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LENGTH DISTRIBUTIONS AND REGULAR SEQUENCESFR�ED�ERIQUE BASSINO , MARIE-PIERRE B�EAL , AND DOMINIQUEPERRIN �Abstra
t. This paper presents a survey on length distributions of regular languages.The a

ent is on problems in 
oding theory and the relation with symboli
 dynami
s.Key words. Regular sequen
es, �nite automata, pre�x 
odes, bi�x 
odes, symboli
dynami
s, zeta fun
tions.1. Introdu
tion. The notion of a length distribution for a formallanguage is a simple one: it is the generating series u(z) =Pn�0 unzn of thenumber of words of ea
h length. This series 
arries important information
on
erning a formal language sin
e it measures in a sense the size of thelanguage. It is moreover appropriate in the 
ase of 
oding. In fa
t, alength-preserving en
oding de�nes a one-to-one 
orresponden
e betweenwords. The two sets of words in su
h a 
orresponden
e will have the samelength distribution.It is a 
lassi
al result that the length distribution of a formal language
arries also some information 
on
erning the stru
ture of the language,in the sense that algebrai
 operations on series 
orrespond to operationson formal languages. Thus, as we shall see below in more detail, lengthdistributions whi
h are rational series 
orrespond to regular languages.This 
orresponden
e between operations on series and on sets is thebasis of the method of generating series in enumerative 
ombinatori
s. Nu-merous examples of appli
ations 
an be found in the book of Graham,Knuth and Patas
hnik [23℄.We present here a survey on length distributions of formal languageswith emphasis on the problems related to 
oding and �nite automata. Weinsist on the following general problem: given a family F of sets of words,
hara
terize the length distributions of the elements of F . For example,the length distributions of pre�x 
odes on k-symbols are the sequen
essatisfying Kraft's inequality Xn�0unk�n � 1;i.e. u(1=k) � 1.Our emphasis is on the property of regularity whi
h is the de�nabilityby a �nite automaton. This pla
es our work at the interse
tion between�Institut d'�Ele
tronique et d'Informatique Gaspard-Monge, Universit�e de Marne laVall�ee, 5, Boulevard Des
artes, Champs-sur-Marne, 77454 Marne la Vall�ee Cedex 2,Fran
e. http://www-igm.univ-mlv.fr/ 1



2 F. BASSINO, M.-P. B�EAL, AND D. PERRIN
oding theory and automata theory. For example, one of the main re-sults presented here is a �nite-state version of Kraft-M
Millan's theorem
hara
terizing the length distributions of regular pre�x 
odes.We also make 
onnexions with the �eld of symboli
 dynami
s. This isnatural sin
e the basi
 notion of symboli
 dynami
s, namely the 
onjuga
yof subshifts is based on a one-to-one 
orresponden
e between paths in �nitegraphs, giving rise to an invarian
e of the length distributions.Our paper is organized as follows. The �rst se
tions (Se
tions 2,3)present the basi
 notions on automata and formal series used in the paper.In Se
tion 4, we present the �nite-state version of Kraft-M
Millan theoremmentioned above. The parti
ular 
ase of bi�x 
odes is studied in Se
tion5. The last se
tion (Se
tion 6) presents several inter
onne
ted notions
on
erning subshifts of �nite type and 
ir
ular 
odes.2. Length distributions. We 
onsider the set A� of all words on agiven alphabet A. A subset of A� is often 
alled a formal language. Forsets X;Y � A�, we denoteX + Y = X [ Y;XY = fxy j x 2 X; y 2 Y g;X� = fx1x2 � � �xn j xi 2 X;n � 0gWe say that the pair (X;Y ) is unambiguous if for ea
h z 2 XY there is atmost one pair (x; y) 2 X � Y su
h that z = xy.We say that a set of nonempty words X is a 
ode if for ea
h x 2 X�there is at most one sequen
e (x1; x2; : : : ; xn) with xi 2 X su
h that x =x1x2 � � �xn (one also says that X is uniquely de
ipherable). A parti
ular
ase of a 
ode is a pre�x 
ode. It is a set of words X su
h that no elementof X is a pre�x of another one. It is easy to see that su
h a set is eitherredu
ed to the empty word or does not 
ontain the empty word and is thena 
ode.The length distribution of a set of words X is the sequen
e uX =(un)n�0 with un = Card(X \ An):We denote by uX the formal seriesuX(z) =Xn�0unzn:whi
h is the ordinary generating series of the sequen
e uX .For example, the length distribution of X = A� is u(z) = 11�kz wherek = Card(A).The entropy of a formal language X ish(X) = log(1=�);



LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 3where � is the radius of 
onvergen
e of the series uX(z). It is well de�nedprovided X is in�nite and thus � is �nite. If the alphabet A has k elements,we have h(X) � log k.The following result relates the basi
 operations on sets with operationson series.Proposition 2.1. The following properties hold for any subsets X;Yof A�.(i) If X \ Y = ;, then uX+Y = uX + uY .(ii) If the pair (X;Y ) is unambiguous, then uXY = uXuY .(iii) If X is a 
ode, then uX� = 1=(1� uX).Proof. The �rst two formulae are 
lear. If X is a 
ode, every word inX� has a unique de
omposition as a produ
t of words in X . This impliesthat uXn = (uX)nand thus, uX� = 1 + uX + � � �+ uXn + � � � = 1=(1� uX) :Example 1. The set X = fb; abg is a pre�x 
ode. The series uX� isuX�(z) = 11� z � z2 :Let (Fn)n�0 be the sequen
e of Fibona

i numbers de�ned by F0 = 0, F1 =1, and Fn+2 = Fn+1 + Fn. It follows from the re
urren
e relation thatz1� z � z2 =Xn�0Fnzn:Consequently, uX�(z) = Pn�0 Fn+1zn. It 
an also be proved by a 
ombi-natorial argument that the number of words of length n in X� is Fn+1.There are several variants of the generating series 
onsidered above.One may �rst de�ne pX(z) =Xn�0 unkn zn;where k = Card(A). The 
oeÆ
ients of zn in pX(z) is the probability fora word of length n to be in the set X . The relation between uX and pX issimple sin
e pX(z) = uX(z=k). Another variant of the generating series isthe exponential generating series of the sequen
e (un)n�0 de�ned ase(z) =Xn�0 unn! zn:We will also use the zeta fun
tion of a sequen
e (un)n�1 de�ned as�(z) = expXn�1 unn zn:



4 F. BASSINO, M.-P. B�EAL, AND D. PERRIN3. Regular distributions. In this se
tion, we des
ribe the 
onne
-tion between the notions of a regular language and a rational series. Weprove the 
lassi
al result (Theorem 3.4) 
hara
terizing the regular sequen
esas the length distributions of regular languages. We mention �nally thepossible extension to more general 
lasses of formal languages, su
h as the
ontext-free languages. These results are well-known in the theory of au-tomata and we in
lude them here for the sake of the reader's 
onvenien
e.A word on the terminology used here. We use 
onstantly the termregular where a ri
her terminology is often used. In parti
ular, what we
all here a regular sequen
e is, in Eilenberg's terminology, an N-rationalsequen
e (see [20℄, [33℄ or [16℄). A regular set is also 
alled a rational orre
ognizable set.3.1. Regular sequen
es. A sequen
e u = (un)n�0 of integers is reg-ular if there exists a �nite graph G and two sets of verti
es I; T of G su
hthat for all n � 0, un = Card(P (n; I; T ));where P (n; I; T ) is the set of paths of length n from a vertex of I to a vertexof T . The graph G is one in whi
h multiples edges are allowed (sometimes
alled a multigraph). We say that the graph G re
ognizes the sequen
e u.An equivalent de�nition of regular sequen
es is obtained by 
onsideringnonnegative matri
es.Proposition 3.1. A sequen
e u = (un)n�0 of integers is regular i�there exists a nonnegative matrix M 2 Nk�k and two ve
tors l; 
 2 Nk su
hthat un = lMn
;where l is 
onsidered as a row ve
tor and 
 as a 
olumn ve
tor.Proof. Let u be a regular sequen
e de�ned by a graph G on the setf1; : : : ; kg of verti
es. We 
hoose M to be the adja
en
y matrix of G, i.e.for ea
h pair v; w of verti
es, Mv;w is the number of edges from v to w. Letl be the row ve
tor de�ned by lv = 1 if v 2 I and 0 otherwise. Let 
 bethe 
olumn ve
tor de�ned by 
v = 1 if v 2 T and 0 otherwise. The numberof paths of length n from a vertex of I to a vertex of T is for ea
h n � 1equal to lMn
.Conversely, let G be the graph with adja
en
y matrix M . Sin
e thefamily of regular sequen
es is 
losed under addition, we may suppose thatthe ve
tors l; 
 have 0; 1 
oeÆ
ients. We 
an then 
onsider l; 
 as the 
har-a
teristi
 ve
tors of sets I; T of verti
es. It is then obvious that the graphthus 
onstru
ted re
ognizes u.Example 2. Let G be the graph of Figure 1. The number of paths oflength n from vertex i = 1 to vertex t = 2 is the Fibona

i number Fn.
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��6 2Æ
��?Fig. 1. The Fibona

i graph.A

ordingly, let M be the matrixM = � 1 11 0 � :The same sequen
e is de�ned by the equationFn = � 1 0 �Mn � 01 � :We say that a sequen
e u of integers is rational if u(z) = p(z)=q(z) forsome polynomials p(z); q(z) with integer 
oeÆ
ients. The following resultis 
lassi
al.Theorem 3.1. Any regular sequen
e u of nonnegative integers isrational.Proof. Let (l;M; 
) be su
h that un = lMn
. We haveu(z) =Xn�0 lMn
zn = l(Xn�0(Mz)n)
 = l(I �Mz)�1
:The result follows sin
e the 
oeÆ
ients of (I�Mz)�1 are rational fra
tions.Example 3. The generating fun
tion of the Fibona

i sequen
e isF (z) = z1� z � z2 :The 
onverse of Theorem 3.1 is not true. We have a
tually the follow-ing result, due to Jean Berstel (see [20℄ or [16℄).Theorem 3.2. For any regular sequen
e u, there is an integer p su
hthat the set of poles of minimal modulus is the set of 
omplex numbers �"where � is the radius of 
onvergen
e of u and "p = 1 for some p � 1.In parti
ular, the radius of 
onvergen
e is a pole.The following example (from [20℄ Example 6.1, Chapter VIII) showsthe existen
e of rational series with non-negative integer 
oeÆ
ients whi
hare not regular.Example 4. Let 0 < � < �=2 be su
h that 
os � = a=
 with 0 < a < 
and 
 6= 2a. The sequen
e un = 
2n 
os2 n�



