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Abstract

We introduce the notion of super-state automaton constructed from
another automaton. This construction is used to solve an open question
about enumerative sequences of leaves of rational trees. We prove
that any N-rational sequence s = (Sn)HZO of nonnegative numbers
satisfying the Kraft inequality >, < s,k™" < 1 is the enumerative
sequence of leaves by height of a k-ary rational tree. This result had
been conjectured and was known only in the case of strict inequality.
We also give new proofs, based on the notion of super-state automata,
to the following known result about enumerative sequences of nodes in
trees: any N-rational series ¢ that has a primitive linear representation,
such that ¢t = 1, Vn > 1,¢, < ki,_1, and whose convergence radius
is strictly greater than 1/k, is the enumerative sequence of nodes by
height in a k-ary rational tree.

1 Introduction

We introduce in this paper the notion of super-state automata, which can
informally be stated as follows. Let A be a finite automaton or a multigraph
(we forget the labeling). A super-state automaton, constructed from the
automaton A, has states composed of unordered lists of states of A such
that the list of followers of all states of a super-state can be partitioned in
super-states. Compared to the automaton A, a super-state automaton often
appears to be a loss of information. Let us now assume that A has an initial



Figure 1: Tree associated to 32%(z%)*

state ¢. We consider the tree that is a development of A from the initial
state: each node of this tree is associate with one state of A, and the sons of
a node are associated to the followers of the state associated to their father,
the root being associated to the initial state of A. This tree is rational as
it has only a finite number of non-isomorphic subtrees. The tree developed
from the super-automaton also appears to be a loss of information compared
to the previous one. Nevertheless, it keeps some interesting properties of the
ordinary tree like the number of leaves or the number of nodes at each height.
As its subtrees are identified to super-states, it can moreover have a more
compact representation.

We use these notions of super-states to solve an open question about
enumerative sequences of integers that can be realized as the enumerative
sequences of leaves in a rational tree. We also give an alternative proof to a
result proved in [4] about enumerative sequences of integers that can be reali-
zed as the enumerative sequences of nodes in a rational tree. These problems
are linked with coding and symbolic dynamics. They can be considered as
extensions of results of Huffman, Kraft, McMillan and Shannon on source
coding.

Let s be an N-rational sequence of nonnegative numbers, that is a se-
quence s = (Sn)nZI such that s, is the number of paths of length n going
from an initial state to a final state in a finite multigraph or a finite au-
tomaton. We say that s satisfies the Kraft inequality for a positive integer
kif >, ~1 spk™™ < 1. If s is the enumerative sequence of leaves of a rational
k-ary tree, then s satisfies Kraft’s inequality for the integer k.

In the first part of this paper, we study the converse of the above
property. Consider for example the series s(z) = 322/(1 — 2%). We have
s(1/2) = 1 and we can obtain s as the enumerative sequence of the tree of
Figure 1 associated with the prefix code X = (aa)*(ab + ba + bb) on the
binary alphabet {a,b}.

Known constructions allow one to obtain a sequence s satisfying Kraft’s
inequality as the enumerative sequence of leaves of a k-ary tree, or as the



enumerative sequence of leaves of a (perhaps not k-ary) rational tree. These
two constructions lead in a natural way to the problem of building a tree
both rational and k-ary. This question was already considered in [12], where
it was conjectured that any N-rational sequence satisfying Kraft’s inequality
is the enumerative sequence of leaves of a k-ary rational tree. The case of
strict inequality was solved in [4]. In this paper, we completly settle the
conjecture and the proof which we give works in both cases.

Proofs and algorithms used to establish the results are based on au-
tomata theory and on the theory of nonnegative matrices. Unlike in [3], we
do not use any symbolic dynamic construction like state-splitting. But we
use basic results of the Perron-Frobenius theory, and a very simple lemma,
that we call the "weight lemma”, due to B. Marcus in [9] (see also [8]),
and already used by R. Adler, D. Coppersmith and M. Hassner in [1] to
construct some finite-state codes with sliding block decoders for constrained
channels.

