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LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES

FREDERIQUE BASSINO , MARIE-PIERRE BEAL , AND DOMINIQUE
PERRIN *

Abstract. This paper presents a survey on length distributions of regular languages.
The accent is on problems in coding theory and the relation with symbolic dynamics.

Key words. Regular sequences, finite automata, prefix codes, bifix codes, symbolic
dynamics, zeta functions.

1. Introduction. The notion of a length distribution for a formal
language is a simple one: it is the generating series u(z) = ), <, un2" of the
number of words of each length. This series carries important information
concerning a formal language since it measures in a sense the size of the
language. It is moreover appropriate in the case of coding. In fact, a
length-preserving encoding defines a one-to-one correspondence between
words. The two sets of words in such a correspondence will have the same
length distribution.

It is a classical result that the length distribution of a formal language
carries also some information concerning the structure of the language,
in the sense that algebraic operations on series correspond to operations
on formal languages. Thus, as we shall see below in more detail, length
distributions which are rational series correspond to regular languages.

This correspondence between operations on series and on sets is the
basis of the method of generating series in enumerative combinatorics. Nu-
merous examples of applications can be found in the book of Graham,
Knuth and Pataschnik [23].

We present here a survey on length distributions of formal languages
with emphasis on the problems related to coding and finite automata. We
insist on the following general problem: given a family F of sets of words,
characterize the length distributions of the elements of 7. For example,
the length distributions of prefix codes on k-symbols are the sequences
satisfying Kraft’s inequality

Z u k™" <1,

n>0

ie u(l/k) <1.
Our emphasis is on the property of regularity which is the definability
by a finite automaton. This places our work at the intersection between
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coding theory and automata theory. For example, one of the main re-
sults presented here is a finite-state version of Kraft-McMillan’s theorem
characterizing the length distributions of regular prefix codes.

We also make connexions with the field of symbolic dynamics. This is
natural since the basic notion of symbolic dynamics, namely the conjugacy
of subshifts is based on a one-to-one correspondence between paths in finite
graphs, giving rise to an invariance of the length distributions.

Our paper is organized as follows. The first sections (Sections 2,3)
present the basic notions on automata and formal series used in the paper.
In Section 4, we present the finite-state version of Kraft-McMillan theorem
mentioned above. The particular case of bifix codes is studied in Section
5. The last section (Section 6) presents several interconnected notions
concerning subshifts of finite type and circular codes.

2. Length distributions. We consider the set A* of all words on a
given alphabet A. A subset of A* is often called a formal language. For
sets X,Y C A*, we denote

X +Y = XUY,
XY ={zy|ze X,yeY},
X*={z1xz2- -2y | z; € X,n >0}

We say that the pair (X,Y") is unambiguous if for each z € XY there is at
most one pair (z,y) € X x Y such that z = zy.

We say that a set of nonempty words X is a code if for each x € X*
there is at most one sequence (z1, s, ... ,z,) with z; € X such that z =
1o -+ T, (one also says that X is uniquely decipherable). A particular
case of a code is a prefiz code. It is a set of words X such that no element
of X is a prefix of another one. It is easy to see that such a set is either
reduced to the empty word or does not contain the empty word and is then
a code.

The length distribution of a set of words X is the sequence ux =
(un)n>0 With

u, = Card(X N A™).

We denote by ux the formal series
ux(z) = Z Unz"”.
n>0

which is the ordinary generating series of the sequence ux.
For example, the length distribution of X = A* is u(z) =
k = Card(A).
The entropy of a formal language X is

h(X) = log(1/p),

1
T—7; Where
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where p is the radius of convergence of the series ux(z). It is well defined
provided X is infinite and thus p is finite. If the alphabet A has k elements,
we have h(X) < logk.
The following result relates the basic operations on sets with operations
on series.
ProprosiTION 2.1. The following properties hold for any subsets X,Y
of A*.
(i) If XNY =0, then ux1y = ux + uy.
(ii) If the pair (X,Y) is unambiguous, then uxy = uxuy.
(iii) If X is a code, then ux- = 1/(1 —ux).
Proof. The first two formulae are clear. If X is a code, every word in
X™* has a unique decomposition as a product of words in X. This implies
that

Uxn = (UX)n

and thus,
ux-=14+ux+--4+ux»+---=1/1-ux).
O
EXAMPLE 1. The set X = {b,ab} is a prefiz code. The series ux- is
1
=TT