6 F. BASSINO, M.-P. B�EAL, AND D. PERRINis rational but not regular (poles: 1; e2i�; e�2i�).A sequen
e u is a merge of sequen
esu(0); : : : ; u(p�1)if for n � 0; 0 � i < p, upn+i = u(i)n :We say that a pole of a rational series is dominating if it is stri
tly lessthan the modulus of all other ones. The following result is due to Soittola(see [33℄).Theorem 3.3. A sequen
e of non-negative integers is regular i� it isan merge of rational sequen
es with a dominating pole.Example 5. The sequen
e1; 1; 2; 1; 4; 2; 8; 3; 16; 5; : : :is the merge of the sequen
e of powers of 2 and the Fibona

i sequen
e.A third equivalent de�nition of regular sequen
es is possible. One 
anindeed show that a series u(z) is regular i� it 
an be obtained by a �nitenumber of operations of sum, produ
t and star withu�(z) = 11� u(z) ;starting from polynomials with nonnegative integer 
oeÆ
ients. An expres-sion of this form is usually 
alled a regular expression.Example 6. The sequen
e (0; 1; 3; 8; 21; : : : ) formed of the Fibona

inumbers of even index is regular. Indeed we haveF2n = lM2n
with the triple (l;M; 
) of Example 2. We haveM2 = � 2 11 1 � ;and thus F2n is the number of paths of length n from 1 to 2 in the graph ofFigure 2. The series s(z) =Pn�0 F2nzn 
an a

ordingly be writtens(z) = z(2z + z2z�)� = z(1� z)1� 3z + z2 :



LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 71Æ
��- 2Æ
��6Fig. 2. One every other Fibona

i number3.2. Finite automata. We present here a brief introdu
tion to the
on
epts used in automata theory. For a general referen
e, see [31℄ or [20℄.An automaton over the alphabet A is 
omposed of a set Q of states, aset E � Q�A�Q of edges or transitions and two sets I; T � Q of initialand terminal states.A path in the automaton A is a sequen
e(p1; a1; p2); (p2; a2; p3); : : : ; (pn; an; pn+1)of 
onse
utive edges. Its label is the word x = a1a2 � � � an. A path issu

essful if it starts in an initial state and ends in a terminal state. Theset re
ognized by the automaton is the set of labels of its su

essful paths.An automaton is deterministi
 if, for ea
h state p and ea
h letter a,there is at most one edge whi
h starts at p and is labeled by a. The termright resolving is also used. 1Æ
��?Æ
��? 2Æ
��b abFig. 3. Golden mean automaton.Example 7. Let A be the automaton given in Figure 3 with 1 asunique initial and terminal state. It re
ognizes the set X� where X is thepre�x 
ode X = fb; abg:A set of words X over A is regular if it 
an be re
ognized by a �niteautomaton.It is a 
lassi
al result that a set of words is regular i� it 
an be obtainedby a �nite number of operations union, produ
t and star, starting form the�nite sets.The following result is also 
lassi
al.Proposition 3.2. Every regular set 
an be re
ognized by a �nitedeterministi
 automaton having a unique initial state.Proof. Let A = (Q;E; I; T ) be a �nite automaton over A re
ognizinga set X . Let B = (R; F; fIg; T ) be the automaton de�ned as follows. Itsstates are the subsetsQ(u) = fq 2 Q j i u�! q for some i 2 Ig



8 F. BASSINO, M.-P. B�EAL, AND D. PERRINfor all u in A�. Sin
e Q is �nite, there is a �nite number of subsets Q(u).The edges of B are all triples(Q(u); a;Q(ua)) :The set of terminal states isT = fU 2 R j U \ T 6= ;g :It is easy to verify that B is deterministi
 and re
ognizes X .Theorem 3.4. The length distributions of regular sets are the regularsequen
es.Proof. Let X be a regular set. By Proposition 3.2, it 
an be re
ognizedby a deterministi
 automaton A. Sin
e A is deterministi
, there is at mostone path with given label, origin and end. Thus the number of paths oflength n from the initial state to a terminal state is equal to the numberun of words of X of length n.Conversely, let u be a regular sequen
e enumerating the paths in agraph G from I to T . We 
onsider the graph G as an automaton with alledges with distin
t labels. Let X be the set of labels of paths from I to T .The sequen
e u is the length distribution of the set X .Example 8. If X = a�b, thenuX(z) = z1� z :3.3. Beyond regular sequen
es. There are several natural 
lassesof series beyond the rational ones. The algebrai
 series are those satisfyingan algebrai
 equation. More generally, the hypergeometri
 series are thosesu
h that the quotient of two su

essive terms is given by a rational fra
tion(see [23℄).The 
lass of algebrai
 series is linked with the 
lass of 
ontext-free sets(see [21℄). A typi
al example of a 
ontext-free set is the set of words onthe binary alphabet fa; bg having as many a's as b's. We 
ompute belowits length distribution whi
h is an algebrai
 series.Example 9. The set of words on A = fa; bg having an equal numberof o

urren
es of a and b is a submonoid of A� generated by a pre�x 
odeD. Sin
e any word of D� of length 2n is obtained by 
hoosing n positionsamong 2n, we have uD�(z) =Xn�0�2nn �z2n:By a simple appli
ation of the binomial formula, we obtainuD�(z) = (1� 4z2)� 12 :



LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 9This follows indeed, using the simple identity�� 12n � = 1(�4)n�2nn �:We have uD(z) = 1� 1=uD�(z) and thusuD(z) = 1�p1� 4z2:Thus uD(z) is an algebrai
 series, solution of the equationf2 � 2f + 4z2 = 0:4. A �nite-state version of the Kraft-M
Millan theorem. LetX be a pre�x 
ode on an alphabet with k symbols. It is 
lassi
al that itslength distribution u = (un)n�1 satis�es Kraft's inequalityXn�1unk�n � 1;or equivalently u(1=k) � 1. The number u(1=k) 
an a
tually be interpretedas the probability that a long enough word has a pre�x in X .There is also a 
onnexion with the notion of entropy. A
tually, if X isa pre�x 
ode, the entropy of X� is equal to log(1=�) where � is the solutionof the equation uX(�) = 1. Thus Kraft's inequality expresses the fa
t thath(X�) � log k.Conversely, Kraft-M
Millan's theorem states that for any su
h se-quen
e u = (un)n�1, there exists a pre�x 
ode X on a k-symbol alphabetsu
h that u = uX .Let us brie
y des
ribe the proof. We suppose by indu
tion to havealready built a pre�x 
ode X formed of words of length at most n� 1 withlength distribution (u1; u2; : : : ; un�1) on the alphabet Ak = f0; 1; : : : ; k �1g. We have nXi=1 uik�i � 1;and thus nXi=1 uikn�i � kn:This allows us to 
hoose un words on the alphabet Ak of length n withouta pre�x in X . For the sake of a 
omplete des
ription of the 
onstru
tion,we have to spe
ify the 
hoi
e made at ea
h step among the words of length
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h do not have already a pre�x in X . A possible poli
y is to 
hoosethe earlier ones in the alphabeti
 order.The equality 
ase in Kraft's inequality 
orresponds to a parti
ular 
lassof pre�x 
odes often 
alled 
omplete. A pre�x 
ode X on the alphabet A is
omplete if any word on A has either a pre�x in X or is a pre�x of a wordof X .The notion of a pre�x 
ode is related to the notion of a tree. A pre�x
ode on k symbols 
orresponds to a k-ary tree. The length distribution ofthe pre�x 
ode is the enumerative sequen
e of the leaves of the tree. We
all it the length distribution of the tree. Usually, the interest is fo
used on�nite trees, as in Hu�man algorithm for example.We are interested here in the 
ase of in�nite trees and, more espe
iallyof regular trees arising from pre�x 
odes whi
h are regular, in the sensede�ned above. The notion of a regular tree 
an also be de�ned dire
tly asan in�nite tree with only a �nite number of non-isomorphi
 subtrees.By Theorem 3.4, if X is regular, then the sequen
e uX is also regu-lar. The following result shows that 
onversely the 
onjun
tion of the two
onditions (of being regular and to satisfy Kraft's inequality) is suÆ
ientto ensure the existen
e of a regular pre�x 
ode on a k-symbol alphabet.Theorem 4.1. A sequen
e u of integers is the length distribution ofa regular pre�x 
ode on k symbols i�(i) it is regular.(ii) it satis�es Kraft's inequality u(1=k) � 1.The essen
e of this result is a 
onstru
tive method allowing one tobuild the regular pre�x 
ode X given the sequen
e u.Two simple methods 
ome to mind at �rst glan
e. The �rst one isto apply dire
tly the proof of the Kraft's theorem. The following exampleshows that the result need not be a regular set, although the sequen
e u isitself regular.Example 10. Let u(z) = z2=(1� 2z2). Sin
e u(1=2) = 1=2, we mayapply the Kraft 
onstru
tion to build a binary tree with length distributionu. The result is the set X = [n�0 01n0f0; 1gnwhi
h is not regular.The se
ond method takes into a

ount the hypothesis that the se-quen
e is regular. It will fail in its naive version but the solution is are�nement of this idea. Let G be a graph su
h that un is the number ofpaths of length n from I to T . We 
an normalize the graph G to obtain agraph su
h that I = fig, T = ftg and that no edge goes out of t. We labelea
h edge in su
h a way that edges with a 
ommon start have di�erentlabels. The set re
ognized by the automaton thus 
onstru
ted is a pre�x
ode with length distribution equal to u.



LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 11The trouble is that the number of symbols used may well be largerthan k as shown by the following example.Example 11. Let u be the regular sequen
e given by the graph ofFigure 4 on the left with i = 1 and t = 4. We have also u(z) = 3z2=(1�z2).Furthermore u(1=2) = 1 and thus u satis�es Kraft's equality. However thereare four edges going out of vertex 2 and the method des
ribed above failsto build a binary pre�x 
ode. A solution on A = fa; bg is the regular pre�x
ode X = (aa)�(ab+ ba+ bb):The 
orresponding automaton is given on Figure 4 on the right.1Æ
��- 2Æ
�� 3Æ
��4Æ
��- 1Æ
��- 3Æ
��4Æ
��-2Æ
��
b b aaa bFig. 4. Graphs re
ognizing u(z) = 3z2=(1 � z2).The proof of Theorem 4.1 
onsists in building a new graph with allverti
es of outdegree at most k. It relies on a transformation 
alled themultiset 
onstru
tion des
ribed in [8℄. The proof uses the following 
om-binatorial lemma also used in symboli
 dynami
s by Adler and Mar
us[28℄,[2℄, and quoted in [4℄ as a ni
e variant of the pigeon-hole prin
iple.Lemma 4.1. Let k1; k2; : : : ; kn be positive integers. Then there is asubset S � f1; 2; : : : ; ng su
h that Ps2S ks is divisible by n.The graph obtained is shown in an example below.Example 12. Let u(z) = z21� z2 + z21� 5z3 : (4.1)We have u(1=2) = 1. A regular binary tree with length distribution u isgiven in Figure 5 (note that, by 
onvention, a vertex labeled v has its sonsrepresented only on
e on the �gure. Thus, for example the vertex labeled1 on the right has the same sons as the root. The leaves of the tree areindi
ated by a bla
k box).To 
he
k that the length distribution is equal to u, one may 
omputefrom the graph the following regular expression of u and 
he
k by an el-ementary 
omputation (possibly with the help of a symboli
 
omputationsystem) that it is equal to u.u(z) = (z6)�(2z2 + z4 + 2z5 + z6 + (z2 + 3z5)(5z3)�3z3):
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1l 2l3l