A variant of the problem consists in replacing the enumerative sequence
of leaves by the enumerative sequence of all nodes. Soittola ([15]) has cha-
racterized the series which are the enumerative sequence of nodes in a ra-
tional tree. The problem of a similar characterization for rational k-ary
trees remains open in the general case. In [3], this question was solved for
N-rational series ¢ that satisfy some necessary conditions, two trivial ones:
to=1,Yn > 1,t, < kt,_1, and a less trivial one, but proved to be necessary
in [3]: the convergence radius of ¢ is strictly greater than 1/k, and another
condition: t has a primitive linear representation. In this case there is a
k-ary rational tree whose enumerative sequence of nodes by height is t.

In the second part of this paper, we give two new proofs of this result.
Again, the proofs are no more based on state-splitting, but on the notion of
super-state automata. With this new method, the trees obtained in a lot of
examples have smaller representations.

2 Super-state automata

Let A be a finite state automaton (@), F'), where () is the set of states and F
the set of edges. In this paper, the labeling alphabet will always be reduced
to one letter, say z, but some definitions can be extended to more general
automata. So the labeling will not be represented on pictures. Automata
can hence be seen as multigraphs, since several edges, (equally labeled),
going from a state p to state g, may exist. Some initial or final states may
also be sometimes specified.



Figure 2: A 6-state automaton A

We now give some basic definitions about trees. A tree T on a set of
nodes N with a root r is a function 7' : N — {r} — N which associates to
each node distinct from the root its father 7'(n), in such a way that, for each
node n, there is a nonnegative integer h such that 7"(n) = r. The integer h
is the height of the node n. A tree is k-ary if each node has at most k sons.
A leaf is a node without son. A tree is said to be rational if it admits only
a finite number of non-isomorphic subtrees.

Let A be an automaton with one initial state. We say that a tree is
the development of the automaton A if it is constructed as follows: its
root corresponds to the initial state of the graph. If a node of the tree at
height n corresponds to a state ¢ in the graph which has r outgoing edges
ending in states ji, j2, ..., Jr, it admits r sons at height n + 1, each of them
corresponding respectively to the states ji,ja,...,7, of the graph. The
development of an automaton is a rational tree. We label the nodes with
their corresponding state in A.

Example Let us consider the 6-state automaton A of Figure 2, with state
1 as initial state. The development T of A is represented in Figure 3. If
we now put in 3 boxes, respectively, the unordered sequences of states (1),
(2,5) and (4,3,6), we get the tree T’ represented in Figure 4, that admits
only 3 non-isomorphic subtrees.

This example introduces the notion of super-states and super-state au-
tomaton. In the previous example, the tree 7”7 is a loss of information
compared to tree T. But it is possible to keep in it informations like the
number of nodes, or leaves at each height, or, more generally, the number of
nodes that have a particular property, at each height. The gain can be, like
here, a more compact representation, since we have transformed a 6-state
automaton into a 3-super-state one. It can also be, as we shall see later, a
way to construct rational trees that satisfy some properties.
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Figure 3: Development T of A
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Figure 4: The tree T’ and a super-automaton



In general, a super-state automaton associated to an automaton A is
an automaton B, whose states, called super-states, are chosen among un-
ordered (or commutative) t-uples (¢ > 1) (q1, ¢z, ...q:) of states of A, and
where the edges are obtained as follows. If ¢ is a state of A, we denote
by u4 the unordered uple obtained by concatenation of the ending states of
edges of A going out of state ¢. If (¢1, g2, . . .¢) is a super-state, we denote by
(g g,...q¢) the unordered concatenation of all ug,, ug,, ..., uy. We then par-
tition g, Ug,,. .., Uq, into unordered uples that are super-states, provided
that such a partition exists. After the choice of the partition, we define the
output edges of state (¢, g2, ...¢) in B as the edges of a multigraph ending
in the super-states of the partition. If a super-state u appears r times in the
decomposition, we have r edges from (q1,¢z,...¢:) to u in the multigraph.
Note that these edges are defined up to the choice of the partition.

In order to establish the first result, we shall use a particular class of
super-state automata, constructed from an automaton A whose states have
a positive integral valuation. We denote by v(q) the valuation of a state .
We also choose and fix a positive integer m.

A super-state automaton, according to the valuation v and the integer
m, is an automaton B = (Q’, E’) whose super-states are unordered (or com-
mutative) t-uples (¢1, ¢z, ...q:) of states of A, with 1 <t < m. We extend
the definition of the valuation to the super-states, and, more generally, to
any t-uple of states, as being the sum of the valuations of their components:

U((q17q27 s 7(]7,‘)) = ZU((]]‘).