Let (Fy,)n>0 be the sequence of Fibonacci numbers defined by Fy =0, Fy =
1, and Fyo = Fyiq1 + F,. It follows from the recurrence relation that

z
D DL
n>0
Consequently, ux«(z) = 3, 5o Fnt12". It can also be proved by a combi-
natorial argument that the number of words of length n in X™* is Fy41.
There are several variants of the generating series considered above.
One may first define

px(e) = Y 252",
n>0
where k = Card(A). The coefficients of 2" in px(z) is the probability for
a word of length n to be in the set X. The relation between ux and px is
simple since px (2) = ux(z/k). Another variant of the generating series is
the ezponential generating series of the sequence (u,,),>0 defined as

We will also use the zeta function of a sequence (uy)n>1 defined as

¢(z) = exp Z %z”

n>1
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3. Regular distributions. In this section, we describe the connec-
tion between the notions of a regular language and a rational series. We
prove the classical result (Theorem 3.4) characterizing the regular sequences
as the length distributions of regular languages. We mention finally the
possible extension to more general classes of formal languages, such as the
context-free languages. These results are well-known in the theory of au-
tomata and we include them here for the sake of the reader’s convenience.

A word on the terminology used here. We use constantly the term
reqular where a richer terminology is often used. In particular, what we
call here a regular sequence is, in Eilenberg’s terminology, an N-rational
sequence (see [20], [33] or [16]). A regular set is also called a rational or
recognizable set.

3.1. Regular sequences. A sequence u = (un)n>o of integers is reg-
ular if there exists a finite graph G and two sets of vertices I,T of G such
that for all n > 0,

u, = Card(P(n,I,T)),

where P(n,I,T) is the set of paths of length n from a vertex of I to a vertex
of T'. The graph G is one in which multiples edges are allowed (sometimes
called a multigraph). We say that the graph G recognizes the sequence u.

An equivalent definition of regular sequences is obtained by considering
nonnegative matrices.

PROPOSITION 3.1. A sequence u = (un)n>0 of integers is reqular iff
there exists a nonnegative matriz M € N*** and two vectors l,c € N* such
that

Uy = IM"e,

where | is considered as a row vector and ¢ as a column vector.

Proof. Let u be a regular sequence defined by a graph G on the set
{1,...,k} of vertices. We choose M to be the adjacency matrix of G, i.e.
for each pair v, w of vertices, M, ,, is the number of edges from v to w. Let
[ be the row vector defined by [, = 1 if v € I and 0 otherwise. Let ¢ be
the column vector defined by ¢, = 1 if v € T" and 0 otherwise. The number
of paths of length n from a vertex of I to a vertex of T is for each n > 1
equal to IM"c.

Conversely, let G be the graph with adjacency matrix M. Since the
family of regular sequences is closed under addition, we may suppose that
the vectors [, ¢ have 0,1 coefficients. We can then consider [, ¢ as the char-
acteristic vectors of sets I, T of vertices. It is then obvious that the graph
thus constructed recognizes u. O

EXAMPLE 2. Let G be the graph of Figure 1. The number of paths of
length n from vertex i = 1 to vertex t = 2 is the Fibonacci number F,.
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GOm0

Fic. 1. The Fibonacci graph.

Accordingly, let M be the matrix

11
w-(1 1)
The same sequence is defined by the equation

Fo=[1 o]M”H].

We say that a sequence u of integers is rational if u(z) = p(2)/q(z) for
some polynomials p(z), ¢(z) with integer coefficients. The following result
is classical.

THEOREM 3.1. Any regular sequence u of nonnegative integers is
rational.

Proof. Let (I, M,c) be such that u,, = IM™c. We have

u(z) = Z IM"ez" = Z(Z(Mz)")c =1(I-Mz) ‘e

n>0 n>0

The result follows since the coefficients of (I — Mz)~! are rational fractions.
o
EXAMPLE 3. The generating function of the Fibonacci sequence is

z
F(z) = T,

The converse of Theorem 3.1 is not true. We have actually the follow-
ing result, due to Jean Berstel (see [20] or [16]).

THEOREM 3.2. For any reqular sequence w, there is an integer p such
that the set of poles of minimal modulus is the set of complex numbers pe
where p is the radius of convergence of u and P =1 for some p > 1.

In particular, the radius of convergence is a pole.

The following example (from [20] Example 6.1, Chapter VIII) shows
the existence of rational series with non-negative integer coefficients which
are not regular.

EXAMPLE 4. Let 0 < 6 < /2 be such that cos = a/c with 0 < a < ¢
and ¢ # 2a. The sequence

uy = 2" cos® nb
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is rational but not reqular (poles: 1,2 e=2%),
A sequence u is a merge of sequences

w®, D)

if forn >0,0<1i<p,

Upn+i = ’U’1(’Lz ).
We say that a pole of a rational series is dominating if it is strictly less
than the modulus of all other ones. The following result is due to Soittola
(see [33)).
THEOREM 3.3. A sequence of non-negative integers is regqular iff it is
an merge of rational sequences with a dominating pole.
EXAMPLE 5. The sequence

1,1,2,1,4,2,8,3,16,5, ...

is the merge of the sequence of powers of 2 and the Fibonacci sequence.

