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Abstract. A non-empty word w of {a,b}* is a Lyndon word if and
only if it is strictly smaller for the lexicographical order than any of its
proper suffixes. Such a word w is either a letter or admits a standard
factorization uv where v is its smallest proper suffix. For any Lyndon
word v, we show that the set of Lyndon words having v as right fac-
tor of the standard factorization is rational and compute explicitly the
associated generating function. Next we establish that, for the uniform
distribution over the Lyndon words of length n, the average length of
the right factor v of the standard factorization is asymptotically 3n/4.
Finally we present algorithms on Lyndon words derived from our work
together with experimental results.

1 Introduction

Given a totally ordered alphabet A, a Lyndon word is a word that is strictly
smaller, for the lexicographical order, than any of its conjugates (i.e., all words
obtained by a circular permutation on the letters). Lyndon words were intro-
duced by Lyndon [Lyn54] under the name of “standard lexicographic sequences”
in order to give a base for the free Lie algebra over A; the standard factorization
plays a central role in this framework (see [Lot83], [Reu93], [RSar]).

One of the basic properties of the set of Lyndon words is that every word
is uniquely factorizable as a non increasing product of Lyndon words. As there
exists a bijection between Lyndon words over an alphabet of cardinality & and
irreducible polynomials over Fj, [Gol69], lot of results are known about this
factorization: the average number of factors, the average length of the longest
factor [FGPO01] and of the shortest [PRO1].

Several algorithms deal with Lyndon words. Duval gives in [Duv83] an al-
gorithm that computes, in linear time, the factorization of a word into Lyndon
words; he also presents in [Duv88] an algorithm for generating all Lyndon word
up to a given length in lexicographical order. This algorithm runs in a constant
average time (see [BP94]).



In Section 2, we define more formally Lyndon words and give some enumer-
ative properties of these sets of words. Then we introduce the standard factor-
ization of a Lyndon word w which is the unique couple of Lyndon words u, v
such that w = uv and v is of maximal length.

In Section 3, we study the set of Lyndon words of {a, b}* having a given right
factor in their standard factorization and prove that it is a rational language.
We also compute its associated generating function. But as the set of Lyndon
words is not context-free [BB97], we are not able to directly derive asymptotic
properties from these generating functions. Consequently in Section 4 we use
probabilistic techniques and results from analytic combinatorics (see [FS02]) in
order to compute the average length of the factors of the standard factorization
of Lyndon words.

Section 5 is devoted to algorithms and experimental results. We give an
algorithm to generate randomly for uniform distribution a Lyndon word of a
given length and another one related to the standard factorization of a Lyndon
word which is based on the proof of Theorem 2 of Section 3. To the best of our
knowledge these algorithms, although simple and not necessarily new, are not
found elsewhere. Finally experiments are given which confirm our results and
give hints of further studies.

The results contained in this paper constitute a first step in the study of the
average behavior of the binary Lyndon trees obtained from Lyndon words by a
recursive application of the standard factorization.

2 Preliminary

We denote A* the free monoid over the alphabet A = {a,b} obtained by all
finite concatenations of elements of A. The length |w| of a word w is the number
of the letters w is product of, |w|, is the number of occurrences of the letter a
in w. We consider the lexicographical order < over all non-empty words of A*
defined by the extension of the order a < b over A.

We record two properties of this order

(i) For any word w of A*, u < v if and only if wu < wv.
(ii) Let xz,y € A* be two words such that z < y. If z is not a prefix of y then for
every z',y' € A* we have zz’ < yy'.

By definition, a Lyndon word is a primitive word (i.e, it is not a power of
another word) that is minimal, for the lexicographical order, in its conjugate
class (i.e, the set of all words obtained by a circular permutation). The set of
Lyndon words of length n is denoted by £, and £ = U,L,.

L = {a,b, ab, aab, abb, aaab, aabb, abbb,
aaaab, aaabb, aabab, aabbb, ababb, abbbb, . ..}

Equivalently, w € L if and only if

Yu,v € AT, w=uv=w < vu.



A non-empty word is a Lyndon word if and only if it is strictly smaller than any
of its proper suffixes.

Proposition 1 A word w € A" is a Lyndon word if and only if either w € A
or w = uv with u,v € L, u < v.

Theorem 1 (Lyndon) Any word w € A" can be written uniquely as a non-
increasing product of Lyndon words:

w:lll2...ln, liEE, l12l22>ln

Moreover, 1, is the smallest suffix of w.

