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We present a bijection between the sét of deterministic and accessible automata witlstates on &-letters
alphabet and some diagrams, which can themselves be re@ése partitions of the sgti..(kn + 1) ] into n non-
empty parts. This combinatorial construction shows thatatsymptotic order of the cardinality of,, is related to
the Stirling number{ " }. Our bijective approach also yields an efficient random darmyf automata with: states,
of complexityO(nS/z), using the framework of Boltzmann samplers.
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1 Introduction

To any regular language, one can associate in a unique wayinimal automaton, that minimizes the
number of states. Therefore the space complexity of a retariguage can be seen as the number of states
of its minimal automaton. The worst case complexity of allfpons handling finite automata is most of
time known [23]. But the average case analysis of algoritreqsires the enumeration of the objects that
are handled [7] and a good knowledge of their combinatoraperties. From a theoretical and practical
point of view, a precise enumeration (see [5]) and algorglmfrandom generation of minimal automata
is useful for the study of regular languages.

In this paper we address the problem of the enumeration ofe¢hd,, of non-isomorphic accessible
(also called initially connected) complete and deterntinsutomata with: states on &-letters alphabet.
These automata are not all minimal, but they contain miniaubmata and experimentally, a constant
proportion of them seems to be minimal [18, 3]. Moreover ¢hastomata constitute a very often used
representation of regular languages even if they have natessthan minimal automata. Empirically
again, the minimization of such an automaton provides imagyea gain of only one or two states.

The enumeration of finite automata according to variousgat(with or without initial state [13], non-
isomorphic [11], up to permutation of the labels of the edd43, with a strongly connected underlying
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graph [16, 13, 21, 14], acyclic [17], accessible [15, 13,2]}]is a problem that was studied since 1959
[22]. In particular Korshunov obtained [13] an asymptottimate of the cardinality.4,,| of A,, by
successive estimations of the cardinalities of classesagtts that approximate the underlying graphs of
this class of automata.

In the following, we present a bijection between the dgtof deterministic and accessible automata
with n states on &-letters alphabet and some diagrams, which can themsetvephbesented as partitions
of the set] 1..(kn + 1) ] into n non-empty parts. Making use of these combinatorgigformations, we
establish by a simple, but technical, estimation of the eracmeration formula [18, 3] that,,| is
©(n2" {7} ), where{*n} is a number of Stirling of second kind. We also reformulate dsymptotic
estimate due to Korshunov [13] in the same terms as the bovedbtained.

To generate uniformly at random accessible complete aretmétistic automata with states one can
use a recursive algorithm [18, 3]. But this kind of methodraduced by Nijenhuis and Wilf [19] and
systematized by Flajolet, Zimmermann and Van Custem [glJires an important memory space. In this
paper we present an algorithm, based on Boltzmann samplgrf®f the uniform random generation of
the elements afd,, that runs inO(n3/?) time complexity with almost no precalculus.

This paper is an extended abstract of [2] in which the probfe@results mentionned in the following
can be found.

2 Bijective construction of automata

For everyn, m € N with n > m, we denote by m, n ] the set of integer§i € N | m <i < n}.

First recall some definitions about finite automata. Basinents of theory of finite automata can
be found in [12]. Adeterministic finite automatorl on the finite alphabetl is a quintupled =
(4,Q,-,q0, F) where@ is a finite set ofstates g9 € @ is the initial state, /" C @ is the set of final
states and thigansition function is an elementof) x A — Q. If A = (A, Q, -, qo, F) is a deterministic
finite automaton, we extend by induction its transition fiimtto Q x A* — Q. A deterministic finite
automatonA is accessiblevhen for each statg of A, there exists aword € A* such tha - v = ¢. A
finite automatond4 is completevhen for eacl{g, o) € Q x A4, q - a is defined.