J=1
Let (q1,qz,...q:) be a super-state. With the previous notations, U(gy g2,e00)
denotes the commutative concatenation of ug,, ug,, ..., Uy, where u, is the

unordered list of all followers of state ¢. Now we partition wg, 4, .4, In
several unordered t-uples (1 < ¢ < m), in such a way that all parts, but
possibly one, have a valuation divisible by m. Such a partition can be
obtained by applying the following simple lemma, which is a key point in
the state-splitting process used to construct coding schemes for constrained

channels (see [8] and [5]):

Lemma 1 (weight lemma) Let vy, va,...,v, be positive integers. Then
there is a subset S C {1,2,...,m} such that 3_ v, is divisible by m.

Proof: The partial sums vy, v1+vg, v1 +v3+vs, ..., V1 +0s+- - -+ v, either
are all distinct (mod m), or two are congruent (mod m). In the former case,



at least one partial sum must be congruent to 0 (mod m). In the latter,
there are 1 < p < r < m such that

v Fugt v, =v v+ -+ v ( mod m)

Hence vyq1 4+ vpp2 + -+ -+ v, =0 (mod m). O

The partition in super-states can be then obtained as follows: if w(g, 4, .4
has less than or exactly m (unordered) components, there is nothing to do.
If not, consider the first m ones (ry,rg, ..., 7). By the weight lemma, there
is a subset S of {1,2,...,m} such that > ;cqv(r;) is divisible by m. The
t-uple composed of the r;, with ¢ € S, is a super-state that is the first part
of the partition. The process is iterated with the remaining components of
U(gy,g2,...q0)- YVE either get a decomposition in super-states whose valuation
are all equal to zero modulo m, or a decomposition in super-states whose all
but one valuations have this property, the last one being equal to a non-null
value modulo m. After the choice of such a partition, we define the output
edges in B of state (¢1,¢z2,...¢q:) as the edges of a multigraph ending in the
super-states of the partition.

One can here remark that the automaton B is a finite state automaton
since there is only a finite number of super-states. The t-uples are always
unordered. This means that all components commute. A state of A can also

appear several times in a same super-state as different components.

Example The super-state automaton B in Figure 6 is associated to the
automaton A of Figure 5. (We only represent the part accessible from state
1). The valuation of states are represented in squares and the integer m is
equal to the valuation of state 1, that is 3.

[4]
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Figure 5: Automaton A
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Figure 6: The super-state automaton B

3 Rational sequences of nonnegative numbers

This section is devoted to basic definitions about rational sequences. A mini-
mal background about the Perron-Frobenius theory of nonnegative matrices
is also given.

3.1 Definitions and background

We consider sequences of nonnegative numbers. Such a sequence s = (Sn)nZO
will be said to be N-rational if s, is the number of paths of length n going
from a state in I to a state in F in a finite directed graph G, where I and
I are two special subsets of states, the initial and final states respectively.
We say that the triple (G, I, F') is a representation of the sequence s. This
definition is usually given for the series >, < s,2" instead of the sequence
5. Any N-rational sequence s satisfies a recurrence relation with integral
coeflicients. It is however not true that a sequence of nonnegative integers
satisfying a linear recurrence relation is N-rational (see [7] page 93).

A well known result in automata theory allows us to use a particular
representation of an N-rational sequence s. One can choose a representation
(G4, I') of s with a unique initial state ¢, such that no edge is entering state
¢ and no edge is going out from any state of F. Such a representation is
called a normalized representation. Moreover, it is possible to choose the set
of final states reduced to one state (see for example [13] page 14).

If T is a tree, we denote by [(T) its enumerative sequence of leaves by



height, that is, the sequence of numbers s,,, where s, is the number of leaves
at height n. If T is a rational tree, this sequence is N-rational.

The sequence s = [(T) of a k-ary tree is the length distribution of a
prefix code over a k-letter alphabet. The associate series s(z) = Y, 50 S, 2"
satisfies then the Kraft inequality: s(1/k) < 1. We shall say that the Kraft
strict inequality is satisfied when s(1/k) < 1. The equality is reached when
each node of the tree has exactly zero or k sons. Conversely, the McMillan
construction establishes that for any series s satisfying the Kraft inequality,
there is a k-ary tree such that s = {(T"). Moreover, if the series satisfies the
Kraft equality, then the internal nodes will have exactly & sons. But the
tree obtained is not rational in general.