The number Card(L,) of Lyndon words of length n over A (see [Lot83]) is

Card(L,) = % > u(d) Card(A4)"?,
|

where 1 is the Moebius function defined on N\ {0} by u(1) = 1, u(n) = (=1)!
if n is the product of ¢ distinct primes and p(n) = 0 otherwise.
When Card(A4) = 2, we obtain the following estimate

n

Card(L,) = % (1 +0 (27”/2)) .

Definition 1 (Standard factorization). For w € £\ A a Lyndon word not
reduced to a letter, the pair (u,v), u,v € L such that w = uwv and v of mazimal
length is called the standard factorization. The words u and v are called the left
factor and right factor of the standard factorization.

Equivalently, the right factor v of the standard factorization of a Lyndon
word w which is not reduced to a letter can be defined as the smallest proper
suffix of w.

Ezxamples.

aaabaab = aaab - aab, aaababb = a - aababb, aabaabb = aab - aabb.

3 Counting Lyndon words with a given right factor

In this section, we prove that the set of Lyndon words with a given right factor
in their standard factorization is a rational language and compute its generating
function. The techniques used in the following basically come from combinatorics
on words.

Let w = vab’ be a word containing one a and ending with a sequence of b.
The word R(w) = vb is the reduced word of w.

For any Lyndon word v, we define the set

X, = {vo =v,v1 = R(v),v2 = R*(v),...,v; = R*(v)}.

where k = |v|, is the number of occurrences of a in v. Note that Card (X,) =
|[v]o + 1 and vy, = 0.
Ezamples.



1. v = aabab: Xyapap = {aabab, aabd, ab, b}.
2. v=a: X, = {a,b}.
3. v=0b Xb = {b}

By construction, v is the smallest element of X, for the lexicographical order.
Lemma 1 Every word x € &), is a Lyndon word.

Proof. If v = a, then X, = {a,b}, else any element of X, ends by a b. In this
case, if x ¢ L, there exists a decomposition z = x;z2b such that zobx; <
x122b and x1 # €. Thus zoa is not a left factor of x122b and z2a < x122a. By
construction of X,, as x # v, there exists a word w such that v = z1zsaw. We
get that zoawzy < x1x20w. This is impossible since v € L.

A code C over A* is a set of non-empty words such any word w of A* can
be written in at most one way as a product of elements of C'. A set of words is
prefiz if none of its elements is the prefix of another one. Such a set is a code,
called a prefiz code. A code C is said to be circular if any word of A* written
along a circle admits at most one decomposition as product of words of C'. These
codes can be characterized as the bases of very pure monoids, i.e., if w™ € C*
then w € C*. For a general reference about codes, see [BP85].

Proposition 2 The set X, is a prefiz circular code.

Proof. If z,y € X, with |z| < |y|, then, by construction of X,, x > y. So z is
not a left factor of y and X, is a prefix code.

Moreover, for every n > 1, if w is a word such that w™ € X then w € A};.
Indeed if w ¢ X, then either w is a proper prefix of a word of X, or w has a
prefix in AF. If w is a proper prefix of a word of &, it is a prefix of v and it
is strictly smaller than any word of X,. As w™ € X}, w or one of its prefix is a
suffix of a word of &),. But all elements of &), are Lyndon words greater than v,
so their suffixes are strictly greater than v and w can not be a prefix of a word
of X,.

Now if w = wywy where w; is the longest prefix of w in X, then ws is a
non-empty prefix of a word X, so wy is strictly smaller than any word of X,.
As w™ € X}, wy or one of its prefix is a suffix of a word of X,,, but all elements
of &, are Lyndon words greater than v, so their suffixes are strictly greater
than v and w can not have a prefix in .

As a conclusion, since X, is a code and for every n > 1, if w™ € X} then w" €
Xy, &, is circular code.

Proposition 3 Letl € L be a Lyndon word, | > v if and only if | € X,.

Proof. If | > v, let [ be the longest prefix of [ which belongs to X}, and Iy such
that [ = lyls. If Iy # €, we have the inequality l2ly > | > v, thus l5ly > v. The
word v is not a prefix of 5 since I» has no prefix in X, hence we have l5 = lébl;
and v = lyav"”. Then, by construction of X, l4b € X, which is impossible.
Thus I, = e and [ € X,F.

Conversely, if [ € X,F, as a product of words greater than v, [ > v.