Two complete deterministic finite automath = (A,Q, -, qo, F) and A’ = (A,Q’,-, q}, F’) on the
same alphabet arisomorphicwhen there exists a bijectiop from Q to @’ such that,¢(q0) = g},
¢(F) = F' and for eacHq,a) € Q x A, ¢(q - o) = ¢(q) - «. Two isomorphic automata only differ by
the labels of their states.

Our goal is to count the numbed,, | of accessible complete and deterministic automata wiskates
up to isomorphism and to generate these automata at randdhefaniform distribution on4,,.

2.1 The set D,, of structure automata

We introduce a representation of the elementslgf that allows us to enumerate them easilysifple
pathin a deterministic automataA is a path labelled by a word such that for every prefix andv’ of u
such thatv # v/, qo - v # qo - v'. In other words, on the graphical representatiotdahe path labelled
by u does not go twice through the same state. Mdie an accessible complete and deterministic finite
automaton on the alphabdtandw be the map fron® to A* defined for every state of @ by

w(q) = r{nn{u € A% | qo - u = gandu is a simple path ind},
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where the mininum is taken according to the lexicographitearNote thatv(q) always exists sincel is
accessible. An automatoti = (A, Q, -, qo, F') is abase automatowhen@ C A* (the states are labelled
by words) and for al € @, w(u) = u. As two distinct base automata cannot be isomorphic, we can
directly work on isomorphism classes using base automata.

Thetransition structureof an automatomd = (A4,Q, -, qo, F) isD = (4,Q,-,qo): in D there is no
more distinguished final states. We can define similarly s&ibée complete and deterministic transition
structures. Such structures exactly corresportautomata, since accessibility and determinism prevent
distinct choices of final sets to form the same automaton. oi2ehy D,, the set of all the accessible
complete and deterministic transition structures of bageraata withn states, thenA,,| = 2"|D,|.
Note that forbiding or not the set of final states to be emptysdoot basically change the results, since
the probability of this event is/2"™.

Our purpose is to enumerate the element®in and to generate them at random for the uniform
distribution onD,,.

2.2 A bijection

In the following we establish a bijection between the trtéosistructures ofD,, and couples of inte-
ger sequences represented by boxed diagramsdiagram of width m and heightn is a sequence
(x1,...,zm) Of weakly increasing nonnegative integers such that= n, represented classically as
a diagram of boxes, see Figure 1;kADyck diagramof sizen is a diagram of width(k — 1)n + 1 and
heightn such thate; > [i/(k — 1)] for eachi < (k — 1)n. A boxed diagranis a couple of sequences
(1, oy Tm)s (Y1, -, ym)) Where(xy, ..., z,,) is a diagram and for eache [1..m ], they,;th box of
the column: of the diagram is marked, see Figure 1. As a consequencegediagives rise tq ;" z;
boxed diagrams. A-Dyck boxed diagranof sizen is a boxed diagram such that its first coordinate
(1, .., T(—1)n+1) is ak-Dyck diagram of sizex.

OT 5 =8

Fig. 1. A diagram of width5 and height4, a boxed diagram, 2Dyck diagram and &-Dyck boxed diagram

Theorem 1 ([18]) The setD,, of accessible, complete and deterministic transitionctrees of size: on
a k-letters alphabet is in bijection with the sBf, of k-Dyck boxed diagrams of size

As a consequence, we get the following exact enumeratiandtar for A,, due to Nicaud [18] for
two-letter alphabets and generalized to finite alphabdi3]in

Corollary 1 ([18, 3]) For any integem > 1, the numbet.A4,,| of accessible, complete and deterministic
non-isomorphic automata of sizeon ak-letters alphabet is equal |5, |.

From transition structuresto k-Dyck boxed diagrams. we associate to any transition struct@eof
sizen on ak-letters alphabet, using a depth-first algorithm;-Byck boxed diagram of size. Starting
from ¢, recursively visit, for each statgthat has not yet been visited, every a, following the lexico-
graphical order. If; - « has already been visited, store the current number of alreiaided states and the
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position ofq - a in the prefix order as a part of the result, respectively orfiiseand second coordinate

of the boxed diagram. In the execution of the algorithm, twalk of transitions are distinguished in the
structure: those who belong to the covering tree inducedbydepth-first algorithm and the other ones
that produce the integers of the result.