�4l5l�
6l7l8l9l

10l11l12l�10l13l12l12l

��14l5l5l5l�5l
�1l

Fig. 5. Regular binary tree with length distribution u.(note for a reader unfamiliar with regular expressions: the �rst fa
tor (z6)�
orresponds to the vertex labeled 1 at level 6 of the tree. The term 2z2 +z4 + 2z5 + z6 
orresponds to the leaves rea
hed by a path whi
h does notuse a vertex labeled 5. The fa
tor (z2+3z5)(5z3)� 
orresponds to the pathsfrom the root to a vertex labeled 5. Finally, the fa
tor 3z3 
orresponds tothe dire
t paths from 5 to a leaf.)This example (suggested to us by Christophe Reutenauer) shows aninteresting feature of this problem. In fa
t, from the point of view of regularexpressions, the diÆ
ult operation in this problem is the sum. It would bea simple matter to build a rational tree for ea
h term of the sum in theexpression (12) (see Example 11). The diÆ
ulty would then be to mergethese two trees to obtain one 
orresponding to the sum.A 
urious 
onsequen
e of Theorem 4.1 is the following property ofregular sequen
es.Corollary 4.1. Let k � 2 be an integer and let u be regular sequen
esu
h that u(1=k) � 1 and u(0) = 0. Then there exist k regular sequen
esu1; : : : ; uk su
h that ui(1=k) � 1 andu(z) = kXi=1 zui(z):Proof. It is a simple 
onsequen
e of Theorem 4.1. Indeed, if X is aregular pre�x 
ode on the k element alphabet A, then X = Pa2A aXawhere ea
h Xa is a regular pre�x 
ode on the alphabet A.We don't know of a dire
t proof of this result.
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odes. We investigate here the length distributions of a par-ti
ular 
lass of pre�x 
odes, 
alled bi�x. Several other 
lasses of pre�x
odes 
ould give rise to a similar study (for a des
ription to these 
lasses,see [19℄).The de�nition of a suÆx 
ode is symmetri
 to the de�nition of a pre�x
ode. It is a set of words X su
h that no element of X is a suÆx of anotherone. The notion of a 
omplete suÆx 
ode is also symmetri
. A bi�x 
odeis a set X of words whi
h is both a pre�x and a suÆx 
ode.Any set of words of �xed length is obviously a bi�x 
ode but there aremore 
ompli
ated examples.
e e

e
e�ee

�e�e��
��
��

ab
abab

ababab

ab
ab

Fig. 6. The bi�x 
ode X.Example 13. The setX = faaa; aaba; aabb; ab; baa; baba; babb; bba; bbbgis a 
omplete pre�x 
ode pi
tured in Figure 6. It is also a 
omplete suÆx
ode as one may 
he
k by reading its words ba
kwards.Surprisingly, it is an open problem to 
hara
terize the length distri-butions of bi�x 
odes. The following simple example shows that they aremore 
onstrained than those of pre�x 
odes.Example 14. The sequen
e u(z) = z + 2z2 is not realizable as thelength distribution of a bi�x 
ode on a binary alphabet although u(1=2) = 1.Indeed, one of the symbols has to be in X, say a. Then bb is the only wordof length 2 that 
an be added.The following ni
e partial result is due to Ahlswede, Balkenhol andKha
hatrian [3℄. We state the result for a binary alphabet. It 
an bereadily generalized to k symbols but it presents less interest.



14 F. BASSINO, M.-P. B�EAL, AND D. PERRINTheorem 5.1. For any integer sequen
e u su
h thatu(1=2) � 1=2;there is a bi�x 
ode X su
h that u = uX .Proof. The proof is by indu
tion. We suppose that we have alreadybuilt a bi�x 
ode X formed of words of length at most n � 1 with lengthdistribution (u1; u2; : : : ; un�1). We havenXi=1 ui2�i � 1=2;and thus 2 nXi=1 ui2n�i � 2n:Finally, we obtain un � 2n � 2 n�1Xi=1 ui2n�i:The expression of the right handside is at most equal to the number ofelements of the set An �XA� � A�X . Thus, we 
an 
hoose un words oflength n whi
h do not have a pre�x or a suÆx in X . This proves the resultby indu
tion.The authors of [3℄ formulate the interesting 
onje
ture that Theorem5.1 is still true if the hypothesis u(1=2) � 1=2 is repla
ed by u(1=2) � 3=4.There are known additional 
onditions imposed on length distributionsof bi�x 
odes. For example, one has the following result, originally due toS
h�utzenberger (see [14℄).Theorem 5.2. If X is a �nite 
omplete bi�x 
ode on k symbols, thenuX(1=k) = 1 and 1ku0X(1=k) is an integer.The number 1ku0X(1=k) 
an be interpreted as the average length of thewords of X . Indeed zu0X(z) = Xx2X jxjzjxj:Example 15. For the bi�x 
ode of Example 13, we haveuX(z) = z2 + 4z3 + 4z4and thus u0X(z) = 2z + 12z2 + 16z3:Hen
e 12u0X(1=2) = 3: The 
onditions of Theorem 5.2 show dire
tly thatthe sequen
e of Example 14 is not realizable. Indeed, it satis�es the �rst
ondition but not the se
ond one. The 
onditions of Theorem 5.2 are notsuÆ
ient. Indeed, if u(z) = z + 4z3 we have u(1=2) = 1 and u0(1=2) = 4although it is 
learly impossible that u = uX for a bi�x 
ode X .
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tions, subshifts of �nite type and 
ir
ular 
odes.In this se
tion, we present a number of results on interrelated obje
ts whi
hare 
onne
ted with 
y
li
 permutation of words. We begin with notions
lassi
al in symboli
 dynami
s (see [25℄ or [24℄ for a general referen
e; see[13℄ or [22℄ for the link with �nite automata).6.1. Subshifts of �nite type. A subshift is a set of biin�nite wordson a �nite alphabet A whi
h avoids a given set F of forbidden words. It isa topologi
al spa
e as a 
losed subset of the spa
e AZ of fun
tions from Zinto the set A. The full shift on A is the set of all biin�nite words on A. It
orresponds to the 
ase F = ;.A so�
 subshift is the set of biin�nite labels of paths in a �nite au-tomaton. A so�
 subshift is 
alled irredu
ible if the automaton 
an be
hosen strongly 
onne
ted. A subshift of �nite type is the set of biin�nitewords avoiding a �nite set of �nite words. Any subshift of �nite type isso�
 but the 
onverse is not true. The edge shift of a �nite graph G is theset SG of biin�nite paths in G (viewed as biin�nite sequen
es of edges). Itis a subshift of �nite type.The shift � is the fun
tion on a subshift S whi
h maps a point x tothe point y = �(x) whose ith 
oordinate is yi = xi+1.Amorphism from a subshift S into a subshift T is a fun
tion f : S ! Twhi
h is 
ontinuous and invariant under the shift. A bije
tive morphism is
alled a 
onjuga
y. Any subshift of �nite type is 
onjugate to some edgeshift.The entropy h(S) of a subshift S is the entropy of the formal languageformed by the �nite blo
ks o