It is easy to see that an N-rational sequence s is the enumerative se-
quence of leaves of a rational tree. This one can be obtained by developing
a normalized representation of s (see section 2). The leaves of this tree cor-
respond to the final states of the normalized representation. The maximal
number of sons of a node is then equal to the maximal number of edges
going out from any state of the graph of this representation.

Even if the sequence s satisfies the Kraft inequality, the above construc-
tion does not lead in general to a k-ary rational tree. The aim of the first
result of this paper is to get a k-ary rational tree 7' such that s = [(T).
This result was conjectured in [12] and proved in [4] in the case of strict
inequality. We shall settle it here in all cases by making use of super-state
automata. Unlike the construction we gave in [4] and [3] to solve the case
of strict inequality, this new method does not use any state splitting pro-
cess or any symbolic dynamic construction. This proof appears to be better
than the previous one for two reasons. First, it allows to solve the case of
equality. Second, the rational tree obtained has, in a lot of cases, a more
compact rational representation.

3.2 Approximate eigenvector

Let s be an N-rational sequence and let (G, ¢, F') be a normalized represen-
tation of s. If we identify the initial state ¢ and all final states of F' in a
single state still denoted 7, we get a new graph denoted (&, which is strongly
connected. The sequence s is then the length distribution of the paths of
first returns to state 7, that is of finite paths going from 7 to ¢ without going
through state i. Using the terminology of symbolic dynamics, the graph G
can be seen as an irreducible shift of finite type (see, for example, [5], [6] or
).

We denote by M the adjacency matrix associated to the graph G, that is



the matrix M = (mz’j)lgi,jgm where n is the number of nodes of G' and where
m;; is the number of edges going from state ¢ to state j. By the Perron-
Frobenius theorem (see [8]), the nonnegative matrix M associated to the
strongly connected graph G has a positive eigenvalue of maximal modulus
denoted by A, also called the spectral radius of the matrix. Actually, A only
depends on the series s, since 1/X is the minimal modulus of the poles of
1/(1 = s). It is known that the series s satisfies Kraft’s strict inequality
s(1/k) < 1 (resp. equality s(1/k) = 1) if and only if A < k (resp. A = k).

The dimension of the eigenspace of A is equal to one. There is a positive
eigenvector (componentwise) associated to A. When A is an integer, the
matrix admits a positive integral eigenvector. When A < k, where k is an
integer, the matrix admits a k-approzimate eigenvector, that is, by definition,
a positive integral vector v with Mv < kv.

We shall compute approximate eigenvectors for the irreducible graphs G
associated to normalized representations (G, ¢, T') of sequences. We associate
to each node of GG a value equal to the corresponding component of the
approximate eigenvector of the graph G. The initial and the final states
will have same value since they correspond to the same state of G. The
computation of an approximate eigenvector can be obtained by the use of
Franaszek algorithm (see for example [4]).

4 Enumerative sequence of leaves

We now state and prove, by the use of super-state automata, the first result
about the enumerative sequences of leaves of rational trees:

Theorem 1 Let s = (s,),>1 be an N-rational sequence of nonnegative inte-
gers et let k be an integer such that 3,1 s,k™" < 1. Then there is a k-ary
rational tree such that s is the enumerative sequence by height of its leaves.

Proof: We consider an N-rational sequence s and an integer k such that
Yot Snk™" < 1. We begin with an automaton A = (G, ¢, F), which is a
normalized representation of s. We denote by M the adjacency matrix of
G, and by ) its spectral radius. Hence A\ < k. We compute a k-approximate
eigenvector v .= (v1,vy,...,0,)" of the graph G. By definition, we have
Mv < kv. We consider v as a valuation, denoted by v, of the states of A.
We define a super-state automaton B associated to the automaton A,
the valuation v, and the integer (used for the congruence) m = v;, where @
is the initial state of A. We consider now the part of B accessible from the
initial super-state which has, as unique component, the initial state of A.