Fig. 2. Atransition structure on a-letter alphabet having as initial state

In the example given in Fig.2, the states are numbered faligihe prefix order and the bold edges
correspond to the covering tree. Starting from stateonsider first the transitioh - « = 2, and then
2 - a = 1 that has already been visited. Thereforeasset= 2, since two states have already been visited
andy; = 1since2-a = 1. Next, consider the transitioris- b = 3 and3-a = 4. As4-a = 2,
setxy = 4 andy, = 2, and so on. The result for this transition structure is2F@yck boxed diagram
((2,4,4,5,5,6,6), (1,2,2,5,5,4,2)) of size5.

From an accessible complet and deterministic transitinrcgireD of sizen on ak-letters alphabet,
the algorithm produces &-Dyck boxed diagram, as there akre transitions inD and (n — 1) of them
belong to the covering tree of rogg. The growth condition on the first sequence is due to the faatt t
the automata is deterministic and complete dnlatters alphabet.

From k-Dyck boxed diagramsto transition structures: the idea is to reconstruct from aryDyck
boxed diagram of size of 5,, its associated transition structure of sizen k-letters alphabet if,,.

We define amissing transitioras a transition of the transition structure that has not genbdefined.
The algorithm uses a stack of missing transitions, initialized with all the transiti® going from the
initial state, put in reverse lexicographical order of tHabels, so that the transitiqi, a) whereaq is the
smallest element of the alphabet is the first one to be sélecte

Two indexesi € [1,(k —1)n+ 1] andj € [1,n] indicate the current position in the graphical
representation of the-Dyck boxed diagram of size

B = ((z1, T 1)n> Th—1)nt1)s W1+ > Tk Y(h—1)n+1)) -

As long asj < z;, the first elementq, a) (¢ is the state and the letter of the missing transition) of the
stacksS is in the covering tree. Therefore the algorithm createsvastateq’ and a transitiony - a = ¢/;
moreoverj is incremented by one and all the missing transitigrisa) are added to the stack, in reverse
lexicographical order of their labels.

Whenj = z;, the first element of the stack is a transition that does nlotiggto the covering tree, then
y; becomes the image of the top of the stack: and: is incremented by one.

The algorithm runs while the stackis not empty.
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Fig. 3: From a2-Dyck boxed diagran’3’ to a transition structure @b,

Fig. 3 shows an exemple of the execution of the algorithm amcal¢tter alphabet, for
B'=((2,3,3,3),(1,2,3,2)).

The grey column corresponds to the last transition. Firsat the initial state, sét= j = 1. At steps
(1) and (3): ag < z; (the dot can go up), create a new state and its missing ti@msij is incremented
(the dot goes up). At steps (2) and (4-6)= x; (the dot can not go up): the missing transition is directed
to the statey;, andi is incremented (the dot goes right). At the end of step (@ ,sfack is empty. The
algorithm ends.

Consequently, the sé?,, of accessible, complete and deterministic transitioncstme of sizen on a
k-letters alphabet is in bijection with the sBf, of k-Dyck boxed diagram of size. Moreover for any
integern > 1, the numbetD,,| of accessible complete and deterministic transition stines of sizen on
ak-letters alphabet is equal to the numbBy| of k-Dyck diagram of size: and|A,, | = 2"|B,,| as stated
in Corollary 1.

3 Representation of set partitions

We describe in this part a bijection between boxed diagramsdih m and height: and set partitions of
n + m elements im parts, based on a construction due to Bernardi [1].

Proposition 1 The set of boxed diagrams of width and heightn and the of set partitions af + m
elements inta parts are in bijection.

