corollary 1 ([18, 3]) For any integern ≥ 1, the number|An| of accessible, complete and deterministic
non-isomorphic automata of sizen on ak-letters alphabet is equal to2n|Bn|.
From transition structures to k-Dyck boxed diagrams: we associate to any transition structureD of
sizen on ak-letters alphabet, using a depth-first algorithm, ak-Dyck boxed diagram of sizen. Starting
from q0, recursively visit, for each stateq that has not yet been visited, everyq · a, following the lexico-
graphical order. Ifq · a has already been visited, store the current number of already visited states and the
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position ofq · a in the prefix order as a part of the result, respectively on thefirst and second coordinate
of the boxed diagram. In the execution of the algorithm, two kinds of transitions are distinguished in the
structure: those who belong to the covering tree induced by the depth-first algorithm and the other ones
that produce the integers of the result.

1

6

2

4

3

5

b

a

b

a

b

b

a

a, b
a, b

a

Fig. 2: A transition structure on a2-letter alphabet having1 as initial state

In the example given in Fig.2, the states are numbered following the prefix order and the bold edges
correspond to the covering tree. Starting from state1, consider first the transition1 · a = 2, and then
2 · a = 1 that has already been visited. Therefore setx1 = 2, since two states have already been visited
andy1 = 1 since2 · a = 1. Next, consider the transitions2 · b = 3 and3 · a = 4. As 4 · a = 2,
setx2 = 4 andy2 = 2, and so on. The result for this transition structure is the2-Dyck boxed diagram
((2, 4, 4, 5, 5, 6, 6), (1, 2, 2, 5, 5, 4, 2)) of size5.

From an accessible complet and deterministic transition structureD of sizen on ak-letters alphabet,
the algorithm produces ak-Dyck boxed diagram, as there arekn transitions inD and(n − 1) of them
belong to the covering tree of rootq0. The growth condition on the first sequence is due to the fact that
the automata is deterministic and complete on ak-letters alphabet.

From k-Dyck boxed diagrams to transition structures: the idea is to reconstruct from anyk-Dyck
boxed diagram of sizen of Bn its associated transition structure of sizen onk-letters alphabet inDn.

We define amissing transitionas a transition of the transition structure that has not yet been defined.
The algorithm uses a stackS of missing transitions, initialized with all the transitions going from the
initial state, put in reverse lexicographical order of their labels, so that the transition(i, a) wherea is the
smallest element of the alphabet is the first one to be selected.

Two indexesi ∈ [[ 1, (k − 1)n + 1 ]] and j ∈ [[ 1, n ]] indicate the current position in the graphical
representation of thek-Dyck boxed diagram of sizen

B′ =
(

(x1, · · · , x(k−1)n, x(k−1)n+1), (y1, · · · , x(k−1)n, y(k−1)n+1)
)

.

As long asj < xi, the first element(q, a) (q is the state anda the letter of the missing transition) of the
stackS is in the covering tree. Therefore the algorithm creates a new stateq′ and a transitionq · a = q′;
moreoverj is incremented by one and all the missing transitions(q′, a) are added to the stack, in reverse
lexicographical order of their labels.

Whenj = xi, the first element of the stack is a transition that does not belong to the covering tree, then
yi becomes the image of the top of the stackq · a andi is incremented by one.

The algorithm runs while the stackS is not empty.
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Fig. 3: From a2-Dyck boxed diagramB′ to a transition structure ofDn

Fig. 3 shows an exemple of the execution of the algorithm on a two-letter alphabet, for

B′ = ((2, 3, 3, 3), (1, 2, 3, 2)) .

The grey column corresponds to the last transition. First create the initial state, seti = j = 1. At steps
(1) and (3): asj < xi (the dot can go up), create a new state and its missing transitions,j is incremented
(the dot goes up). At steps (2) and (4-6):j = xi (the dot can not go up): the missing transition is directed
to the stateyi, andi is incremented (the dot goes right). At the end of step (6), the stack is empty. The
algorithm ends.

Consequently, the setDn of accessible, complete and deterministic transition structure of sizen on a
k-letters alphabet is in bijection with the setBn of k-Dyck boxed diagram of sizen. Moreover for any
integern ≥ 1, the number|Dn| of accessible complete and deterministic transition structures of sizen on
ak-letters alphabet is equal to the number|Bn| of k-Dyck diagram of sizen and|An| = 2n|Bn| as stated
in Corollary 1.

