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Abstract— Lossless compression is studied for pairs of indepen-
dent, integer-valued symbols emitted by a source with a geometric
probability distribution of parameter q, 0 < q < 1. Optimal
prefix codes are described for q = 1/2k (k > 1) and q = 1/ k

√
2

(k > 0). These codes retain some of the low-complexity and
low-latency advantage of symbol by symbol coding of geometric
distributions, which is widely used in practice, while improving
on the inherent redundancy of the approach. From a combi-
natorial standpoint, the codes described differ from previously
characterized cases related to the geometric distribution in that
their corresponding trees are of unbounded width, and in that
an infinite set of distinct optimal codes is required to cover any
interval (0, ε), ε > 0, of values of q.

I. INTRODUCTION

In 1966, Golomb [1] described optimal prefix codes for
some geometric distributions over the nonnegative integers.
In [2], these Golomb codes were shown to be optimal for all
geometric distributions, namely, distributions of the form

Prob(i) = pi = (1− q)qi , i ≥ 0,

for some real-valued parameter q, 0 < q < 1. Geometric distri-
butions arise in practice when encoding run lengths (Golomb’s
original motivation in [1]), and in image compression when
encoding prediction residuals, which are well-modeled by two-
sided geometric distributions. Optimal prefix codes for the
latter were characterized in [3], based on some (sometimes
non-intuitive) variants of Golomb codes. Codes based on the
Golomb construction have the practical advantage of allowing
the encoding of a symbol i using a simple formula based
on the integer value of i, without the need for code tables
or other non-trivial memory requirements. This has led to
their adoption in many practical applications (cf. [4],[5]). For
computational reasons, these applications often use a sub-
family of the class of optimal codes as a good approximation
for the whole class over the full range of q (e.g., ”power-of-
two” Golomb codes in [4] and [5]; see also [6]).

When dealing with sequences of independent, identically
distributed random variables, however, symbol-by-symbol en-
codings can incur significant redundancy relative to the en-
tropy of the distribution. One way to mitigate this problem,
while keeping the simplicity and low latency of the encoding
and decoding operations, is to consider short blocks of d>1
symbols, and use a prefix code for the blocks. In this paper,
we study optimal prefix codes for pairs (blocks of length d=2)

of independent, identically and geometrically distributed ran-
dom variables, namely, distributions on pairs of nonnegative
integers (i, j) with

Prob
(
(i, j)

)
= pi pj = (1− q)2qi+j i, j ≥ 0. (1)

We refer to this distribution as a two-dimensional geometric
distribution (TDGD), defined on the alphabet of integer pairs
A = { (i, j) | i, j ≥ 0 }.

Aside from the mentioned practical motivation, the problem
is of intrinsic combinatorial interest. It was proven in [7] (see
also [8]) that, if the entropy −

∑
i≥0 pi log pi of a distribution

over the nonnegative integers is finite, optimal (prefix) codes
exist and can be obtained, in the limit, from Huffman codes
for truncated versions of the alphabet. However, the proof does
not give a general way for effectively constructing optimal
codes, and in fact, there are few families of distributions
over countable alphabets for which an effective construction is
known [9][10]. An algorithmic approach to building optimal
codes is presented in [10], which covers geometric distrib-
utions and various generalizations. The approach, though, is
not applicable to TDGDs, as explicitly noted in [10]. Some
fundamental characteristic properties of the families of codes
for the one-dimensional case turn out not to hold in the
two-dimensional case. Specifically, the codes described in [1]
and [3] satisfy the following: (a) for a fixed value of q, the
width of the code tree (number of codewords of any one
length) is bounded, and (b) there is a value q=q0>0 such that
all distributions (from the respective family) with q < q0 admit
the same optimal prefix code. As we shall see in the sequel,
and was also predicted with a different terminology in [10],
optimal codes for TDGDs will not satisfy these properties.

