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Beta-expansions for 
ubi
 Pisot numbersFr�ed�erique BassinoI.G.M., Universit�e de Marne La Vall�ee77454 Marne-la-Vall�ee Cedex 2. Fran
ee-mail: bassino�univ-mlv.frAbstra
t. Real numbers 
an be represented in an arbitrary base � > 1using the transformation T� : x ! �x (mod 1) of the unit interval; anyreal number x 2 [0; 1℄ is then expanded into d�(x) = (xi)i�1 wherexi = b�T i�1� (x)
.The 
losure of the set of the expansions of real numbers of [0; 1[ is asubshift of fa 2 N j a < �gN, 
alled the beta-shift. This dynami
alsystem is 
hara
terized by the beta-expansion of 1; in parti
ular, it isof �nite type if and only if d�(1) is �nite; � is then 
alled a simplebeta-number.We �rst 
ompute the beta-expansion of 1 for any 
ubi
 Pisot number.Next we show that 
ubi
 simple beta-numbers are Pisot numbers.Introdu
tionRepresentations of real numbers in an arbitrary base � > 1, 
alled beta-expan-sions, have been introdu
ed by R�enyi ([14℄). They arise from the orbits of thepie
ewise-monotone transformation of the unit interval : T� : x ! �x (mod 1).Su
h transformations were extensively studied in ergodi
 theory ([13℄).More pre
isely, any real number x 2 [0; 1℄ is expanded into d�(x) = (xi)i�1where xi = b�T i�1� (x)
. The nonnegative integers di are elements of the digitalphabet A = fa 2 N j a < �g. These representations generalize standardrepresentations in an integral base to a real base; indeed the beta-expansion ofany real number of [0; 1[ 
an equivalently be obtained by the greedy algorithm.Only the beta-expansion of 1 di�ers.Properties of beta-expansions are strongly related to symboli
 dynami
s ([4℄).The 
losure of the set of in�nite sequen
es, appearing as beta-expansions ofnumbers of the interval [0; 1[, is a dynami
al system, that is, a 
losed shift-invariant subset of AN, 
alled the beta-shift.An important property of the beta-shift is that its nature is entirely deter-mined, in a 
ombinatorial manner, by the beta-expansion of 1: the beta-shift isso�
, that is to say the set of its �nite fa
tors is re
ognized by a �nite automaton,if and only the beta-expansion of 1 is eventually periodi
 ([3℄); it is of �nite type,that is to say the set of its �nite fa
tors is de�ned by forbidding a �nite set ofwords, if and only if the beta-expansion of 1 is �nite ([12℄).When the beta-expansion of 1 is eventually periodi
, � is 
alled a beta-numberand when the beta-expansion of 1 is �nite, � is said to be a simple beta-number.



The eventually periodi
 beta-expansions were extensively studied by Ber-trand ([3℄) and by S
hmidt ([15℄). In parti
ular, it is known that Pisot numbersare beta-numbers. Con
erning Salem numbers, we only know that if � is a Salemnumber of degree 4, then the beta-expansion of 1 is eventually periodi
 ([5℄). Itis 
onje
tured that Salem numbers of degree 6 are still beta-numbers, but notall Salem numbers of degree 8 ([7℄).The domain of the Galois 
onjugates of all beta-numbers was also investigatedindependently by Solomyak ([16℄) and by Flatto, Lagarias and Poonen ([8℄).For a general presentation of the beta-shift one 
an refer to [9℄.In the following, we summarize properties of beta-numbers. We 
ompute thebeta-expansion of 1 for any 
ubi
 Pisot number and we establish a 
hara
teriza-tion of 
ubi
 simple beta-numbers, showing that they are Pisot numbers.A very 
lose problem, seen from the point of view of numeration systems, wasstudied by Akiyama ([1℄). He showed that in the 
ubi
 