3 Representation of set partitions
We describe in this part a bijection between boxed diagrams of width m and heightn and set partitions of
n + m elements inn parts, based on a construction due to Bernardi [1].

Proposition 1 The set of boxed diagrams of widthm and heightn and the of set partitions ofn + m
elements inton parts are in bijection.

Given a boxed diagram of widthm and heightn, we addn boxed columnsc1, c2, . . ., cn. Eachci is of
heighti and its highest box is marked. Each column is inserted at the left most position that statisfies the
weakly increasing condition. Figure 4 gives an example of such a transformation.
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The associated set partition is obtained from the sequence of the second coordinates(y1, . . . , ym+n)
corresponding to the marked boxes: two elementsi andj are in the same part if and only ifyi = yj .

m m + n

n n

Fig. 4: From a boxed diagram to the set partition{{1, 3, 6}, {2, 5}, {4, 10}, {7, 9, 11}, {8}}

Now we present an algorithm that transforms a set partitionP of a set withm+n elements inton parts
into its corresponding boxed diagram of widthm and heightn.

The input of the algorithm is a partitionP given by an arraypart, with indices from1 to m + n and
values in[[ 1, n ]], such thatpart[i] = part[j] if and only if i andj are in the same part ofP and for
everyj ∈ [[ 2, m + n ]] such thatpart[j] ≥ 2, there existsi < j such thatpart[i] = part[j] − 1. In
other words, the parts ofP are sorted in the order of their smallest element.

For instance, form = 3 andn = 4, the partition{{1, 3, 6}, {5}, {2, 7}, {4}} is represented by the
arraypart:

part 1 2 1 3 4 1 2

Then, to eachi in [[ 1, m+ n ]], associate the maximummi of part[j] for j ≤ i and denote bymax the
new array containing themi’s. Following with the previous example, we get:

max 1 2 2 3 4 4 4
part 1 2 1 3 4 1 2

Finally remove the columns with the first occurence of each value inmax. In the example, we obtain:

2 4 4
1 1 2

The boxed diagram associated to the set partition{{1, 3, 6}, {2, 7}, {4}, {5}} is then((2, 4, 4), (1, 1, 2)).
The complexity in time and space of this algorithm isO(n + m).

4 Asymptotic order
In this section we give upper and lower bounds of the same order of magnitude for the numbers|Bn| of
k-Dyck boxed diagram of sizen and therefore for|An|. The bounds are related to Stirling numbers of
second kind. Next we reformulate a stronger result due to Korshunov [13] in the same terms as the bounds
we obtained for|An|.
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4.1 The Stirling numbers of second kind
Recall that theStirling number of second kind, denoted by{n

m}, is the number of ways of partitioning a
set ofn elements intom nonempty subsets. By convention{0

0} = 1, and forn ≥ 1 we have{n
0} = 0.

They can be computed using the following recurrence relation

∀n, m > 0, {n
m} = m {n−1

m } +
{

n−1
m−1

}

,

and asymptotically estimated with the saddle point method [8]. The following lemma is a special case of
the asymptotic expansion obtained by Good [10] for Stirlingnumbers of the second kind{n

m} whenn and
m tend towards infinity withn/m = Θ(1).

Lemma 1 ([10]) Let ζk be the postive root of(ζk − k)eζk = −k, then

{kn
n } = αkβn

k n(k−1)n−1/2
(

1 + O
( 1

n

))

with αk =

√

1

2π(ζk − (k − 1))
and βk =

kk

ek−1

(eζk − 1)

ζk
k

.

4.2 Bounds
Theorem 2 The number|An| of accessible, complete and deterministic automata withn states on ak-

letters alphabet isΘ
(

n 2n {kn
n }

)

.

Recall that from Corollary 1|An| = 2n|Bn|. In the following, we briefly explain how to estimate the
numbers|Bn|.
The upper bound: Any k-Dyck boxed diagram of sizen is also a boxed diagram of width(k−1)n+1
and heightn whose last column is always of heightn. We obtain an upper bound by removing the Dyck
condition. As from Proposition 1 the set of boxed diagrams ofwidth m and heightn is in bijection with
the set of set partitions ofn + m elements inn parts are in bijection, we obtain|Bn| ≤ n {kn

n }.

The lower bound: The computation of a lower bound, which is more technical, isbased on an overes-
timation of the number of boxed diagrams of width(n − 1)k + 1 and heightn that are notk-Dyck boxed
diagrams.