Theorem 2 Let v € L and w € A*. Then awv is a Lyndon word with aw - v
as standard factorization if and only if w € X} \ (a1 X,)X;. Hence the set F,
of Lyndon words having v as right standard factor is a rational language.

Proof. Assume that awwv is a Lyndon word and its standard factorization is aw -
v. By Theorem 1, wv can be written uniquely as

wo=1Ills...l,, LEL, 1>1l>-->1,.

As v is the smallest (for the lexicographical order) suffix of awwv, and consequently
of wu, we get [,, = v;ifw =¢,thenn =1,elsen > 2andfor1 <i <n—1,1; > v.
Thus, w € X} .

Moreover if w € (a~1X,)X*, then aw € X5 N L. Hence aw > v which is
contradictory with the definition of the standard factorization. So w € A\
(a=tX,) X

Conversely, if w € X\ (a7 X)X}, then

wW=1T1T2...Tn, x; €AX, and aw¢X;".

. From Proposition 1, the product [I' of two Lyndon words such that [ < I’ is a
Lyndon word. Replacing as much as possible z;x;11 by their product when z; <
Zi+1, w can be rewritten as

W=Y1y2 . Yms Y €EXSNL, Y1 S ys > > Y.

As aw ¢ Xf, for any integer 1 <i < m, ayy...y; ¢ X,

Now we prove by induction that aw € L. As y; € £ and a < y1, ay, € L.
Suppose that ay; ...y; € £. Then, as y;11 € LNX,",and ay; ...y; € L\ X}, from
Proposition 3, we get ay; ...y; < v < y;+1. Hence ay; ...y;+1 € L. So, aw € L.

Asaw € L\ X}, aw < v and awv € L. Setting v = Y41, we have

WO =Y1Y2 . YmYm+1, Yi € Xy NL, Y1 >Y2 > o> Yl

Moreover any proper suffix s of awv is a suffix of wv and can be written
as 8§ = YjYit1 ---Ym+1 where y is a suffix of y;. Asy; € L, ¥y} > y;. As y; €
X", y; > v and thus s > v. Thus, v is the smallest suffix of awv and aw - v is
the standard factorization of the Lyndon word awwv.

Finally as the set of rational languages is closed by complementation, con-
catenation, Kleene star operation and left quotient, for any Lyndon word v, the
set F, of Lyndon words having v right standard factor is a rational language.

Remark. The proof of Theorem 2 leads to a linear algorithm that computes the
right factor of a Lyndon word using the fact that the factorization of Theorem 1
can be achieved in linear time and space (by an algorithm of Duval [Duv83], see
Section 5).

We define the generating functions X, (z) of X, and X} (z) of X}

Xy(z) = Z A0 and  X3(z) = Z 2wl

WEX, wWEX]



As the set X, is a code, the elements of X* are sequences of elements of X, (see
[FS02]):

1

Denote by F,(2) = >, c 7 21# the generating function of the set
Fy ={awv € L]aw - v is the standard factorization}.

Theorem 3 Let v be a Lyndon word. The generating function of the set F, of
Lyndon words having a right standard factor v can be written

Fy(z) = 2"l (1 + %) .

Proof. First of all, note that any Lyndon word of {a,b}* which is not a letter
ends with the letter b, so F,(z) = 0. And as X, = {a,b}, the formula given
for F,(z) holds for v = a.

Assume that v # a. From Theorem 2, F,(z) can be written as

Fy(z) = 2l Z P

wEX\a—1 XS

In order to transform this combinatorial description involving X* \ a 1 X,F
into an enumerative formula of the generating function F,(z), we prove first
that a7'X;F C X and, next that the set a=' X\ can be described as a disjoint
union of rational sets.

If x € X, \ {b}, then z is greater than v and as = is a Lyndon word, its
proper suffixes are strictly greater than v; consequently, writing a~lz as a non-
increasing sequence of Lyndon word Iy,...,l,,, we get, since [, > v, that for
all ¢, l; is greater than v. Consequently from Proposition 3, for all ¢, [; € A, and
as a product of elements of X\, a='x € X,f. Therefore a=' (X, \ {b}) X C ;.

Moreover if z1,zs € X, and 21 # x2, as X, is a prefix code,
-1 * —1 *
a e Xy Na e Xy = 0.