ase, the real numbers ofthe set N[��1 ℄ have a �nite beta-expansion if and only � is a Pisot unit and 1has a �nite beta-expansion. This �niteness problem is equivalent to a problemof fra
tal tiling generated by Pisot numbers.1 Beta-numbersReal numbers 
an be represented in an arbitrary base � > 1 using the trans-formation T� : x ! �x (mod 1) of the unit interval; any real number x 2 [0; 1℄is then expanded into d�(x) = (xi)i�1 where xi = b�T i�1� (x)
. When a beta-expansion is of the form uv!, the expansion is said to be eventually periodi
. Ifa representation ends with in�nitely many zeros, like u0!, it is said to be �niteand the ending zeros are omitted.Let us denote by S� the 
losure of all beta-expansions of real numbers of[0; 1[ and by � the (one-sided) shift de�ned by �((xi)i�1) = (xi+1)i�1. The setS� endowed with the shift is 
alled the beta-shift, it is a subshift of AN, A beingthe digit set, i.e., A = fa 2 N j a < �g.An important property ([13℄) of the beta-shift S� is that its nature is entirelydetermined by d�(1) the beta-expansion of 1. Indeed, setting d�(1) = d�(1) ifd�(1) is in�nite and d�(1) = (d1d2 : : : dn�1(dn � 1))! if d�(1) = d1d2 : : : dn�1dn,a sequen
e x of nonnegative integers belongs to S� if and only if it satis�es thefollowing lexi
ographi
al order 
onditions: 8p � 0; �p(x) � d�(1).Re
all that the beta-expansion of 1 also 
an be 
hara
terized ([13℄) by lexi
o-graphi
al order 
onditions: let d = (di)i�1 be a sequen
e of nonnegative integersdi�erent from 10!, su
h thatPi�1 di��i = 1, with d1 � 1 and for i � 2, di � d1,then d is the beta-expansion of 1 if and only if for all p � 1, �p(d) < d.We re
all that an algebrai
 integer � stri
tly greater than 1 is 
alled a Perronnumber if all its Galois 
onjugates have modulus stri
tly less than �, a Pisotnumber if all its Galois 
onjugates have modulus stri
tly less than 1, and aSalem number if all its 
onjugates are less than 1 in modulus and at least one
onjugate has modulus 1.



Let � be a beta-number. Denote by d�(1) = d1 : : : dn(dn+1 : : : dn+p)!, wheren and p are 
hosen minimal, the beta-expansion of 1. Then the adja
en
y matrixM� of the �nite automaton re
ognizing the set of its �nite fa
tors (Fig.1) is aprimitive (i.e., its asso
iated graph is strongly 
onne
ted and the lengths of its
y
les are relatively prime) nonnegative integral matrix whose spe
tral radius is�; so, from the Perron-Frobenius theorem, � is a Perron number.
1 2 3 n n+pn+1

  

0; 1; : : : ; d1 � 1d1 d2
0; : : : ; dn � 10; : : : ; d3 � 10; : : : ; d2 � 1

0; : : : ; dn+p � 10; : : : ; dn+1 � 10; : : : ; dn+p�1 � 1
dn+p�1dn+p

Fig. 1. Automaton re
ognizing the set of the �nite fa
tors of S�The 
hara
teristi
 polynomial of M�P (X) = Xn+p � n+pXi=1 diXn+p�i �Xn + nXi=1 diXn�iis 
alled, following the terminology introdu
ed by Hollander ([11℄), the asso
iatedbeta-polynomial.As P is a multiple of the minimal polynomialM� of �, P (0) = dn+p�dn is amultiple of jM�(0)j = jQ�ij, where �i runs over the set of algebrai
 
onjugatesof �. So, we get that jQ�ij has to be smaller than b�
.As a 
onsequen
e, in the quadrati
 
ase, the only beta-numbers are the Pisotnumbers. Conversely, it is known that if � is a Pisot number then � is a beta-number ([2℄). An important gap remains between Pisot and Perron numbers.Example 1. The quadrati
 number � = (1 +p13)=2 is not a beta-number sin
eM�(X) = X2 �X � 3 and M�(0) > b�
.