A third equivalent definition of regular sequences is possible. One can
indeed show that a series u(z) is regular iff it can be obtained by a finite
number of operations of sum, product and star with

. _ 1
u (Z)—m,

starting from polynomials with nonnegative integer coefficients. An expres-
sion of this form is usually called a regular expression.

EXAMPLE 6. The sequence (0,1,3,8,21,...) formed of the Fibonacci
numbers of even index is reqular. Indeed we have

Fy, = IM*"c

with the triple (I, M,c) of Example 2. We have
s (21
M= < 1 1)

and thus Fy, is the number of paths of length n from 1 to 2 in the graph of
Figure 2. The series s(z) =Y, Fon2™ can accordingly be written

%\ * 2(1_2)
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F1G. 2. One every other Fibonacci number

3.2. Finite automata. We present here a brief introduction to the
concepts used in automata theory. For a general reference, see [31] or [20].

An automaton over the alphabet A is composed of a set @ of states, a
set £ C Q x A x @ of edges or transitions and two sets I,T C Q of initial
and terminal states.

A path in the automaton A is a sequence

(p1,a1ap2)a(p2,a2,P3),--- 7(pn,an,Pn+1)

of consecutive edges. Its label is the word = ajas---a,. A path is
successful if it starts in an initial state and ends in a terminal state. The
set recognized by the automaton is the set of labels of its successful paths.

An automaton is deterministic if, for each state p and each letter a,
there is at most one edge which starts at p and is labeled by a. The term
right resolving is also used.

a

@ oo

Fi1a. 3. Golden mean automaton.

EXAMPLE 7. Let A be the automaton given in Figure 3 with 1 as
unique initial and terminal state. It recognizes the set X* where X is the
prefiz code X = {b,ab}.

A set of words X over A is regular if it can be recognized by a finite
automaton.

It is a classical result that a set of words is regular iff it can be obtained
by a finite number of operations union, product and star, starting form the
finite sets.

The following result is also classical.

PROPOSITION 3.2. FEwvery regular set can be recognized by a finite
deterministic automaton having a unique initial state.

Proof. Let A= (Q,E,I,T) be a finite automaton over A recognizing
aset X. Let B=(R,F,{I},T) be the automaton defined as follows. Its
states are the subsets

Qu)={qeQ|i-% qforsomeiecI}



8 F. BASSINO, M.-P. BEAL, AND D. PERRIN

for all w in A*. Since @ is finite, there is a finite number of subsets Q(u).
The edges of B are all triples

(Q(u),a,Q(ua)) .

The set of terminal states is
T={UeR|UNT #0}.

It is easy to verify that B is deterministic and recognizes X. O

THEOREM 3.4. The length distributions of reqular sets are the reqular
sequences.

Proof. Let X be a regular set. By Proposition 3.2, it can be recognized
by a deterministic automaton A. Since A is deterministic, there is at most
one path with given label, origin and end. Thus the number of paths of
length n from the initial state to a terminal state is equal to the number
uy, of words of X of length n.

Conversely, let v be a regular sequence enumerating the paths in a
graph G from I to T. We consider the graph G as an automaton with all
edges with distinct labels. Let X be the set of labels of paths from I to T.
The sequence u is the length distribution of the set X. O

EXAMPLE 8. If X = a*b, then

3.3. Beyond regular sequences. There are several natural classes
of series beyond the rational ones. The algebraic series are those satisfying
an algebraic equation. More generally, the hypergeometric series are those
such that the quotient of two successive terms is given by a rational fraction
(see [23]).

The class of algebraic series is linked with the class of context-free sets
(see [21]). A typical example of a context-free set is the set of words on
the binary alphabet {a,b} having as many a’s as b’s. We compute below
its length distribution which is an algebraic series.

EXAMPLE 9. The set of words on A = {a,b} having an equal number
of occurrences of a and b is a submonoid of A* generated by a prefiz code
D. Since any word of D* of length 2n is obtained by choosing n positions
among 2n, we have

2n\ »,
up=(z) = Z <n>z .
n>0
By a simple application of the binomial formula, we obtain

up-(2) = (1 —42%)72.
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This follows indeed, using the simple identity
(7)== ()
n) (=4n\n)/)
We have up(z) =1 —1/up-(z) and thus

up(z) =1—+1—422

Thus up(z) is an algebraic series, solution of the equation

f?—2f+422=0.