Given a boxed diagram of widthv and height:, we addn boxed columnegy, ca, . . ., ¢,,. Eache; is of
heighti and its highest box is marked. Each column is inserted agtthenost position that statisfies the
weakly increasing condition. Figure 4 gives an example chsutransformation.
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The associated set partition is obtained from the sequehtteesecond coordinatégy, . . ., Ym+tn)
corresponding to the marked boxes: two elememtsd; are in the same part if and onlyyf = y;.

-
m m+n

Fig. 4: From a boxed diagram to the set partitipfil, 3,6}, {2, 5}, {4, 10}, {7,9, 11}, {8}}

Now we present an algorithm that transforms a set partita@f a set withm + n elements into, parts
into its corresponding boxed diagram of widthand heighta.

The input of the algorithm is a partitigR given by an arrayar t , with indices froml to m + n and
values in[1,n ], such thapart [i] = part [j] if and only if ¢ andj are in the same part ¢? and for
everyj € [2,m + n] such thapart [j] > 2, there exists < j such thapart [i{] = part [j] — 1. In
other words, the parts d? are sorted in the order of their smallest element.

For instance, form = 3 andn = 4, the partition{{1,3,6},{5},{2,7},{4}} is represented by the
arraypart :

[part [1]2]1]3[4]1]2]

Then, to eachiin [ 1,m +n ], associate the maximum, of par t [j] for j < ¢ and denote byax the
new array containing theu;’s. Following with the previous example, we get:

max (1223|444
part |1]|2|1|3|4|1]|2

Finally remove the columns with the first occurence of eadhevin max. In the example, we obtain:

2[4 4
1[1]2

The boxed diagram associated to the set partitidn 3,6}, {2, 7}, {4}, {5} } isthen((2,4, 4), (1,1, 2)).
The complexity in time and space of this algorithn@én + m).

4 Asymptotic order

In this section we give upper and lower bounds of the samer afd@agnitude for the numbels,, | of
k-Dyck boxed diagram of size and therefore fof.4,,|. The bounds are related to Stirling numbers of
second kind. Next we reformulate a stronger result due teKamov [13] in the same terms as the bounds
we obtained fofA,,|.
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4.1 The Stirling numbers of second kind

Recall that theStirling number of second kindenoted by{,;}, is the number of ways of partitioning a
set ofn elements inton nonempty subsets. By conventi¢ft = 1, and forn > 1 we have{j} = 0.
They can be computed using the following recurrence retatio

vn,m >0, {n}=m{"'}+ {771},

and asymptotically estimated with the saddle point meti8pdThe following lemma is a special case of
the asymptotic expansion obtained by Good [10] for Stirtignbers of the second kifd, } whenn and
m tend towards infinity witm/m = ©(1).

Lemma 1 ([10]) Let¢ be the postive root dity — k)e* = —Fk, then

{0} = e im0 1214 0( 1))

. B 1 KR (e —1)
with ak—\/m and ﬁk—FT

4.2 Bounds

Theorem 2 The numbef.A,,| of accessible, complete and deterministic automata wiitates on &:-
letters alphabet i®© (n 2n {kn} ) :

Recall that from Corollary 14,,| = 2"|58,,|. In the following, we briefly explain how to estimate the
numberg,,|.

Theupper bound: Any k-Dyck boxed diagram of size is also a boxed diagram of widtt — 1)n + 1
and height» whose last column is always of height We obtain an upper bound by removing the Dyck
condition. As from Proposition 1 the set of boxed diagramwiath m and height: is in bijection with
the set of set partitions of + m elements im parts are in bijection, we obtaji$,,| < n {*"}.

Thelower bound: The computation of a lower bound, which is more technicdbased on an overes-
timation of the number of boxed diagrams of widih— 1)k + 1 and height: that are nok-Dyck boxed
diagrams.

Recall that if|z| < 1, thepolylogarithmfunction is defined as polyldg, ) = >, 2% /i*.

Proposition 2 For all n large enough, one has the inequality
Bn| = Cen {57}

k

W|th Ck - 1 - % p0|y|Og (%7/1116) + O(G/Lﬁ) and,LLk - Mw.