Let � be the Pisot number (3+p5)=2, then � is a beta-number and d� = 21!.Let � be the golden ratio (1 + p5)=2, then � is a simple beta-number andd�(1) = 11.On the other hand, the domain of the Galois 
onjugates of beta-numbers wasstudied by Solomyak ([16℄) and independently by Flatto, Lagarias and Poonen([8℄). They showed in parti
ular that if the beta-expansion of 1 is eventuallyperiodi
 then the Galois 
onjugates of � have modulus less than the golden ratio(1+p5)=2. It was already known (see [9℄) that � 
annot have a Galois 
onjugategreater than 1.Solomyak ([16℄) proved that the topologi
al 
losure of 
onjugates of beta-numbers and the one of 
onjugates of simple beta-numbers are the same. How-ever, there is an important di�eren
e between the 
onjugates of beta-numbersand the ones of simple beta numbers: if � is a simple beta-number then � hasno algebrai
 
onjugate that is a nonnegative real number.Indeed, let � be a simple beta-number and set d�(1) = d1 : : : dn. Consider
1 2 3 n−1 n

  

0; 1; : : : ; d1 � 1
0; : : : ; d3 � 10; : : : ; d2 � 1 dn�1

0; : : : ; dn�1 � 10; : : : ; dn � 1
d1 d2

Fig. 2. Automaton re
ognizing the set of the �nite fa
tors of S�the �nite automaton re
ognizing the set of the �nite fa
tors of the asso
iatedbeta-shift (Fig. 2). Let M� be the transition matrix of this automaton. The
hara
teristi
 polynomial of M�, whi
h is 
alled the asso
iated beta-polynomial,P (X) = Xn � nXi=1 diXn�ihas only one positive real root.



Example 2. Salem numbers are roots of re
ipro
al polynomials. Thus if � is aSalem number, 1=� > 0 is a Galois 
onjugate of �, and so � is not a simplebeta-number.The previous 
onditions are suÆ
ient for a quadrati
 algebrai
 integer to bea simple beta-number.Proposition 1. [10℄ The simple beta-numbers of degree 2 are exa
tly the qua-drati
 Pisot numbers without a positive real Galois 
onjugate. They are the pos-itive roots of the polynomialsX2 � aX � b with a � b � 1;The beta-expansion of 1 is then d�(1) = ab.Example 3. The minimal polynomial of (1 +p5)=2 is X2 �X � 1, (1 +p5)=2is a simple beta-number and d�(1) = 11.The minimal polynomial of (3+p5)=2 is X2� 3X +1, therefore (3+p5)=2is not a simple beta-number.2 Beta-expansions of 1 for 
ubi
 Pisot numbersLet us re
all the 
hara
terization of 
ubi
 Pisot numbers due to Akiyama ([1℄)Theorem 1 (Akiyama [1℄). Let � > 1 be a 
ubi
 number and letM�(x) = X3 � aX2 � bX � 
be its minimal polynomial.Then � is a Pisot number if and only if it both inequalitiesjb� 1j < a+ 
 and (
2 � b) < sgn(
)(1 + a
)hold.Remark 1. Note that a must be a nonnegative integer.The following theorem gives the �-expansion of 1 for any 
ubi
 Pisot number.Theorem 2. Let � be a 
ubi
 Pisot number and letM�(x) = X3 � aX2 � bX � 
be its minimal polynomial. Then the beta-expansion of 1 is{ Case 1 : When b � a, then d�(1) = (a+ 1)(b� 1� a)(a+ 
� b)(b� 
)
.{ Case 2: When 0 � b � a, if 
 > 0, d�(1) = ab
, otherwise,d�(1) = a[(b� 1)(
+ a)℄!:



{ Case 3: When �a < b < 0, if b+ 
 � 0, then d�(1) = (a� 1)(a+ b)(b+ 
)
,otherwise d�(1) = (a� 1)(a+ b� 1)(a+ b+ 
� 1)!{ Case 4: When b � �a, let k be the integer of f2; 3; : : : ; a � 2g su
h that,denoting ek = 1� a+ (a� 2)=k, ek � b+ 
 < ek�1.� If b(k � 1) + 
(k � 2) � (k � 2)� (k � 1)a, d�(1) = d1 : : : d2k+2 withd1 = a� 2;dk+2�i = �(k + 3� i) + a(k + 2� i) + b(k + 1� i) + 
(k � i); 3 � i � kdk = �k + ak + b(k � 1) + 
(k � 2)dk+1 = �(k � 1) + ak + bk + 
(k � 1)dk+2 = �(k � 2) + a(k � 1) + bk + 
kd2k+2�i = �(i� 2) + a(i� 1) + bi+ 
(i+ 1) k � 3; 2 � i � (k � 1)d2k+1 = b+ 2
 and d2k+2 = 
:� If b(k � 1) + 
(k � 2) > (k � 2)� (k � 1)a, let m be the integer de�nedby m = minfi 2 N su
h that (i+ 1)b+ i
 > i� (i+ 1)ag.When m = 1, d�(1) = (a�2)(2a+b�2)(2a+2b+
�2)(2a+2b+2
�2)!.When m > 1, d�(1) = d1d2 : : : dm+2d!m+3, withd1 = a� 2; d2 = 2a+ b� 3;dm+3�i = 2a+ b� 3 + (m+ 1� i)(a+ b+ 
� 1) m � 3; 3 � i � m;dm+1 = 2a+ b� 2 + (m� 1)(a+ b+ 
� 1);dm+2 = a+ b� 1 +m(a+ b+ 
� 1);dm+3 = (m+ 1)(a+ b+ 
� 1):Example 4. When a � b � 0 and 
 > 0, we obtain the only beta-expansion of 1of length 3.The smallest Pisot number has M� = X3�X � 1 as minimal polynomial, itis a simple beta-number and d�(1) = 10001.The positive root � of M� = X3 � 3X2 + 2X � 2 is a simple beta-numberand d�(1) = 2102.The 
ase where b � �a shows that from a 
ubi
 simple beta-number, we 
anobtain an arbitrary long beta-expansion of 1. For any integer k greater than orequal to 2, the real root � of the irredu
ible polynomialX3�(k+2)X2+2kX�k,is a simple beta number whose integer part is equal to k, and the beta-expansionof 1 has length 2k + 2. For k = 2, we get d�(1) = 221002; for k = 3, we getd�(1) = 31310203.Example 5. The greatest positive root � of M� = X3 � 2X2 �X + 1 is a beta-number and d�(1) = 2(01)!.If � is the positive root of X3 � 5X2+3X � 2 , then d�(1) = 413!. When �is the greatest positive root of X3 � 5X2 +X + 2 , then d�(1) = 431!.For any integer k greater than or equal to 3, the real root � of the irredu
iblepolynomial X3� (k+2)X2+(2k�1)X� (k�1), is a beta number whose integerpart is equal to k, and the beta-expansion of 1 is eventually periodi
 of period