4. A finite-state version of the Kraft-McMillan theorem. Let
X be a prefix code on an alphabet with k symbols. It is classical that its
length distribution u = (u,),>1 satisfies Kraft’s inequality

Z uk™" < 1,

n>1

or equivalently u(1/k) < 1. The number u(1/k) can actually be interpreted
as the probability that a long enough word has a prefix in X.

There is also a connexion with the notion of entropy. Actually, if X is
a prefix code, the entropy of X* is equal to log(1/p) where p is the solution
of the equation ux (p) = 1. Thus Kraft’s inequality expresses the fact that
h(X*) <logk.

Conversely, Kraft-McMillan’s theorem states that for any such se-
quence u = (u,)n>1, there exists a prefix code X on a k-symbol alphabet
such that u = ux.

Let us briefly describe the proof. We suppose by induction to have
already built a prefix code X formed of words of length at most n — 1 with
length distribution (u,us,... ,u,—1) on the alphabet Ay ={0,1,... ,k —
1}. We have

Zuik_i S 1,
i=1
and thus
n
> uk <k
i=1

This allows us to choose u,, words on the alphabet Aj of length n without
a prefix in X. For the sake of a complete description of the construction,
we have to specify the choice made at each step among the words of length
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n which do not have already a prefix in X. A possible policy is to choose
the earlier ones in the alphabetic order.

The equality case in Kraft’s inequality corresponds to a particular class
of prefix codes often called complete. A prefix code X on the alphabet A is
complete if any word on A has either a prefix in X or is a prefix of a word
of X.

The notion of a prefix code is related to the notion of a tree. A prefix
code on k symbols corresponds to a k-ary tree. The length distribution of
the prefix code is the enumerative sequence of the leaves of the tree. We
call it the length distribution of the tree. Usually, the interest is focused on
finite trees, as in Huffman algorithm for example.

We are interested here in the case of infinite trees and, more especially
of regular trees arising from prefix codes which are regular, in the sense
defined above. The notion of a regular tree can also be defined directly as
an infinite tree with only a finite number of non-isomorphic subtrees.

By Theorem 3.4, if X is regular, then the sequence uy is also regu-
lar. The following result shows that conversely the conjunction of the two
conditions (of being regular and to satisfy Kraft’s inequality) is sufficient
to ensure the existence of a regular prefix code on a k-symbol alphabet.

THEOREM 4.1. A sequence u of integers is the length distribution of
a reqular prefix code on k symbols iff

(i) it is regular.
(ii) it satisfies Kraft’s inequality u(1/k) < 1.

The essence of this result is a constructive method allowing one to
build the regular prefix code X given the sequence wu.

Two simple methods come to mind at first glance. The first one is
to apply directly the proof of the Kraft’s theorem. The following example
shows that the result need not be a regular set, although the sequence u is
itself regular.

EXAMPLE 10. Let u(z) = 22/(1 — 22?). Since u(1/2) = 1/2, we may
apply the Kraft construction to build a binary tree with length distribution
u. The result is the set

X = [ Jo1m0{o, 1}"
n>0

which is not reqular.

The second method takes into account the hypothesis that the se-
quence is regular. It will fail in its naive version but the solution is a
refinement of this idea. Let G be a graph such that u, is the number of
paths of length n from I to T'. We can normalize the graph G to obtain a
graph such that I = {i}, T = {t} and that no edge goes out of t. We label
each edge in such a way that edges with a common start have different
labels. The set recognized by the automaton thus constructed is a prefix
code with length distribution equal to u.
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The trouble is that the number of symbols used may well be larger
than k as shown by the following example.

ExXAMPLE 11. Let u be the regular sequence given by the graph of
Figure 4 on the left withi = 1 and t = 4. We have also u(z) = 32%/(1—22).
Furthermore u(1/2) = 1 and thus u satisfies Kraft’s equality. However there
are four edges going out of vertex 2 and the method described above fails
to build a binary prefix code. A solution on A = {a,b} is the reqular prefiz
code

X = (aa)*(ab + ba + bb).

The corresponding automaton is given on Figure 4 on the right.
b
OG0 B A
(@

FIG. 4. Graphs recognizing u(z) = 322 /(1 — 22).

The proof of Theorem 4.1 consists in building a new graph with all
vertices of outdegree at most k. It relies on a transformation called the
multiset construction described in [8]. The proof uses the following com-
binatorial lemma also used in symbolic dynamics by Adler and Marcus
[28],2], and quoted in [4] as a nice variant of the pigeon-hole principle.

LEmMMA 4.1. Let ky, ko, ..., ky be positive integers. Then there is a
subset S C {1,2,...,n} such that ) sk, is divisible by n.