Let Sq(nﬁi) be the set of boxed diagrams of widthand height: whose first column is of height greater
or equal toi. To prove Proposition 2, we consider for each boxed diagrdmetwis not ak-Dyck boxed
diagram the first integersuch thate(,_1); 1, = i. The first index of a column that does not satisfy the
Dyck condition is necessarily of this kind. The boxed diagrean then be decomposed into two parts:
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a k-Dyck boxed diagram of sizeéon the left and an element 61?,?_:1?(”_1.) ,, on the right, as shown on
Figure 5.
The number of boxed diagrams that are hddyck boxed diagrams is then:

n—1
(>=1)
2 |Bi] |S(k—1)(n—i),n|

(k-1)n+1

A
\J

(k-1)i+1  (k-1)(n-i)

Fig. 5. Representation of the decomposition: the left partis@yck boxed diagram of size

Next we compute an upper bound for this quantity, partitignihis summation in three parts, for
i€ [1l,n/e],i € [n/e,n— ¥n]andi € [n— ¢/n,n — 1]. The contribution of the two first parts is
negligible and only the third part of the sum has the sameramtimagnitude as. {#7}.

4.3 The estimate of Korshunov

We derived from simple bijective constructions the asyrtiptorder of magnitude of the number of ac-
cessible automata, giving a combinatorial interpretatii@t the asymptotic order is related to the number
of set partitions{*”}. Korshunov obtained a more precise result. He gave an asyimpstimate [13,
Theorem 4.8 p.51] of this number. His long proof is based erettimations, when the number of states
tends towards infinity, of cardinalities of classes of gmftat better and better approximate the underly-
ing graphs of this class of automata. A key result [13, Theo8e4 p.33] is the estimation of the number
of strongly connected graphs.

The link we made between the number of accessible automdtthamumber of set partitions allows
us to reformulate the original estimate of Korshunov in tb&e of the Stirling numbers, using their well
known asymptotic estimate (see Lemma 1).
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Theorem 3 (Korshunov [13, 14]) The numbet.A,, | of accessible complete and deterministic automata
with n states on &-letters alphabet satisfies

L4352 G ()

|A,| ~ Exn2™ {k»}  where Ej = — —.
L3520 () (R 1)

4.4 Numerical results
| A

In the following array, we compare for alphabets of size- 2,3 and4 the values of the ratiw
for n = 100, 200, 300 and400 with Ej, = lim,,_, 4 o %. From Theorem 1, one had,,| = n2"™ f,,
and the numberg, can be computed making use of a recurrence formula [18, 3. vEtues off), are
obtained from the formula given in Theorem 3. Note tliat quickly converges towards, ask tends

towards+-oo. For instancefss < 0.99999999987.
k 100 200 300 400 FE;
2 | 0.74490782 0.74497737| 0.74498956| 0.74499374| 0.74499902
3 | 0.87341820 0.87342408| 0.87342509| 0.87342543| 0.87342586
4 | 0.93931196/ 0.93931392| 0.93931428 0.93931440, 0.93931456

5 Random generation

In this section, we describe a new method, different fronréoairsive one proposed in [18, 3], to equally
likely generate transition structures of sizeand thus automata by randomly adding the final states. It
is based on Boltzmann samplers introduced in [6] and usesalgarithms that transform the objects: the
first one to change a patrtition into a boxed diagram [1, 2],dtier one to build an automaton from a
elementt-Dyck boxed diagram.

One step is achieved with a reject algorithm.

Moreover a reject algorithm can be used, as mentionned idittgram, to equally likely generate a
minimal automaton with states. Empirically, in average, less than two draws fragrsdt4,, are enough
to obtain a minimal automaton. Nevertheless the efficierithio algorithm is not yet proved.

diagrams
reject

O(n) O(n)

minimal

partitions automata

transition i

reject

On®'?)