urring in words of S. It 
an be shownthat the entropy is a topologi
al invariant, in the sense that two 
onjugatesubshifts have the same entropy.While the entropy is a measure of number of forbidden words, it ispossible to study the number of minimal forbidden words. It gives rise toanother invariant of subshifts [11℄, [12℄.An integer p is a period of a point x = (an)n2Z if an+p = an for alln 2 Z. Equivalently, p is a period of x if �p(x) = x. The zeta fun
tion ofa subshift S, is de�ned as the series�(S) = expXn�1 pnn znwhere pn is the number of words with period n in S. It is also a topologi
alinvariant, sin
e a point of period n is mapped by a 
onjuga
y on a pointof the same period.The following result due to Bowen and Lanford [18℄ is 
lassi
al (see[25℄).Proposition 6.1. Let G be a �nite graph and let M be the adja
en
ymatrix of G. Then �(SG) = det(I �Mz)�1:



16 F. BASSINO, M.-P. B�EAL, AND D. PERRINProof. We �rst have for ea
h n � 1Tr(Mn) = pnsin
e the 
oeÆ
ient (i; j) of Mn is the number of paths from i to j. Thus�(SG) = expXn�1 pnn zn= expXn�1 Tr(Mn)n zn= expTr(log(I �Mz)�1)= det(I �Mz)�1sin
e, by the formula of Ja
obi, expTr = det exp.Example 16. Let S be the edge shift of the graph G of Figure 7. Wehave M = 24 1 1 00 0 11 0 0 35 :Consequently �(S) = 11� z � z3 :
1Æ
�� 2Æ
��3Æ
��Fig. 7. A subshift of �nite typeLet S be a subshift of �nite type and let pn be the number of pointswith period n. Let qn be the number of points with least period n. Sin
eqn is a multiple of n, we also denote qn = nln. We have then the formulaexpressing the zeta fun
tion as an in�nite produ
t using the integers ln asexponents. �(S) = �n�1(1� zn)�ln ;as one may verify using pn =Pdjn dld and the de�nition of �(S).
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lassi
al result, related with what follows, is the following statement,known as Krieger's embedding theorem.Theorem 6.1. Let S; T be two subshifts of �nite type. There existsan inje
tive morphism f : S ! T with f(S) 6= T i�1. h(S) < h(T )2. for ea
h n � 1, qn(S) � qn(T ) where qn(S) (resp. qn(T )) is thenumber of points of S (resp. T ) of least period n.The following result is the basis of many appli
ations of symboli
 dy-nami
s to 
oding. It is due to Adler, Coppersmith and Hassner [2℄.Theorem 6.2. If S is an irredu
ible subshift of �nite type su
h thath(S) � log k, it is 
onjugate to a subshift of �nite type SG where the graphG has outdegree at least k.The proof is based on a state-splitting algorithm using approximateeigenve
tors and Lemma 4.1. This result is part of a number of 
onstru
-tions leading to sliding blo
k 
odes used in magneti
 re
ording (see [29℄, [9℄or [25℄). It gives at the same time the following result.Theorem 6.3. It S is a subshift of �nite type su
h that h(S) � log k,then there is a graph G of outdegree at most k su
h that S is 
onjugate toSG. There is a 
onnexion between this theorem and Theorem 4.1. Letindeed u be a regular sequen
e of integers su
h that u(1=k) � 1. Let Gbe a normalized graph re
ognizing u (in the sense of Se
tion 4). Let �Gbe the graph obtained by merging the initial and terminal vertex. Thenh(S �G) � log k. We 
an apply Theorem 6.3 to obtain a graph H withoutdegree at most k su
h that SG and SH are 
onjugate. This gives the
on
lusion of Theorem 4.1 provided the initial-terminal vertex did not splitin the 
onstru
tion. The following examples show both 
ases (for details,see [6℄ and [7℄).Example 17. Let G be the graph of Figure 4. The splitting of vertex2 gives a graph of outdegree 2. A normalization gives the automaton onthe right.Example 18. The sequen
e of Example 12 is re
ognized by a graph Gsu
h that �G has three 
y
les of length 2. The solution as a binary tree hasonly two 
y
les of length 2 and thus 
ould not be obtained by state-splitting.6.2. Cir
ular 
odes. A 
ir
ular word, or ne
kla
e, is the equivalen
e
lass of a word under 
y
li
 permutation. For a word w, we denote by �wthe 
ir
ular word represented by w.Let X be a set of words and w = x1x2 � � �xn with xi 2 X . The set of
y
li
 permutations of the sequen
e (x1; x2; : : : ; xn) is 
alled a fa
torizationof the 
ir
ular word �w.A 
ir
ular 
ode is a set X of words su
h that the fa
torization of
ir
ular words is unique.Example 19. The set X = fa; abag is a 
ir
ular 
ode. Indeed, theposition of the symbols b determines uniquely the o