The graph obtained is shown in an example below.

EXAMPLE 12. Let

2? 2?

12 T 1 5s

(4.1)

We have u(1/2) = 1. A regular binary tree with length distribution wu is
given in Figure 5 (note that, by convention, a vertex labeled v has its sons
represented only once on the figure. Thus, for example the vertex labeled
1 on the right has the same sons as the root. The leaves of the tree are
indicated by a black bozx).

To check that the length distribution is equal to u, one may compute
from the graph the following reqular expression of u and check by an el-
ementary computation (possibly with the help of a symbolic computation
system) that it is equal to u.

u(z) = ()% (222 + 2* + 22° + 2% + (22 + 325)(52%)"323).



12 F. BASSINO, M.-P. BEAL, AND D. PERRIN

Fi1G. 5. Regular binary tree with length distribution u.

(note for a reader unfamiliar with regular expressions: the first factor (2%)*
corresponds to the vertex labeled 1 at level 6 of the tree. The term 222 +
24 + 22% + 25 corresponds to the leaves reached by a path which does not
use a vertez labeled 5. The factor (2> +32°)(52)* corresponds to the paths
from the root to a vertex labeled 5. Finally, the factor 32> corresponds to
the direct paths from 5 to a leaf.)

This example (suggested to us by Christophe Reutenauer) shows an
interesting feature of this problem. In fact, from the point of view of reqular
expressions, the difficult operation in this problem is the sum. It would be
a simple matter to build a rational tree for each term of the sum in the
expression (12) (see Example 11). The difficulty would then be to merge
these two trees to obtain one corresponding to the sum.

A curious consequence of Theorem 4.1 is the following property of
regular sequences.

COROLLARY 4.1. Let k > 2 be an integer and let u be reqular sequence
such that u(1/k) < 1 and u(0) = 0. Then there exist k regular sequences
Uty ... ,ug such that u;(1/k) <1 and

k

Proof. Tt is a simple consequence of Theorem 4.1. Indeed, if X is a
regular prefix code on the k element alphabet A, then X = Y7 _,aX,
where each X, is a regular prefix code on the alphabet A. O

We don’t know of a direct proof of this result.
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5. Bifix codes. We investigate here the length distributions of a par-
ticular class of prefix codes, called bifix. Several other classes of prefix
codes could give rise to a similar study (for a description to these classes,
see [19]).

The definition of a suffix code is symmetric to the definition of a prefix
code. It is a set of words X such that no element of X is a suffix of another
one. The notion of a complete suffix code is also symmetric. A bifix code
is a set X of words which is both a prefix and a suffix code.

Any set of words of fixed length is obviously a bifix code but there are
more complicated examples.

Fi1G. 6. The bifiz code X.

EXAMPLE 13. The set
X = {aaa, aaba, aabb, ab, baa, baba, babb, bba, bbb}

is a complete prefix code pictured in Figure 6. It is also a complete suffiz
code as one may check by reading its words backwards.

Surprisingly, it is an open problem to characterize the length distri-
butions of bifix codes. The following simple example shows that they are
more constrained than those of prefix codes.

EXAMPLE 14. The sequence u(z) = z + 222 is not realizable as the
length distribution of a bifix code on a binary alphabet although u(1/2) = 1.
Indeed, one of the symbols has to be in X, say a. Then bb is the only word
of length 2 that can be added.

The following nice partial result is due to Ahlswede, Balkenhol and
Khachatrian [3]. We state the result for a binary alphabet. It can be
readily generalized to k symbols but it presents less interest.



14 F. BASSINO, M.-P. BEAL, AND D. PERRIN

THEOREM 5.1. For any integer sequence u such that
u(1/2) <1/2,

there is a bifix code X such that u=ux.

Proof. The proof is by induction. We suppose that we have already
built a bifix code X formed of words of length at most n — 1 with length
distribution (w1, us, ... ,u,—1). We have

n
> w2 <1/2,
i=1
and thus
23 w2 < 2m
i=1

Finally, we obtain
n—1
Uy <27 =23 w2
i=1
The expression of the right handside is at most equal to the number of
elements of the set A™ — X A* — A*X. Thus, we can choose u, words of
length n which do not have a prefix or a suffix in X. This proves the result
by induction. O
The authors of [3] formulate the interesting conjecture that Theorem
5.1 is still true if the hypothesis 4(1/2) < 1/2 is replaced by u(1/2) < 3/4.
There are known additional conditions imposed on length distributions
of bifix codes. For example, one has the following result, originally due to
Schiitzenberger (see [14]).
THEOREM 5.2. If X is a finite complete bifiz code on k symbols, then
ux(1/k) =1 and tu'y(1/k) is an integer.
The number gu’X(l/k) can be interpreted as the average length of the
words of X. Indeed

zu'y (2) = Z |z|21°].
zeX
EXAMPLE 15. For the bifix code of Example 13, we have
ux(2) = 22 +42° + 42°
and thus
u'y (2) = 22 + 1227 + 162°.