10



Let u be a super-state. Recall that v(u) is the sum of the valuations
of all components of u. If u is composed of n; states j of A, we have
v(u) = > <jcn v We associate to each super-state u another integer,

denoted by w(u), and defined by:

w(u) = [v(u)/m].

Note that w(i) = 1.
Let us now suppose that u has t outgoing edges ending in the super-states

uy, ..., u;. Thesum of the valuations of uy, ..., usis equal to 3°; <, 7 (MV);.
As Mv < kv, we have (Mv); < kv;,Vj. We get:

Z v(u;) < kv(u),

Z_:v (uj)/m~+v(u)/m < kvo(u)/m,

By construction of the super-state automaton, v(u;)/m is an integer for
1 <j<(t—1). Hence we have:

t—1

v(ug)/m+ [v(u)/m] < kfv(u)/m].

1

J

Finally, we obtain:

Zt:w < kw(u)

Jj=1

We now consider the development of the multigraph B. In order to
get a k-ary rational tree, admitting s as enumerative sequence of leaves, we
associate to each super-state u, at any height, r = w(u) nodes. Since r nodes
at height [ have at most kr sons at height [ 4+ 1, corresponding to the nodes
associated to the super-states followers of u, it is possible to associate to
each one k sons at the next height. The initial super-state itself corresponds
to one node, the root of the tree. The tree is then k-ary.

The case of equality in the Kraft inequality appears to be just a particular
case of the above construction. It means that we can only consider super-
states whose valuation is divisible by m. The vector v is then an eigenvector:
Mv = kv. If a super-state u has t outgoing edges ending in the super-states
U1, ..., U, by construction of the super-state automaton, the valuations
v(uy), v(ug),...,v(ui1) of the super-states are equal to zero modulo m.

11



As Mv = kv, v(u) also is divisible by m. Therefore the valuations of all
super-states in the tree are divisible by m.

We choose to always leave alone the final states of A in a super-state.
This is possible since their valuation is equal to v(¢) = m. The leaves of the
tree are then the nodes corresponding to a final state of A.

As there is only a finite number of super-states, the tree is rational. [

Example Let s be the series defined by:

2 2

G =aT Ty

A normalized representation of s is given by the automaton A of Figure 5
(p. 7). In this figure, the valuation v(q) of a state ¢ is given in the square
besides the representation of the state. Note that the final state 4 has same
valuation (v(4) = 3) as the initial state 1.

A k-ary rational tree T, whose enumerative sequence of leaves is s, is
given in Figure 7. In this figure, the components of the super-states are
given inside the states. The number of small black balls above a super-state
w is the number w(u) = [v(u)/3] of nodes of the tree represented by u. The
final state 4 corresponds to the leaves of the tree.

5 Enumerative sequence of nodes

In this section, we give two new proofs of the existence of a k-ary rational tree
whose enumerative sequence of nodes by height is an N-rational sequence
t that satisfies some necessary conditions like g = 1 and Vn > 1, t, <
kt,_1, its convergence radius strictly greater than 1/k, and another one:
t has a primitive linear representation. This result has been obtained in
[3] by making use of dynamic operations as an extended notion of state-
splitting. The alternative proofs we give here are based on the construction
of a super-state automaton. The first one does not lead, in general, to
an easier construction, but it appears to be very efficient in a lot of cases.
The construction which we obtain with the second proof is always simpler
than the one obtained with the proof given in [3]. The trees which we
have obtained in the examples with this new method have very compact
representations.

Let ¢t be an N-rational series. A linear representation of t is a triple
(I, M, c), where 1 is a nonnegative integral row vector, ¢ is a nonnegative
integral column vector, and M is a nonnegative integral matrix, with:

Yn >0, t, =1IM"c.

12



Figure 7: Tree T
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The linear representation is said to be irreducible (resp. primitive) if M is
an irreducible (resp. primitive) matrix. Recall that a nonnegative matrix is
irreducible if for all indices 1, j, there is an integer m such that (M™);; > 0.
The matrix is primitive if there is an integer m such that M™ > 0. Equiva-
lently, the adjacency matrix of a strongly connected graph G is irreducible,
and it is primitive if, moreover, the g.c.d of lengths of cycles in G is 1.