urren
es of aba.



18 F. BASSINO, M.-P. B�EAL, AND D. PERRINExample 20. The set X = fab; bag is not a 
ir
ular 
ode. Indeed,the 
ir
ular word �w for w = abab has two fa
torizations namely (ab; ab)and (ba; ba).The following 
hara
terization is useful (see [14℄).Proposition 6.2. A set X is a 
ir
ular 
ode if and only if it is a
ode and for all u; v 2 A�,uv; vu 2 X� ) u; v 2 X�Example 21. We obtain another way to prove that the set X =fab; bag is not a 
ir
ular 
ode. Indeed, otherwise we would have a; b 2 X�whi
h is 
ontradi
tory.Let X be a �nite 
ode. The 
ower automaton of X , denoted AX , isthe following automaton. The set of its states isQ = f(u; v) 2 A+ �A+ j uv 2 Xg [ (1; 1)The transitions are of the form (u; av) a�! (ua; v) or (1; 1) a�! (a; v) or(u; a) a�! (1; 1). The unique initial and �nal state is (1; 1).Example 22. The 
ower automaton of the 
ir
ular 
ode fa; abag ispi
tured in Figure 8. 1Æ
��?Æ
��? 2Æ
��3Æ
��a a baFig. 8. The 
ower automaton of fa; abag.The following result is easy to prove.Proposition 6.3. The 
ower automaton AX re
ognizes X�. The
ode X is 
ir
ular i� for ea
h word w, there is at most one 
y
le with labelw. We now study the length distributions of 
ir
ular 
odes. Let X be a
ir
ular 
ode and let u(z) = (un)n�1 be its length distribution. For ea
hn � 1, let pn be the number of words w of length n su
h that �w has afa
torization in words of X .Proposition 6.4. The sequen
es (pn)n�1 and (un)n�1 are related byexpXn�1 pnn zn = 11� u(z) : (6.1)
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h (pn) depends only on the �rst n terms of the sequen
e(un). It is therefore possible to suppose that the sequen
e (un) is �nite,i.e. that the 
ode X is �nite. Let A be the 
ower automaton of X . Let Sbe the subshift of �nite type asso
iated with the graph of A. Then pn isthe number of elements of period n in S. Indeed, ea
h word w su
h that�w has a fa
torization is 
ounted exa
tly on
e as the label of a 
y
le in A.We have also det(I �Mz) = 1� u(z):Thus, the result follows from Proposition 6.1.The expli
it relation between the numbers un and pn is the following.For ea
h i � 1, let u(i) = (u(i)n )n�1 be the length distribution of X i.Equivalently, u(i)n is the 
oeÆ
ient of degree n of u(z)i. Then for ea
hn � 1 pn = nXi=1 ni u(i)n :We also have for ea
h n � 1pn = nun + n�1Xi=1 piun�i: (6.2)This formula 
an be easily dedu
ed from Formula (6.1) by taking the log-arithmi
 derivative of ea
h side of the formula. It shows dire
tly that forany sequen
e (un)n�1 of nonnegative integers, the sequen
e pn de�ned byFormula (6.1) is formed of nonnegative integers.Formula (6.2) is known as Newton's formula in the �eld of symmetri
fun
tions. A
tually, the numbers un 
an be 
onsidered, up to the sign, aselementary symmetri
 fun
tions and the pn as the sums of powers (see [26℄).The link between Witt ve
tors and symmetri
 fun
tions was established in[34℄. Let pn = Pdjn dld. Then ln is the number of non-periodi
 
ir
ularwords of length n with a fa
torization. In terms of generating series, wehave expXn�1 pnn zn = Yn�1(1� zn)�ln : (6.3)Putting together Formulae (6.1) and (6.3), we obtain11� u(z) = Yn�1(1� zn)�ln : (6.4)For any sequen
e (un)n�1 of nonnegative integers, the sequen
e l = (ln)n�1thus de�ned is formed of nonnegative integers. This 
an be proved either



20 F. BASSINO, M.-P. B�EAL, AND D. PERRINby a dire
t 
omputation or by a 
ombinatorial argument sin
e any sequen
eu of nonnegative integers is the length distribution of a 
ir
ular 
ode ona large enough alphabet. We denote l = �(u) and we say that l is the�-transform of the sequen
e u.We denote by 'n(k) the number of non-periodi
 
ir
ular words oflength n on k symbols. The numbers 'n(k) are 
alled the Witt numbers.It is 
lear that the sequen
e ('n(k))n�1 is the �-transform of the sequen
e(kn)n�1.The 
orresponding parti
ular 
ase of Identity (6.4)1� kz = Yn�1(1� zn)'n(k)is known as the 
y
lotomi
 identity.The following arrays display a tabulation of the Witt numbers for smallvalues of n and k. n 'n(2) 'n(3) 'n(4)1 2 3 42 1 3 63 2 8 204 3 18 605 6 48 2046 9 116 6707 18 312 23408 30 810 81609 56 2184 2912010 99 5880 104754The value '3(4) = 20 is famous be
ause of the geneti
 
ode: thereare pre
isely 20 amino-a
ids 
oded by words of length 3 over a 4-symbolalphabet A,C,G,U.For any sequen
e a = (an)n�1, letpn =Xdjn dan=dd :The pair (a; p) is 
alled a Witt ve
tor (see [30℄). The numbers pn are theghost 
omponents. In terms of generating series, one hasexpXn�1 pnn zn = Yn�1(1� anzn)�1:The following result is due to S
h�utzenberger (see [14℄).



LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 21Theorem 6.4. Let u = (un)n�1 be a sequen
e of nonnegative integersand let l = (ln)n�1 be the �-transform of u. The sequen
e (un)n�1 is thelength distribution of a 
ir
ular 
ode on k symbols i� for all (n � 1)ln � 'n(k):Several 
omplements to Theorem 6.4 appear in [5℄. In parti
ular, therelation with Kraft's inequality is studied. The equality 
ase in Kraft'sinequality is 
hara
terized in terms of the sequen
e of inequalities above.There is a 
onnexion between Theorem 6.4 and Krieger's embeddingtheorem (Theorem 6.1), in the sense that Theorem 6.4 gives a simple proofof Theorem 6.1 in a parti
ular 
ase. A
tually, let us 
onsider the parti
ular
ase of subshift of �nite type, 
alled a renewal system.A renewal system S is the edge shift of a graph G made up of 
y
lessharing exa
tly one vertex. Su
h a graph is determined by the sequen
eu = (ui)1�i�n where ui is the number of loops with length i. Let Tk bethe full shift on k symbols. Suppose that the pair formed by S and Tksatis�es the hypotheses of Krieger's theorem. The number qn(S) of pointsof least period n is nln where l = (ln)n�1 is the �-transform of the sequen
eu and qn(Tk) = n'n(k). Thus, the sequen
e u satis�es the hypotheses ofTheorem 6.4. Consequently, there is 
ir
ular 
ode X su
h that uX = u.The 
ower automaton of X de�nes an embedding of SG into the full shifton k symbols. This gives an alternative proof of Krieger's theorem in this
ase.It would be interesting to have a proof of Krieger's theorem along thesame lines in the general 
ase.To 
lose this se
tion, we mention the following open problem: If thesequen
e u is regular and satis�es the inequalitiesln � 'n(k) (n � 1);where l = �(u), does there exist a rational 
ir
ular 
ode on k symbols su
hthat u = uX?6.3. Zeta fun
tions. Theorem 6.1 admits the following generaliza-tion due to Reutenauer [32℄.Theorem 6.5. The zeta fun
tion of a so�
 subshift is regular.We have seen already (Theorem 6.1) that the zeta fun
tion of a subshiftof �nite type is a rational fra
tion, and indeed the inverse of a polynomial.The stronger statement that it is regular follows from the following formulaallowing to 
ompute det(I�Mz) whenM is the adja
en
y matrix of a n�ngraph G. One hasdet(I �Mz) = (1� v1(z)) � � � (1� vn(z));where vi(z) is the length distribution of the set of �rst returns to state iusing only states fi; i+ 1; : : : ; ng (see [10℄).
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tion of a so�
 subshift is rational is aresult of Manning and Bowen [27℄, [17℄. For an exposition, see [25℄ or [10℄.A generalization appears in [15℄.7. A
knowledgments. The authors wish to thank for the help re-
eived during the preparation of this paper. We are indebted to JuliaAbrahams for the referen
e of the work of Ahlswede et al. and several otherre
ent referen
es 
on
erning bi�x 
odes (see [1℄). The link between lengthdistributions of 
ir
ular 
odes and symmetri
 fun
tions was dis
losed to usby Ja
ques D�esarm�enien and Jean-Yves Thibon. We also thank V�eroniqueBruy�ere for improving our work.REFERENCES[1℄ J. Abrahams, Code and parse trees for lossless sour
e en
oding, in Compressionand Complexity of Sequen
es 1997, B. C. et al., ed., IEEE Computer So
iety,1998, pp. 145{171.[2℄ R. L. Adler, D. Coppersmith, and M. Hassner, Algorithms for sliding blo
k
odes, IEEE Trans. Inform. Theory, IT-29 (1983), pp. 5{22.[3℄ R. Ahlswede, B. Balkenhol, and L. Kha
hatrian, Some properties of �x-free
odes, Te
h. Rep. 039, University Bielefeld, 1997.[4℄ M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, 1998.[5℄ F. Bassino, Generating fun
tions of 
ir
ular 
odes, Adv. in Appl. Math, 22 (1999),pp. 1{24.[6℄ F. Bassino, M.-P. B�eal, and D. Perrin, Enumerative sequen
es of leaves inrational trees, in ICALP'97, no. 1256 in Le
ture Notes in Computer S
ien
e,Springer-Verlag, 1997, pp. 76{86.[7℄ , Enumerative sequen
es of leaves and nodes in rational trees, Theoret. Com-put. S
i., (1999), pp. 41{60.[8℄ , A �nite state version of version of Kraft-M
Millan theorem, SIAM J.Comput., (2000). To appear.[9℄ M.-P. B�eal, Codage Symbolique, Masson, 1993.[10℄ , Puissan
e ext�erieure d'un automate d�eterministe, appli
ation au 
al
ul dela fon
tion fon
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