Hence 1u/y(1/2) = 3. The conditions of Theorem 5.2 show directly that
the sequence of Example 14 is not realizable. Indeed, it satisfies the first
condition but not the second one. The conditions of Theorem 5.2 are not
sufficient. Indeed, if u(z) = z + 42® we have u(1/2) = 1 and u'(1/2) = 4
although it is clearly impossible that v = ux for a bifix code X.
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6. Zeta functions, subshifts of finite type and circular codes.
In this section, we present a number of results on interrelated objects which
are connected with cyclic permutation of words. We begin with notions
classical in symbolic dynamics (see [25] or [24] for a general reference; see
[13] or [22] for the link with finite automata).

6.1. Subshifts of finite type. A subshift is a set of biinfinite words
on a finite alphabet A which avoids a given set F' of forbidden words. It is
a topological space as a closed subset of the space A” of functions from 7Z
into the set A. The full shift on A is the set of all biinfinite words on A. It
corresponds to the case F' = ().

A sofic subshift is the set of biinfinite labels of paths in a finite au-
tomaton. A sofic subshift is called irreducible if the automaton can be
chosen strongly connected. A subshift of finite type is the set of biinfinite
words avoiding a finite set of finite words. Any subshift of finite type is
sofic but the converse is not, true. The edge shift of a finite graph G is the
set S of biinfinite paths in G (viewed as biinfinite sequences of edges). It
is a subshift of finite type.

The shift o is the function on a subshift S which maps a point = to
the point y = o(z) whose ith coordinate is y; = ;11-

A morphism from a subshift S into a subshift T is a function f : S - T
which is continuous and invariant under the shift. A bijective morphism is
called a conjugacy. Any subshift of finite type is conjugate to some edge
shift.

The entropy h(S) of a subshift S is the entropy of the formal language
formed by the finite blocks occurring in words of S. It can be shown
that the entropy is a topological invariant, in the sense that two conjugate
subshifts have the same entropy.

While the entropy is a measure of number of forbidden words, it is
possible to study the number of minimal forbidden words. It gives rise to
another invariant of subshifts [11], [12].

An integer p is a period of a point x = (ap)nez if anyp = a, for all
n € Z. Equivalently, p is a period of z if 6P(z) = x. The zeta function of
a subshift S, is defined as the series

() =exp Y Ben

n>1

where p,, is the number of words with period n in S. It is also a topological
invariant, since a point of period n is mapped by a conjugacy on a point
of the same period.

The following result due to Bowen and Lanford [18] is classical (see
25]).

PROPOSITION 6.1. Let G be a finite graph and let M be the adjacency
matriz of G. Then

((Sq) = det(I — Mz)~".
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Proof. We first have for each n > 1
TI'(M”) =DPn
since the coefficient (4,7) of M™ is the number of paths from ¢ to j. Thus
— Pn _n
((Sq) = expz o
n>1

_ Te(M™)
= exp Z —
n>1
= exp Tr(log(I — Mz)™")
=det(I — Mz)™!
since, by the formula of Jacobi, exp Tr = det exp. O
EXAMPLE 16. Let S be the edge shift of the graph G of Figure 7. We

have
_|’1 1 0]
R
Consequently
1
C(S):l—z—z3'

Fic. 7. A subshift of finite type

Let S be a subshift of finite type and let p, be the number of points
with period n. Let ¢, be the number of points with least period n. Since
¢n is a multiple of n, we also denote ¢, = nl,,. We have then the formula
expressing the zeta function as an infinite product using the integers [,, as
exponents.

((S) = My>1 (1 —2") 7",

as one may verify using p, = Zdln dly and the definition of ((S).
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A classical result, related with what follows, is the following statement,
known as Krieger’s embedding theorem.

THEOREM 6.1. Let S, T be two subshifts of finite type. There exists
an injective morphism f : S — T with f(S) # T iff

1. h(S) < W(T)
2. for each n > 1, q,(S) < qn(T) where q,(S) (resp. qn(T)) is the
number of points of S (resp. T ) of least period n.

The following result is the basis of many applications of symbolic dy-
namics to coding. It is due to Adler, Coppersmith and Hassner [2].

THEOREM 6.2. If S is an irreducible subshift of finite type such that
h(S) > logk, it is conjugate to a subshift of finite type S where the graph
G has outdegree at least k.