Boltzmann sampler Recursive method

The time complexity of the precalculus of the recursive roetfi8, 3] isO(n? logn). The generation
of each random element is then done in tifén?logn). Using floating-point arithmetic [4] instead
of multi-precision one, with a slight loss of uniformity,eralgorithm use€(n?) space, the precalculus
requiresO(n?) time and the random generation of each automaton ru@¥ir). Our algorithm runs in
time O(n?/?) with almost no precalculus.
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Boltzmann samplers Duchon, Flajolet, Louchard and Schaeffer [6], introducesiethod to build a
random generator for classes of objects that can be dedasite a combinatorial decomposition. Using
automatic rules, the class is translated to a Boltzmann kawhich guarantee that two elements of the
same size have the same probability to be generated.

Boltmann samplers do not generate objects of a fixed sizey @bpend on a real parameter> 0
and, for any given an integer, the value ofr can be chosen such that the average size of the generated
elementsis. The value ofr can be computed by solving an equation that involves thergéng function
of the objects and its derivatives.

The behavior of the Boltzmann samplers is often such thasitteeof the generated object is between
(1 — e)n and(1 + ¢)n with high probability. Therefore an exact size sampler carobtained using a
reject algorithm.

We use this technique to uniformly generate random settjmensi of a set withkn elements into
nonempty subsets. We then use the constructions of Se@iamsl 2.2 to transform the set partition
obtained into a transition structure.

In order to uniformly generate set partitions of a set withelements into: parts, we fist consider the
setP,, of partitions of a set int@ non-empty sets. The generating function of non-empty setsrding to
their sizes isN(z) = e* — 1. Thus the generating fonction &, is P,,(z) = "=D" Using Boltzmann
sampler construction, we generate each ofitteets assuming that its size follows a Poisson lawRois
of parameter: (a truncated Poisson variable K, where K is conditionnedetg-bl). This ensures that
all resulting objects of the same size have the same pratyabilbe generated. The average size of the
partition is then:

. . P/ (z) er
E. (size of the partitioh= x-= =
Since we want a partition dfn elements, we choose = z,, such that.r, Z— = kn. With nota-

tions of Lemma 1g,, = (. Hencex,, is a constant function at, only dependmg upon the sizeof the
alphabet. The Boltzmann sampler algorithm to uniformlyeyate a partition of a set of size: into n
parts is then:

BOLTZMANN SAMPLER(n, k) NONZEROPOISSOI\LAW(I)

computes the value @j; k=1landp= (e®* —1)"!
do dice = UNIFORM([O 1))

for each of thex nonempty set& of P while (dice >= p)

sizg E) = NONZEROPOISSON_AW ((k) dice = dice — p

end for k=k+1landp=uzx*p/k
until (the sum of the sizes is equalt@) end while
return P returnk

To complete the task, label the structure obtained with d@empermutation of 1, kn ].

Using floating point approximation, the average cost of theegation of a partition i®(n). Testing
if the sum of the sizes of the parts of such a partition is etpah is also linear. Therefore to compute
the average complexity of this algorithm, we must estimiageprobability that a partition has the correct
size.
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Since the generating function of these partition®,i$z) and the Boltzmann parameter is equatio
the probability for a random partition to be of sikze is [6]:

["]Pu(2) _ {1}
PN =t = TR0 T i -1
Using Lemma 1 and Stirling formula, we obtain the followirglimate:P;, (N = nk) ~ \71:71 Thus,
the average number of rejects (¥/n) and the average complexity of the random generation of an

elementF of F,, based on the Boltzmann sampler, using floating point appration, isO(n?/?).

Open problem To conclude, the estimation of the proportion of minimalcaméta inA,, remains an
important open problem. We conjecture that a constant ptigpoof accessible complete and deter-
ministic automata of4,, is minimal. If it is true, the efficiency of a reject algorithtm generate minimal
automata from accessible complete and deterministic onafvbe proved and the asymptotic estimation
©(n2™ {k} ) would also hold for minimal automata.

Acknowledgement We would like to thank an anonymous referee for its commérasgreatly helped
us improving the presentation of our results.
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