The remainder of this extended summary is structured
as follows. In Section II we present some background and
notation, and we describe the technique of Gallager and Van
Voorhis [2] for constructing optimal prefix codes for infinite
alphabets, which we also apply in our constructions. As noted
already in [2], most of the work and ingenuity in applying the
technique goes into discovering appropriate “guesses” of the
basic components on which the construction iterates, and in
describing the structure of the resulting codes. That is indeed
where most of our effort will be spent in the subsequent
sections. In Section III, we present a construction of optimal
codes for TDGDs with q = 2−k for any integer k > 1.



We compute the Kraft functions (called Kraft polynomials
in [11]) of the optimal codes, and use them to compute the
average code lengths, which we apply to estimate the per-
symbol redundancy of the codes relative to the entropy rate
of the geometric distribution. In Section IV, we describe the
construction of optimal codes for distributions with q = 1/ k

√
2

for any positive integer k. We also summarize a study of the
redundancy rates for both families of characterized codes over
the full interval 0 < q < 1. The study suggests that these codes
provide a good approximation to the full class of optimal codes
for TDGDs (the full characterization of which remains an open
problem) over the entire range of q.

For both families of parameters studied in sections III
and IV, the code trees obtained have only a finite number
of non-isomorphic whole subtrees (i.e., subtrees consisting of
a node and all of its descendants). However, contrary to the
previously known results, the tree widths are not bounded, and,
in the case q = 2−k, there is an infinite sequence of distinct
codes as k → ∞, i.e., q → 0. We show, however, that there
exists a limiting code as k →∞, in the sense that there exists
an unbounded function L(k) such that all optimal code trees
for k′ ≥ k are identical in their first L(k) levels.

Finally, in Section V we present some open problems and
directions for further research. Given the space constraints of
this extended summary, most results are presented without
proof, and some descriptions are very brief. Complete proofs
and descriptions, as well as additional results, will be given
in the full version [12].

II. PRELIMINARIES

We are interested in encoding the alphabet A of integer pairs
(i, j), i, j ≥ 0, using a binary prefix code C. As usual, we
associate C with a rooted (infinite) binary tree, whose leaves
correspond, bijectively, to symbols in A, and where each
branch is labeled with a binary digit. The binary codeword
assigned to a symbol is “read off” the labels of the branches
on the path from the root of the tree to the corresponding leaf.
We shall not distinguish between the code C and its associated
binary tree, or between alphabet symbols and leaves of the
tree. Also, two trees will be considered equivalent if for each
` ≥ 0, both trees have the same number of leaves at depth `.

We call s(i, j) = i + j the signature of (i, j) ∈ A. For a
given signature f = s(i, j), there are f+1 pairs with signature
f , all with the same probability, w(f)=(1− q)2qf , under the
distribution (1) on A. Hence, given a prefix code C, symbols of
the same signature may be freely permuted without affecting
the average code length of C. Thus, for simplicity, we can
also regard the correspondence between leaves and symbols
as one between leaves and elements of the multiset

A = {0, 1, 1, 2, 2, 2, . . . , f, . . . , f︸ ︷︷ ︸
f+1 times

, . . . }. (2)

In constructing the tree, we do not distinguish between dif-
ferent occurrences of a signature f ; for actual encoding,
the f+1 leaves labeled with f are mapped to the symbols
(0, f), (1, f−1), . . . , (f, 0) in some fixed order.

Consider a prefix code C. Let T be a subtree of C, and let
s(x) denote the signature associated with a leaf x of T . We
define the weight, w(T ), and cost, c(T ), of T , respectively, as

w(T ) =
∑

x leaf of T

w(s(x)), and c(T ) =
∑

x leaf of T

depth(x)w(s(x)),

with w(f) = (1 − q)2qf for f ≥ 0. When T = C, we have
w(T ) = 1, and c(T ) is the average code length of C. Our
goal is to find a prefix code C that minimizes this cost.

In deriving the structure and optimality of our prefix codes,
we shall rely on the method outlined below, due to Gallager
and Van Voorhis [2], and adapted here to our terminology.