The proof is based on a state-splitting algorithm using approximate
eigenvectors and Lemma 4.1. This result is part of a number of construc-
tions leading to sliding block codes used in magnetic recording (see [29], [9]
or [25]). It gives at the same time the following result.

THEOREM 6.3. It S is a subshift of finite type such that h(S) < logk,
then there is a graph G of outdegree at most k such that S is conjugate to
Sa.

There is a connexion between this theorem and Theorem 4.1. Let
indeed u be a regular sequence of integers such that u(1/k) < 1. Let G
be a normalized graph recognizing u (in the sense of Section 4). Let G
be the graph obtained by merging the initial and terminal vertex. Then
h(Sz) < logk. We can apply Theorem 6.3 to obtain a graph H with
outdegree at most k such that Sg and Sg are conjugate. This gives the
conclusion of Theorem 4.1 provided the initial-terminal vertex did not split
in the construction. The following examples show both cases (for details,
see [6] and [7]).

ExXAMPLE 17. Let G be the graph of Figure 4. The splitting of vertex
2 gives a graph of outdegree 2. A normalization gives the automaton on
the right.

EXAMPLE 18. The sequence of Example 12 is recognized by a graph G
such that G has three cycles of length 2. The solution as a binary tree has
only two cycles of length 2 and thus could not be obtained by state-splitting.

6.2. Circular codes. A circular word, or necklace, is the equivalence
class of a word under cyclic permutation. For a word w, we denote by w
the circular word represented by w.

Let X be a set of words and w = 2125 - - - x,, with z; € X. The set of
cyclic permutations of the sequence (z1,Z2,. .. ,%,) is called a factorization
of the circular word .

A circular code is a set X of words such that the factorization of
circular words is unique.

EXAMPLE 19. The set X = {a,aba} is a circular code. Indeed, the
position of the symbols b determines uniquely the occurrences of aba.
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EXAMPLE 20. The set X = {ab,ba} is not a circular code. Indeed,
the circular word w for w = abab has two factorizations namely (ab, ab)
and (ba, ba).

The following characterization is useful (see [14]).

PROPOSITION 6.2. A set X is a circular code if and only if it is a
code and for all u,v € A*,

uv,vou € X* = u,v € X*

EXAMPLE 21. We obtain another way to prove that the set X =
{ab,ba} is not a circular code. Indeed, otherwise we would have a,b € X*
which is contradictory.

Let X be a finite code. The flower automaton of X, denoted Ay, is
the following automaton. The set of its states is

Q={(u,v) € AT x AT Juv e X} U (1,1)

The transitions are of the form (u,av) = (ua,v) or (1,1) % (a,v) or
(u,a) % (1,1). The unique initial and final state is (1, 1).

EXAMPLE 22. The flower automaton of the circular code {a,aba} is
pictured in Figure 8.

F1G. 8. The flower automaton of {a,aba}.

The following result is easy to prove.

PrOPOSITION 6.3. The flower automaton Ax recognizes X*. The
code X is circular iff for each word w, there is at most one cycle with label
w.

We now study the length distributions of circular codes. Let X be a
circular code and let u(2) = (u,)n>1 be its length distribution. For each
n > 1, let p, be the number of words w of length n such that w has a
factorization in words of X.

PROPOSITION 6.4. The sequences (pp)n>1 and (un)n>1 are related by

Pn 1
Pono = 6.1
exp; n 1—u(z) (6.1)
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Proof. Each (p,) depends only on the first n terms of the sequence
(upn). It is therefore possible to suppose that the sequence (u,) is finite,
i.e. that the code X is finite. Let A be the flower automaton of X. Let S
be the subshift of finite type associated with the graph of A. Then p, is
the number of elements of period n in S. Indeed, each word w such that
w has a factorization is counted exactly once as the label of a cycle in A.
We have also

det(I — Mz) =1— u(z).

Thus, the result follows from Proposition 6.1. O

The explicit relation between the numbers u,, and p,, is the following.
For each i > 1, let u() = (ugf))nzl be the length distribution of X?.
Equivalently, u'}) is the coefficient of degree n of u(z)?. Then for each
n>1

We also have for each n > 1

n—1

Pn = NUy + Zpiun_i. (6.2)

i=1

This formula can be easily deduced from Formula (6.1) by taking the log-
arithmic derivative of each side of the formula. It shows directly that for
any sequence (un)n>1 of nonnegative integers, the sequence p,, defined by
Formula (6.1) is formed of nonnegative integers.

Formula (6.2) is known as Newton’s formula in the field of symmetric
functions. Actually, the numbers u,, can be considered, up to the sign, as
elementary symmetric functions and the p,, as the sums of powers (see [26]).
The link between Witt vectors and symmetric functions was established in
[34].