Recall that if|z| < 1, thepolylogarithmfunction is defined as polylog(s, z) =
∑∞

i=1 zi/is.

Proposition 2 For all n large enough, one has the inequality

|Bn| ≥ Ck n {kn
n }

with Ck = 1 −
√

k−1
2πk polylog

(

1
2 , µk

)

+ O
(

1
3
√

n

)

andµk = kk

ek−1(k−1)k−1βk
.

LetS(>=i)
m,n be the set of boxed diagrams of widthm and heightn whose first column is of height greater

or equal toi. To prove Proposition 2, we consider for each boxed diagram which is not ak-Dyck boxed
diagram the first integeri such thatx(k−1)i+1 = i. The first index of a column that does not satisfy the
Dyck condition is necessarily of this kind. The boxed diagram can then be decomposed into two parts:
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a k-Dyck boxed diagram of sizei on the left and an element ofS(>=i)
(k−1)(n−i),n on the right, as shown on

Figure 5.
The number of boxed diagrams that are notk-Dyck boxed diagrams is then:

n−1
∑

i=1

|Bi| |S(>=i)
(k−1)(n−i),n|

(k−1)n+1

n

i

(k−1)(n−i)(k−1)i+1

Fig. 5: Representation of the decomposition: the left part is ak-Dyck boxed diagram of sizei

Next we compute an upper bound for this quantity, partitioning this summation in three parts, for
i ∈ [[ 1, n/e ]], i ∈ [[ n/e, n − 3

√
n ]] andi ∈ [[ n − 3

√
n, n − 1 ]]. The contribution of the two first parts is

negligible and only the third part of the sum has the same order of magnitude asn {kn
n }.

4.3 The estimate of Korshunov

We derived from simple bijective constructions the asymptotic order of magnitude of the number of ac-
cessible automata, giving a combinatorial interpretationthat the asymptotic order is related to the number
of set partitions{kn

n }. Korshunov obtained a more precise result. He gave an asymptotic estimate [13,
Theorem 4.8 p.51] of this number. His long proof is based on the estimations, when the number of states
tends towards infinity, of cardinalities of classes of graphs that better and better approximate the underly-
ing graphs of this class of automata. A key result [13, Theorem 3.4 p.33] is the estimation of the number
of strongly connected graphs.

The link we made between the number of accessible automata and the number of set partitions allows
us to reformulate the original estimate of Korshunov in the scale of the Stirling numbers, using their well
known asymptotic estimate (see Lemma 1).
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Theorem 3 (Korshunov [13, 14]) The number|An| of accessible complete and deterministic automata
with n states on ak-letters alphabet satisfies

|An| ∼ Ek n 2n {kn
n } where Ek =

1 +
∑∞

r=1
1
r

(

kr
r−1

)(

ek−1βk

)−r

1 +
∑∞

r=1

(

kr
r

)(

ek−1βk

)−r .

4.4 Numerical results
In the following array, we compare for alphabets of sizek = 2, 3 and4 the values of the ratio |An|

2nn{kn
n }

for n = 100, 200, 300 and400 with Ek = limn→+∞
|An|

2nn{kn
n } . From Theorem 1, one has|An| = n2nfn

and the numbersfn can be computed making use of a recurrence formula [18, 3]. The values ofEk are
obtained from the formula given in Theorem 3. Note thatEk quickly converges towards1, ask tends
towards+∞. For instance,E26 ≍ 0.99999999987.

k 100 200 300 400 Ek

2 0.74490782 0.74497737 0.74498956 0.74499374 0.74499902
3 0.87341820 0.87342408 0.87342509 0.87342543 0.87342586
4 0.93931196 0.93931392 0.93931428 0.93931440 0.93931456

5 Random generation
In this section, we describe a new method, different from therecursive one proposed in [18, 3], to equally
likely generate transition structures of sizen, and thus automata by randomly adding the final states. It
is based on Boltzmann samplers introduced in [6] and uses twoalgorithms that transform the objects: the
first one to change a partition into a boxed diagram [1, 2], theother one to build an automaton from a
elementk-Dyck boxed diagram.