• Define a countable sequence of finite reduced alphabets
(Sf )∞f=−1, where Sf is a multiset containing the signa-
tures 0, 1, . . . , f (with multiplicities as in (2)), and where
the signatures strictly greater than f are partitioned into a
finite number of nonempty classes referred to as virtual
symbols, which are also elements of Sf . We naturally
associate with each virtual symbol a probability equal to
the sum of the probabilities of the signatures it contains.

• Verify that the sequence of reduced alphabets (Sf )∞f=−1

is compatible with the bottom-up Huffman procedure.
This means that after a certain number of merging steps
of the Huffman algorithm on the reduced alphabet Sf ,
one gets Sf ′ with f ′ < f .1

• Apply the Huffman algorithm to S−1.
While the sequence of reduced alphabets Sf ′ can be seen as

evolving “bottom-up,” the infinite prefix code C constructed
results from a “top-down” sequence of corresponding finite
prefix codes Cf ′ . One shows that the sequence of codes
(Cf ′)f ′≥1 converges to the infinite code C, in the sense
that for every i ≥ 1, with codewords of Cf ′ consistently
sorted, the ith codeword of Cf ′ is eventually constant when f ′

grows, and equal to the ith codeword of C. A corresponding
convergence argument on the sequence of average code lengths
then establishes the optimality of C.

This method was successfully applied to characterize infi-
nite optimal prefix codes in [2] and [3]. The difficult part is
to guess the structure of the sequence of reduced alphabets.
Quasi-uniform sources. We say that a finite source with
probabilities σ0 ≥ σ1 ≥ · · · ≥ σN−1 is quasi-uniform if either
N≤2 or σ0≤σN−2+σN−1. An optimal prefix code for a quasi-
uniform source of N probabilities consists of 2dlog Ne−N
codewords of length blog Nc, and 2N−2dlog Ne codewords
of length dlog Ne, the shorter codewords corresponding to the
more probable symbols [2]. We refer to such a code as a
quasi-uniform code (or tree), denote it by QN , and denote by
Q(i, N) the codeword it assigns to the symbol corresponding
to probability σi, 0≤i<N .
Tree concatenation. We define the concatenation of two
coding trees T1 and T2, denoted T1•T2, as the tree constructed
by taking T1, and making each of its leaves the root of a copy

1A way to test Huffman compatibility is to use the sibling property [13]
that characterizes Huffman trees as the trees whose nodes can be listed in
non-increasing order of probability in such way that two sibling nodes are
adjacent in the list.



of T2. For example, the Golomb code of order m ≥ 1 can be
seen as the concatenation Gm=Qm •G1, where G1 is a unary
tree consisting of a root whose children are a leaf (say, on the
branch labeled ’1’), and, recursively, a copy of G1.

III. THE FAMILY OF PARAMETERS q = 2−k

We introduce some notations, based on grammatical produc-
tion rules together with scalar multiplication, for describing the
recursive construction of trees with weights associated to their
leaves. After assuming that the integer k defining q = 2−k is
fixed, we slightly abuse notation and regard q as a symbolic
indeterminate in the production rules. A leaf associated with
weight qf will be denoted qf (in turn, this weight will be
associated with the signature f , the normalizing coefficient
(1−q)2 being immaterial to the construction). Given a tree T
and a scalar quantity g, gT denotes the tree resulting from
multiplying the weights of all the leaves of T by g.

We denote by Cm the complete tree of depth m, with 2m

leaves labeled q0 (or, equivalently, 1 ). Its construction can
be described by the following production rules:

C0 → 1 , Cm →
Cm−1 Cm−1

.

The infinite tree (and associated multiset of leaf weights) Lk
q

is defined by the following rules, where k is the fixed integer
referred to above:

L0
q → qLk

q , Lm
q → Lm−1

q Cm−1 for 0 < m ≤ k.