Let p, = > djn dlg. Then [, is the number of non-periodic circular
words of length n with a factorization. In terms of generating series, we
have

Dn n __ _sn —In
exp Z = H (1=2m)"". (6.3)
n>1 n>1
Putting together Formulae (6.1) and (6.3), we obtain
1
—_— = 1— 2zl 6.4
==TTa-= (6.4)

1—u
n>1

For any sequence (u,),>1 of nonnegative integers, the sequence I = (1,,)n>1
thus defined is formed of nonnegative integers. This can be proved either
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by a direct computation or by a combinatorial argument since any sequence
u of nonnegative integers is the length distribution of a circular code on
a large enough alphabet. We denote | = ¢(u) and we say that [ is the
¢-transform of the sequence u.

We denote by ¢, (k) the number of non-periodic circular words of
length n on k symbols. The numbers ¢, (k) are called the Witt numbers.
It is clear that the sequence (¢n(k))n>1 is the ¢-transform of the sequence
(E")n>1-

The corresponding particular case of Identity (6.4)

1—kz= H (1= z)en(k)

n>1

is known as the cyclotomic identity.
The following arrays display a tabulation of the Witt numbers for small
values of n and k.

n | en(2) | en(3) | ¢n(4)
1 2 3 4
2 1 3 6
3 2 8 20
4 3 18 60
) 6 48 204
6 9 116 670
7 18 312 2340
8 30 810 8160
9 56 | 2184 | 29120
10 99 | 5880 | 104754

The value p3(4) = 20 is famous because of the genetic code: there
are precisely 20 amino-acids coded by words of length 3 over a 4-symbol
alphabet A,C,G,U.

For any sequence a = (an)n>1, let

pa =Y dallt
d|n

The pair (a,p) is called a Witt vector (see [30]). The numbers p,, are the
ghost components. In terms of generating series, one has

exp Z %z” = H (1—a,z")"t.

n>1 n>1

The following result is due to Schiitzenberger (see [14]).
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THEOREM 6.4. Let u = (un)n>1 be a sequence of nonnegative integers
and let | = (In)n>1 be the ¢-transform of u. The sequence (u,)n>1 is the
length distribution of a circular code on k symbols iff for all (n > 1)

In < on(k).

Several complements to Theorem 6.4 appear in [5]. In particular, the
relation with Kraft’s inequality is studied. The equality case in Kraft’s
inequality is characterized in terms of the sequence of inequalities above.

There is a connexion between Theorem 6.4 and Krieger’s embedding
theorem (Theorem 6.1), in the sense that Theorem 6.4 gives a simple proof
of Theorem 6.1 in a particular case. Actually, let us consider the particular
case of subshift of finite type, called a renewal system.

A renewal system S is the edge shift of a graph G made up of cycles
sharing exactly one vertex. Such a graph is determined by the sequence
u = (u;)1<i<n where u; is the number of loops with length i. Let T} be
the full shift on k& symbols. Suppose that the pair formed by S and Ty
satisfies the hypotheses of Krieger’s theorem. The number ¢, (S) of points
of least period n is nl,, where I = (I,,),,>1 is the ¢-transform of the sequence
uw and ¢, (Tk) = nen(k). Thus, the sequence u satisfies the hypotheses of
Theorem 6.4. Consequently, there is circular code X such that ux = u.
The flower automaton of X defines an embedding of S¢ into the full shift
on k symbols. This gives an alternative proof of Krieger’s theorem in this
case.

It would be interesting to have a proof of Krieger’s theorem along the
same lines in the general case.

To close this section, we mention the following open problem: If the
sequence u is regular and satisfies the inequalities

In < on(k) (n>1),

where | = ¢(u), does there exist a rational circular code on k& symbols such
that v = ux?

6.3. Zeta functions. Theorem 6.1 admits the following generaliza-
tion due to Reutenauer [32].

THEOREM 6.5. The zeta function of a sofic subshift is regqular.

We have seen already (Theorem 6.1) that the zeta function of a subshift
of finite type is a rational fraction, and indeed the inverse of a polynomial.
The stronger statement that it is regular follows from the following formula
allowing to compute det(I — M z) when M is the adjacency matrix of a nxn
graph G. One has

det(I — Mz2) = (1 — v (2)) - (1 —v,(2)),

where v;(z) is the length distribution of the set of first returns to state 4
using only states {i,i + 1,... ,n} (see [10]).
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The proof that the zeta function of a sofic subshift is rational is a

result of Manning and Bowen [27], [17]. For an exposition, see [25] or [10].
A generalization appears in [15].
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