Let M be a n x n primitive matrix whose spectral radius is A < k, where
k is a positive integer. Let p a positive real such that A < p < k. We will
denote by S, and Sj the following sets of nonnegative real vectors:

S, = {v e (RY)" | Mv < v}

Sp={ve RN | Mv < kv}.

We have S, C Si. Furthermore, the two sets are two simplex cones. As a
consequence, they both satisfy the following properties:

veS = VpeRT pves, (1)
v,ves = v+ves. (2)

Using the above notations, we state and prove the following lemma:

Lemma 2 There is a finite subset P of integral vectors of the greater cone
Sk such that all integral vectors of the smaller one S, is the sum of vectors

of P.

This means that the integral vectors of the big cone are finitely generated
by integral vectors of the small one. The set P constitutes a Petri net for
which all integral points of 5, are accessible (see [14] for these notions).

In the geometrical proof below, we shall denote by v a point of (R*)".
If v.and w are two points, (w — v) can be seen either as a point or as the
vector going from v to w.

Proof: Let r be a positive integer. We denote by H, the hyperplane
of points v such that v, = r. As the simplex S, and Sj are cones, the
hyperplanes that limit them are not parallel to H,.

As p < k, there is a large enough r such that for each (real) point p in
H,NS,, one can find an integral point uin H,NS, such that u’ = p+(p—u)
belongs to H, NS,.

We denote by P the finite set of all integral points v = (vy,...,v,) of
S; located under the hyperplane Hs,., that is such that v, < 2r. We are
going to show that all integral points of S, are finitely generated by P.

14



Let us assume that the property is false, and denote by w an integral
point of S, which is not the sum of integral points of P. Suppose that it is
one of the closest points to the hyperplane H, that has this property. Then
w does not belong to P, and its last component is greater then 2r. Let p
be the intersection of H, and the semi-line defined by the vector w and the
origin. Let u and u’ be defined as previously. We set w' = w—u. Then w' is
an integral point which is closer to H, than w. As p and w are two colinear
vectors with ||p|| < ||w]|, and as S, satisfies the above properties (1) and
(2), we have that w = w — p+ (p — u) belongs to S,. This contradicts the
hypothesis, concluding the proof of this lemma. OJ

Figure 8: The geometrical lemma

We now prove the result about the enumerative sequences of nodes of
rational trees. Let T be a tree. We define the enumerative sequence t of
nodes by height of the tree 7" by ¢t = (t,),>0, wWhere ¢, is the number of
nodes of T" at height n.

15



Theorem 2 Let t(z) =Y, 5otn2" be an N-rational series such that:
° to =1.
e Vn>1,t, <kt,_1.

the convergence radius of t is strictly greater than 1/k (k € N*).

e 1 has a primitive linear representation.

Then (t,),>0 is the enumerative sequence of nodes by height in a k-ary
rational tree.

First proof: We denote by 1/X the convergence radius of ¢t. Let i, M, ¢ be
matrices with nonnegative integral entries such that (i, M, ¢) is a primitive
linear representation of ¢, i.e.

Yo >0, (,=iM"c.

This representation defines an automaton A with n states, where M is
the adjacency matrix of the multigraph.

As the matrix M is primitive with spectral radius A, the sequence ((M/A)"), <,
tends towards a positive matrix N. Let u be a real such that A < u < k.
Let S, and Sj be the simplex cones defined as follows:

S, = {x € (RY)" | xM < px}

Sp={xe (RN | xM < kx}.

Note for example that Sy = {x € (RT)" | M'x" < px'}. We obtain by
the geometrical lemma a finite set P of integral points of S} generating the
integral points of S,,. Since P is a finite set, there is an integer ng such that:

Vx € PU({i}, xM™ € 5,.

We define a super-state automaton B associated to the automaton A. In
order to do that, we identify a nonnegative integral vector x = (21, ..., %,)
to a t-uple composed of z; states j of A, for all 1 < j < n. We now define
the super-states of B as the integral points of U?ial{xMj,x € PU{i}}.
Note that there is a finite number of such points. If u is a super-state in
U?iaz{xMj,x € P U{i}}, we define the list of its followers in B as the
unique super-state uM. If u is a super-state in {xM™ "1 x ¢ PU{i}}, uM
belongs to S,. As a consequence of the geometrical lemma, it is a sum of
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points uy,...,uy € P. We define the list of the super-states followers of u
as Uy, ..., Ug.