In words, Lk
q consists of a complete tree Ck with 2k−1 leaves

of weight q0, and with the remaining leaf serving as the root of
qLk

q . Thus, Lk
q has 2k−1 leaves of weight qf at depth (f+1)k

for all f≥0, and no other leaves.
The main result of this section is presented in the following

proposition, where we describe the layers of the optimal prefix
tree for a TDGD with parameter q = 2−k, k > 1 (the case
k=1 is covered in Section IV). The proposition can be seen as
describing, at the same time, the optimal tree, and the sequence
of reduced alphabets used in the proof of optimality following
the method of [2].

Proposition 1: Let q=2−k with k>1. Then, signatures
f∈A are distributed in an optimal prefix tree for the TDGD
with parameter q according to the following cases:

1) Assume 0 ≤ f < 2k−1, and write f = 2i + j − 1 with
0 ≤ j ≤ 2i − 1. Then all signatures f are distributed on
two levels in the following way:

qf ·
"

1 · · · 1| {z }
2i − j − 1 times

Rf 1 1 1| {z }
j times

#

The multiset qfRf represents a tree containing all the
signatures strictly greater than f .

2) Let f ≥ 2k−1, and write f = 2k−1 − 1 + `(2k − 1) + j.
Then the signatures f are distributed in the optimal
coding tree according to the five cases below. The
trees (and associated multisets) qfRj represent a virtual
symbol containing all the signatures not contained in

the other virtual symbols of types Ck−1 and Lk−1
q at

the same level. Also, for succinctness, the symbol (♣)

stands for
"

qLk
q

1 · · · 1| {z }
2k − 1 times

#
.

(i) 0 ≤ j < 2k−1−2:

qf ·
"
(♣)︸︷︷︸
` times

1 · · · 1| {z }
2k−1 − j − 1times

Rj 1 1 1| {z }
j times

#

(ii) j = 2k−1 − 2:

qf ·
"
(♣)︸︷︷︸
` times

qCk−1 Rj 1 1| {z }
2k−1−1 times

#

(iii) 2k−1−2 < j < 2k−3:

qf ·
"
(♣)︸︷︷︸
` times

1 · · · 1| {z }
3·2k−1−2−j times

qCk−1 Rj 1 1| {z }
j−2k−1+1 times

#

(iv)] j = 2k−3:

qf ·
"
(♣)︸︷︷︸
` times

1 · · · 1| {z }
2k−1+1 times

qLk−1
q Rj 1 1| {z }

2k−1−2 times

#

(v) j = 2k−2:

qf ·
"
(♣)︸︷︷︸
` times

qLk
q

1 · · · 1| {z }
2k−1−1 times

Rj 1 1 1| {z }
2k−1−1 times

#

�

The proof (which is omitted here) computes the weights
of the signatures and virtual symbols in each case, and
verifies that the sibling property holds. It also verifies that
applying the Huffman procedure to the reduced alphabet
corresponding to each case, one obtains a configuration cor-
responding to the previous case, in cyclic fashion, namely,
(v)→(iv)→(iii)→(ii)→(i)→(v) (bottom-up). The value of `
decreases by one with each cycle, until Case 2(i) is reached
with `=0 and j = 0, in which case the Huffman merging leads
to Case 1 of the proposition.

The construction of the optimal prefix tree derived from
Proposition 1 can be outlined as follows (top-down):

1) The first level of the tree (descending directly from
the root) is composed of two nodes labeled by 1 and
R0 respectively (Case 1 with f=0). As long as f <
2k−1, qf−1Rf−1 is replaced by the subtree associated
with the quasi-uniform code for the f+1 symbols of
signature f and the virtual symbol qfRf containing all
the signatures strictly greater than f .

2) The rest of the tree is constructed in cycles, one for each
value of ` ≥ 0, generating all the leaves with signatures
f , 2k−1−1+`(2k−1) ≤ f < 2k−1−1+(` + 1)(2k−1).
Within each cycle, the construction follows the top-
down sequence of sub-cases (i)→(ii)→(iii)→(iv)→(v)
of Case 2 of Proposition 1.