One step is achieved with a reject algorithm.
Moreover a reject algorithm can be used, as mentionned in thediagram, to equally likely generate a

minimal automaton withn states. Empirically, in average, less than two draws from the setAn are enough
to obtain a minimal automaton. Nevertheless the efficiency of this algorithm is not yet proved.

partitions boxed
diagrams

k-Dyck
boxed

transition
structures

minimal
automata

Boltzmann sampler Recursive method

O(n3/2)

O(n) O(n)O(n)

reject

?

reject

The time complexity of the precalculus of the recursive method [18, 3] isO(n3 log n). The generation
of each random element is then done in timeO(n2 log n). Using floating-point arithmetic [4] instead
of multi-precision one, with a slight loss of uniformity, the algorithm usesO(n2) space, the precalculus
requiresO(n2) time and the random generation of each automaton runs inO(n). Our algorithm runs in
timeO(n3/2) with almost no precalculus.
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Boltzmann samplers Duchon, Flajolet, Louchard and Schaeffer [6], introduced amethod to build a
random generator for classes of objects that can be described with a combinatorial decomposition. Using
automatic rules, the class is translated to a Boltzmann sampler which guarantee that two elements of the
same size have the same probability to be generated.

Boltmann samplers do not generate objects of a fixed size. They depend on a real parameterx > 0
and, for any given an integern, the value ofx can be chosen such that the average size of the generated
elements isn. The value ofx can be computed by solving an equation that involves the generating function
of the objects and its derivatives.

The behavior of the Boltzmann samplers is often such that thesize of the generated object is between
(1 − ε)n and(1 + ε)n with high probability. Therefore an exact size sampler can be obtained using a
reject algorithm.

We use this technique to uniformly generate random set partitions of a set withkn elements inton
nonempty subsets. We then use the constructions of Sections3 and 2.2 to transform the set partition
obtained into a transition structure.

In order to uniformly generate set partitions of a set withkn elements inton parts, we fist consider the
setPn of partitions of a set inton non-empty sets. The generating function of non-empty sets according to
their sizes isN(z) = ez − 1. Thus the generating fonction ofPn is Pn(z) = (ez−1)n

n! . Using Boltzmann
sampler construction, we generate each of then sets assuming that its size follows a Poisson law Pois≥1

of parameterx (a truncated Poisson variable K, where K is conditionned to be≥ 1). This ensures that
all resulting objects of the same size have the same probability to be generated. The average size of the
partition is then:

Ex(size of the partition) = x
P ′

n(x)

Pn(x)
= nx

ex

ex − 1
.

Since we want a partition ofkn elements, we choosex = xn such thatnxn
exn

exn−1 = kn. With nota-
tions of Lemma 1,xn = ζk. Hencexn is a constant function ofn, only depending upon the sizek of the
alphabet. The Boltzmann sampler algorithm to uniformly generate a partition of a set of sizekn into n
parts is then:

BOLTZMANN SAMPLER(n, k)
computes the value ofζk

do
for each of then nonempty setsE of P

size(E) = NONZEROPOISSONLAW(ζk)
end for

until (the sum of the sizes is equal tokn)
return P

NONZEROPOISSONLAW(x)
k = 1 andp = (ex − 1)−1

dice = UNIFORM([0, 1[)
while (dice >= p)

dice = dice − p
k = k + 1 andp = x ∗ p/k

end while
return k

To complete the task, label the structure obtained with a random permutation of[[ 1, kn ]].
Using floating point approximation, the average cost of the generation of a partition isO(n). Testing

if the sum of the sizes of the parts of such a partition is equalto kn is also linear. Therefore to compute
the average complexity of this algorithm, we must estimate the probability that a partition has the correct
size.
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Since the generating function of these partitions isPn(z) and the Boltzmann parameter is equal toζk,
the probability for a random partition to be of sizekn is [6]:

Pζk
(N = nk) =

[zkn]Pn(z)

Pn(ζk)
=

{kn
n }

(kn)!

n!

(eζk − 1)n

Using Lemma 1 and Stirling formula, we obtain the following estimate:Pζk
(N = nk) ∼ αk√

kn
. Thus,

the average number of rejects isO(
√

n) and the average complexity of the random generation of an
elementF of Fn based on the Boltzmann sampler, using floating point approximation, isO(n3/2).

Open problem To conclude, the estimation of the proportion of minimal automata inAn remains an
important open problem. We conjecture that a constant proportion of accessible complete and deter-
ministic automata ofAn is minimal. If it is true, the efficiency of a reject algorithmto generate minimal
automata from accessible complete and deterministic ones would be proved and the asymptotic estimation
Θ

(

n2n {kn
n }

)

would also hold for minimal automata.
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