Thus a=' (X, \ {b}) X} is the disjoint union of the sets (a~'z;) X when w;
ranges over X, \ {b}. Consequently the generating function of the set F, of

Lyndon words having v as right factor satisfies
1— Xo(2)—2
Fv — Llv[+1 z
@) ="

and finally the announced equality.

Note that the function F,(z) is rational for any Lyndon word ». But the right
standard factor runs over the set of Lyndon words which is not context-free
[BB97]. Therefore in order to study the average length of the factors in the
standard factorization of Lyndon words, we adopt another point of view.



4 Main result

Making use of probabilistic techniques and of results from analytic combinatorics
(see [FS02]), we establish the following result.

Theorem 4 The average length for the uniform distribution over the Lyndon
words of length n of the right factor of the standard factorization is asymptotically

3
(120 (2£2)),
4 n

Remark: The error term comes from successive approximations at different steps
of the proof and, for this reason, it is probably overestimated (see experiments
in Section 5).

First we partition the set £,, of Lyndon words of length n in the two following
subsets: aly,_1 and L], = L, \ alp_1.

Note that al,—1 C L, (that is, if w is a Lyndon word then aw is also a
Lyndon word). Moreover if w € aL,—1, the standard factorization is w =a - v
with v € £,_1. As

oy (1v0 (),

the contribution of the set al,,—1 to the mean value of the length of the right

factor is
Card(al,—1) n 1

The remaining part of this paper is devoted to the standard factorization of
the words of £!, which requires a careful analysis.

Card (Lp_1) =

Proposition 4 The contribution of the set L) to the mean value of the length

of right factor is
3
n <1+0 (log ”)) .
4 n

This proposition basically asserts that in average for the uniform distribution
over L, the length of the right factor is asymptotically n/2.

The idea is to build a transformation ¢, which is a bijection on a set D,, C L],
such that the sum of the lengths of standard right factors of w and p(w) is
about |w| the length of w. Indeed with such a relation we can compute the con-
tribution of D,, to the expectation of parameter right. Then if the contribution
of L/ \ D, to the parameter right is negligible we are able to conclude for the
expectation of parameter right.

It remains to exhibit/construct such a bijection ¢ and determine a “good”
set D,,. This is done in the following way: assume that w is a Lyndon word in £,,\
alyp—1. Let us denote by k the length of the first run of a’s of the standard right




factor. We partition the set £, \ al,—_1 in two depending on the factorization.
Indeed the standard factorization of w can only be one of the following

w = a**bu - a¥bo (first kind)

w =afbu - a*bv (second kind).

This means that the left factor of a Lyndon word w can only begin by a*+'b
or a¥b when we know that the right factor begin by a*b (otherwise w cannot
be in L, \ al,_1). Let us fix a integer parameter A € Z+. Then the words u,v
of X} can be uniquely written as v = u'u” and v = v'v" where u' and v’ are
the smallest prefixes of w and v of length greater than A and ending by a b
(there is always such a symbol b if these words are not empty since then 4 and v
end with a b). When |u|, |v| > X we define p(w) for a word w = a*bu - aFbv
(resp. w = a**1bu - afbv) by

o(w) = a*bu'v"a*bv'u" (resp. a**Tbu'v"a*bv'u").

For example, considering w = a*babb - a*bbaab a*bbbb, if we choose A = 2
and sou' = ab,u" = b,v' = baab,v" = a*bbbb then we get p(w) = a*baaba*b bbb -
a*bab € L. Here |w| = |p(w)| = 3k + 13 and the length of the right standard
factor are 2k + 9 and k + 3 respectively.

Some words give hints of what we must be careful about if we want p(w) to
be a Lyndon word.

— If we want the application ¢ to be well defined, the parameter A must be
greater or equal to 1. So the longest runs of a’s have to be separated by
non-empty words. If w = a*b - a*bb, then u = ¢ is the empty word. The
application exchanging u and v gives a words which is no longer a Lyndon
word.

— If w=a*bab - a*babb, then u = ab and it is a prefix of v. For any choice
of A, p(w) is not a Lyndon word. So the longest runs of a’s have to be
separated by words having distinct prefixes to ensure that ¢(w) is a Lyndon
word.

~ If w = a*bbab - a*bbbab, then if we choose A\ = 1, we get p(w) =
a*bbbaba*bbab ¢ L (since u' = v’ and v'v" = bbab > v'u" = bab). Thus
we have to take care, when we apply the transformation that ¢(w) is still
smaller than its proper suffixes (this is ensured if u' # v').