If u is a super-state, we claim that either u is one of the points of
{iM7,0 < j < (ng— 1)}, or u € Si. Actually if u = iM™ it belongs to
Sy C Sk. And if u € Sy, uM’ € S, Vi > 1.

We define a tree rooted by the initial super-state i, by developing the
super-state automaton B. We associate to each super-state u an integer
w(u) defined as the weighted number of final states contained in the super-
state u:

w(u) =u-c,
where ¢ is the column vector of the linear representation of t. If u € Sy,
uM < ku, and uM -¢c < ku-c. If u = iM’,0 < j < (ng — 1), w(u) =
iMic = t;. AsVj > 1,t; <ktj_1, uM -c < ku-c. Hence we get that for
any super-state u whose followers in B are the super-states uy,..., uy:

¢
uMc:ZUj-cgku-c

=1
or equivalently:
¢
Z w(yy) < kw(u).
=1

Thus to each super-state u is associated w(u) nodes. Since r nodes at
a height [ have at most kr sons at height [ 4+ 1, corresponding to the nodes
associated to the super-states followers of u, it is possible to associate to
each one at most k sons at the next height. The initial super-state itself
(1) corresponds to one node, the root of the tree, since i-¢ =ty = 1. This
defines a k-ary rational tree T" admitting ¢ as enumerative sequence of nodes

by height. [J

Example Let ¢ be the series, which has the automaton of Figure 9 as

f RS

gomomo

Figure 9: Primitive representation of ¢

primitive representation. Its convergence radius is greater than 1/k, where
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k =2. We have i = (1,0,0) and ¢ = (1,0,0)". The adjacency matrix of the
graph is

M =

o = =
—_ O =
o = O

The simplex cone S, = {x € (RT)" | xM < kx} is the set of points
x = (21,22, x3) with:

T2 < @y
Ty < 2x3
ry+a3 < 2w

A tree, whose enumerative sequence of nodes is ¢, is given in the left part of
Figure 10. Note that the super-states (1) and (1,2) are not in S;. Another
one is given in the right part of Figure 10. This tree has only 3 super-
states and also only 3 non-isomorphic subtrees. We can remark that such
a compact representation could not be obtained on this example with the
alternative state-splitting proof given in [3].

We now give a second proof, based on super-state automata, for the
same result.
Second proof: We denote by 1/ the convergence radius of t. Let i, M, ¢
be matrices with nonnegative integral entries such that (i, M, ¢) is a primi-
tive linear representation of ¢, i.e.

Vn > 0, t, =1M"c.
As M is primitive, there is an integer ng such that M"™ ¢ belongs to S; =
{x € (RT)" | Mx < kx}:
MM™e < kEM™c

Let us denote by d = M"™¢, and by ¢ the sequence obtained from ¢ by ng
shifts:
Yn > 0, t = tpyn, = IM"M™c =iM"d.
The sequence t' admits (i, M, d) as primitive linear representation. We call
A the multigraph whose adjacency matrix is M. We have tj =t,, =1i-d.
We define a super-state automaton B whose states contain only one
occurence of one state of A. Note that the number of super-states is equal
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Figure 10: Two trees solution
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to the number of states of A. The followers of a super-state is then the list
of its followers in A.

We define a tree rooted by the initial super-state i, by developing the
super-state automaton B. We associate to each super-state u an integer
w(u) defined as the weighted number of final states contained in the super-
state u:

w(u) =u-d.

As Md < kd, we get for each super-state u:
uMd < ku-d.

Hence we get that for any super-state u whose followers in B are the super-
states uy,...,ug:

¢
uMd:ZUj-dgku-d

i=1
or equivalently:

w(yy) < kw(u).

t
=1

J

We associate to each super-state u w(u) nodes. The initial super-state
itself (i) corresponds to ¢,, nodes, since i-d = ¢,,,. As r nodes at a height [
have at most kr sons at height [ 4+ 1, corresponding to the nodes associated
to the super-states followers of u, we associate to each one at most & sons
in such a way that any node at the next height has one father. We finally
complete the first ng levels to get a k-ary rational tree T admitting ¢ as
enumerative sequence of nodes by height. [J
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