Example. Figure 1 describes the structure of the infinite
optimal coding tree for q = 1/8 (k=3). The loop-back edges



Fig. 1. Optimal prefix code tree for a TDGD with q=1/8, with leaf signatures
noted for f ≤ 9.

in the figure indicate that a copy of the tree rooted at the target
node is inserted as a child of the originating node (with labels
appropriately shifted). The cycling structure of Proposition 1
((i)→(ii)→(iii)→(iv)→(v)→(i) when traversing top-down) is
represented by the outer loop-back edge—each traversal of
the edge represents an increase of the parameter ` of the
proposition by one. The inner loop-back edge helps describe
in a concise manner the infinite tree L3

q , which is rooted at the
node originating the edge. Signatures 0≤f ≤ 3 are generated
by Case 1 of Proposition 1. Signatures 4≤f≤9 correspond to
the subcases of Case 2 indicated in the figure, with `=0, and
the value of j also indicated. Signature f=10 starts a new
cycle, with ` = 1; four leaves with this signature are shown
at the deepest level in the figure, three are picked up after
traversing the inner loop-back edge, and the remaining four
after traversing the outer loop-back edge.

Notice that it follows from Proposition 1 that the width of
the optimal tree for a given value of q = 2−k is unbounded
(for example, each of the cases in the proposition has parts
that grow monotonically with `, which is unbounded). Also,
different values of k lead to different trees Lk

q , so it also
follows from the proposition that there is an infinite sequence
of distinct optimal trees as k → ∞. The opposite properties
hold for the previously characterized cases related to the
geometric distribution (cf. [10]).

The infinite sequence of optimal codes obtained when
k→∞ (q→0) stabilizes in the limit, as stated in the following
proposition, which follows from Proposition 1 (the fact is also
mentioned in [14, Ch. 5]).

Proposition 2: When k→∞, the sequence of optimal
coding trees for q=2−k converges to a limit tree that can be
constructed, up to equivalence, as follows: start with Qn for
n=2, recursively replace the first leaf of the deepest level of
the current tree by Qn+1, and increase n. �

Figure 2 shows the first fourteen levels of the limit tree of

Fig. 2. Top of the limit tree for q = 2−k when k →∞.

Proposition 2. Notice that the first eleven levels of the limit tree
coincide with those of the tree of Figure 1, up to reordering
of nodes at each level. The limit code admits a very simple
encoding procedure: given a pair (m,n), with signature f =
m+n, we write f = 2i + j − 1, with 0 ≤ j < 2i and i ≥ 0.
We encode (m,n) with a binary codeword xy, where x =
0(i−1)(f+1)+2j+1 identifies the path to the root of the quasi-
uniform tree that contains all the leaves of signature f , and
y = Q(m+1, f +2). A matching decoding procedure is easily
derived. Encoding and decoding procedures for all the codes
in this section are presented in [12][14].
Kraft functions. Let Σ be a countable alphabet, (µi)i∈Σ a
distribution on Σ, and C a prefix code on Σ with codeword
lengths (`i)i∈Σ. The Kraft function [11] of C is defined by
the the formal series

P (z) =
∑
i∈Σ

µiz
`i .

The average code length of C is then c(C) = z ∂
∂z P (z)

∣∣
z=1

.
Explicit expressions for the Kraft functions of the optimal
codes of Proposition 1 can be derived from the proposition
using standard generating function tools, and are presented
fully in [12]. As an example, the Kraft function of the optimal
code for q = 1/4 is given by

P 1
4
(z) =

9

16

„
z+

qz

1−q3z6

„
2z2+qz2

„
3z+qz2

„
z+3z2 +

3qz3

1−qz2

««««

Kraft functions were applied to obtain the average code
lengths of the optimal codes of Proposition 1. These lengths
were used, in turn, in the redundancy computations summa-
rized in Section IV.