The application ¢ and set D,, are dependent and to suit our needs they are
implicitly determined by the following constraints

1. The function ¢ is an involution on D,,: p(p(w)) = w.
2. The standard factorization of p(w) for w € D,, is

o(w) = af*thu'v" - a*bv'u" (first kind)

p(w) =a*bu'u" - a*buv'v" (second kind).



3. The lengths of right factors of w and ¢(w) satisfy
[right(w)| + |right(o(w))] = |w| (1 + o(|w])).

4. The set D,, “captures” most of the set £/ in an asymptotic way when n
grows to oo, that is
Card(Dy,)

Card(L!,) =1-o(l).

Most of these conditions are related to the properties of the longest runs of a’s.
Hence, in the following parts, we study some combinatorial properties of the
longest runs of a’s in Lyndon words to characterize ¢ and D,, precisely.

5 Algorithms and experimental results

In this section we give an algorithm to generate random Lyndon words of a given
length n and use it to establish some experimental results about the length of
the right factor in the standard factorization.

12000 T T T T T T
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length of the right factor

4000

2000

0 1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
length of the Lyndon word

Fig. 1. Average length of the right factor of random Lyndon words with lengths
from 1,000 to 10,000. Each plot is computed with 1,000 words. The error bars repre-
sents the standard deviation.

Our algorithms use Duval’s algorithm [Duv83], which computes in linear time
the decomposition of a word into decreasing Lyndon words (see Theorem 1). So



we assume that we have a algorithm named Duval (u) which produce the Lyndon
words Iy > Iy > --- > [}, such that

U=l1l2...lk.

Let the function Duval (string u, int k, array pos) be the function which
computes the Lyndon decomposition of u by storing in an array pos of size k
the positions of the factors.

There exists an algorithm SmallestConjugate (u), proposed by Booth [Lot03,?],
that computes the smallest conjugate a random lyndon word of length n in lin-
ear time. We use it to make a reject algorithm which is efficient to generate
randomly a Lyndon word of length n:

RandomLyndonWord (n) // return a random Lyndon word
string u, v;
do
u = RandomWord(n); // wis a random word of A™
v = SmallestConjugate(u); // v is the smallest conjugate of u
until (length(v) == n); // v is primitive
return v;

The algorithm RandomLyndonWord computes uniformly a Lyndon word.
Lemma 2 The average complexity of RandomLyndonWord(n) is linear.

Proof. Each execution of the do ... until loop is done in linear time. The
condition is not satisfied when w is a conjugate of a power vP with p > 1. This
happens with probability O(577). Thus the loop is executed a bounded number
of times in the average.

Lemma 3 Letl = au be a Lyndon word of length greater or equals to 2 starting
with a letter a. Let 11 ...l be the Lyndon factorization of u. The right factor
of 1 in its standard factorization is Iy,.

Proof. By Theorem 1, I; is the smallest suffix of u, thus it is the smallest proper
suffix of /.

The algorithm to compute the right factor of a Lyndon word I such that |I| >
2 is the following;:

RightFactor(string 1[1..n])

array pos;

int k;

pos = Duval(l[2..n], k, pos); // omit the first letter a and apply Duval’s algorithm.
return 1l[pos[k]..n]; // return the last factor

This algorithm is linear in time since Duval’s algorithm is linear.

Figures 1 and 2 present some experimental results obtained with our algo-
rithms.

Open problem The results obtained in this paper are only the first step toward
the average case-analysis of the Lyndon tree. The Lyndon tree T'(w) of a Lyndon
word w is recursively built in the following way
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Fig. 2. Distribution of the length of the right factor. We generated 100,000 random
Lyndon words of length 5, 000.

— if w is a letter, then T'(w) is a external node labeled by the letter.
— otherwise, T'(w) is an internal node having T'(u) and T'(v) as children where
the standard factorization of w is u - w.

This structure encodes a nonassociative operation, either a commutator in the
free group [CFL58], or a Lie bracketing [Lot83]; both constructions leads to bases
of the free Lie algebra.

In order to study the height of the tree obtained from a Lyndon word by suc-
cessive standard factorizations, it would be very interesting to get more precise
informations about the distribution of the right factors of words of £ . Fig. 2
hints a very strong equi-repartition property of the length of the right factor
over this set. This suggests a very particular subdivision process at each node of
the factorization tree which needs further investigations.
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