IV. THE FAMILY OF PARAMETERS q = 1/ k
√

2

Fig. 3. The tree q−2T 2
q .

The following grammar defines the trees T d
u for d = 0, 1, 2,

and an indeterminate u.

T 0
q → 1 , T d

q → qT d
q qT d−1

q
(d = 1, 2). (3)



The tree qrT 1
qk is easily recognized as G1 (unary tree), with

leaves appropriately weighted. Moreover, the tree underlying
qrT 2

qk is recognized as G1 • G1 (see Figure 3). This tree is
optimal for the (dyadic) TDGD with q = 1/2, since G1 has
redundancy zero for the corresponding geometric distribution,
and, thus, the same is true for G1 •G1 on pairs.

It follows from the foregoing discussion, and
straightforward symbolic manipulations, that w(qrT 2

qk) =

w( qr )
(

qk

1−qk

)2

. It is important to note that if q = 1/ k
√

2

then, w(qrT 2
qk) = w(qrT 1

qk) = w(qrT 0
qk) = w( qr ). This

observation is the basis of the construction and proof of
Proposition 3 below.

Proposition 3: Let q=1/ k
√

2 with k≥1. Then, an optimal
prefix tree Dk for a TDGD with parameter q is obtained by
applying the Huffman algorithm to the finite source

ST = {q−2kT 2
qk︸ ︷︷ ︸

1 time

, q−2k+1T 2
qk︸ ︷︷ ︸

2 times

, q−2k+2T 2
qk︸ ︷︷ ︸

3 times

. . . , q−k−1T 2
qk︸ ︷︷ ︸

k times

}

∪ { q−kT 2
qk︸ ︷︷ ︸

k − 1 times

, . . . , q−3T 2
qk︸ ︷︷ ︸

2 times

, q−2T 2
qk︸ ︷︷ ︸

1 times

}.
�

It is shown in [12] that a prescribed sequence of pairings of
symbols q−iT 2

qk with 2 ≤ i ≤ k − 1 leads from the reduced
alphabet ST to a quasi-uniform source. Efficient coding and
decoding algorithms for the codes Dk of Proposition 3 is also
presented in [12]. Notice that the concatenation G1•G1 plays,
for the Dk, the role that G1 plays for Golomb codes (with a
more complex structure of k2 leaves, defined by ST , at the
“head” of the tree). This observation is explored further in [12],
and generalizes to optimal codes on blocks of d>2 symbols.
Redundancy. Figure 4 presents plots of redundancy per in-
teger symbol as a function of q, for (A) 0 < q < 0.5, and
(B) 0.5 ≤ q < 1, relative to the entropy rate of the geometric
distribution of parameter q. Let Ck denote the optimal prefix
code for a TDGD with q = 2−k, and Dk the optimal code
for q = 1/ k

√
2, k ≥ 1. Plots are shown for the Golomb code

on single integer symbols, the best code Ck or Dk for each q
(with C1 = D1), and the optimal code for each q. Code lengths
for the latter were approximated empirically. It is observed in
the figure that the families {Ck } and {Dk} provide good
approximations to the optimal codes for all q. However, it is
also observed that optimal codes for some values of q will be
strictly outside of the families characterized in this paper.

V. CONCLUSION

Optimal prefix codes were presented for two sub-families
of TDGDs, namely, those with parameters q = 2−k with
k>1, or q = 1/ k

√
2 with k > 0. The two families provide

good approximations to, but do not contain, all optimal prefix
codes for TDGDs with parameters in the full interval 0<q<1.
Characterizing optimal prefix codes for TDGDs over the full
interval is the subject of ongoing research. Future work will
include also further generalizations to higher dimensions,
i.e., blocks of d > 2 integer symbols. Of interest also is
the derivation of analogous results for blocks of two-sided
geometric distributions [3].

Fig. 4. Redundancy (bits/integer symbol) for the optimal code (empirical),
the Golomb code, and the best code Ck or Dk for (A) 0<q< 1

2
, (B) 1

2
≤q<1.
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