1, the length of its preperiod k. For k = 3, we get d�(1) = 3302!; for k = 4, weget d�(1) = 42403!.Proof. It is known that Pisot numbers are beta-numbers, thus, for any 
ubi
Pisot number �, the beta-expansion of 1 is �nite or eventually periodi
. In any
ase, we �rst 
ompute the asso
iated beta-polynomial P . Next we prove that thesequen
e d = (di)i�1 of nonnegative integers obtained from the beta-polynomialsatisfy lexi
ographi
al order 
onditions: for all p � 1, �p(d) < d.First of all, we re
all that, from Theorem 1, a 
ubi
 number �, greater than1 and having M�(X) = X3 � aX2 � bX � 
as minimal polynomial, is a 
ubi
 Pisot number if and only if it bothjb� 1j < a+ 
 and (
2 � b) < sgn(
)(1 + a
)hold.Denote by Q the 
omplementary fa
tor of the beta-polynomial P de�ned byP (X) = M�(X)Q(X). As we shall see in what follows, the value of Q dependsupon the value of the 
oeÆ
ients of M�.Case 1: When b > a, as � is a Pisot number, from Theorem 1, 
 is a positiveinteger. In this 
ase, the 
omplementary fa
tor is Q(X) = X2 � X + 1 andd�(1) = (a+ 1)(b� 1� a)(a+ 
� b)(b� 
)
.Indeed, as (
2 � b) < sgn(
)(1 + a
) and 
 > 0, we get 
 � a + 1. Asjb� 1j < a+ 
, we get b� 1� a � a and 0 � a� b+ 
. From b > a, we get that0 � b� a� 1 and, as 
 � a+1, that a� b+ 
 � a. Finally as 0 � a� b+ 
 � a,we obtain 0 � b� 
 � a.Case 2: When 0 � b � a, the 
omplementary fa
tor is then Q(X) = 1 andthe asso
iated beta-polynomial is equal to the minimal polynomial.If 
 > 0, then d�(1) = ab
. Indeed, as (
2� b) < sgn(
)(1+a
), we get 
 � a.If 
 < 0, then d�(1) = a[(b � 1)(a + 
)℄!. As jb � 1j < a + 
 , we getb�1 � a�2. As (
2�b) < sgn(
)(1+a
), we get that 
 � �a and, 
onsequently,0 � 
+ a � a� 1.Case 3: When �a < b < 0, if b + 
 � 0 then the 
omplementary fa
tor isQ(X) = X + 1 and d�(1) = (a � 1)(a + b)(b + 
)
. Indeed, as �a < b < 0,we obtain 1 � a + b � a � 1. Sin
e b + 
 � 0, 
 is a positive integer. From(
2 � b) < sgn(
)(1 + a
), we get that 
 � a� 1 and b+ 
 � a� 2.If b+ 
 < 0, then Q(X) = 1 and d�(1) = (a� 1)(a+ b� 1)(a+ b+ 
� 1)!.As �a < b < 0, we get 0 � a+ b� 1 � a� 2. From jb� 1j < a+ 
, we get that1 � a+ b+ 
� 1 and as b+ 
 < 0, we obtain a+ b+ 
� 1 � a� 2.Case 4: First of all, sin
e jb� 1j < a+ 
, we get �a+2 � b+ 
. Moreover asb � �a, we get 
 � 2 and as (
2� b) < sgn(
)(1+ a
), we obtain 
 � a� 2, thusb+ 
 � �2. So, there exists an integer k in f2; 3; : : : ; a� 2g, su
h that, denotingek = 1� a+ (a� 2)=k, ek � b+ 
 < ek�1.When b(k � 1) + 
(k � 2) � (k � 2)� (k � 1)a, the 
omplementary fa
tor isQ(X) = (Xk � 1)(Xk+1 � 1)(X � 1)2



and d�(1) = d1 : : : d2k+2 withd1 = a� 2;dk+2�i = �(k + 3� i) + a(k + 2� i) + b(k + 1� i) + 
(k � i); k � 3; 3 � i � kdk = �k + ak + b(k � 1) + 
(k � 2)dk+1 = �(k � 1) + ak + bk + 
(k � 1)dk+2 = �(k � 2) + a(k � 1) + bk + 
kd2k+2�i = �(i� 2) + a(i� 1) + bi+ 
(i+ 1) k � 3; 2 � i � (k � 1)d2k+1 = b+ 2
 and d2k+2 = 
:We now verify that the lexi
ographi
al order 
onditions on d�(1) are satis�ed.As 2 � 
 � a� 2 and b+ 
 � �2, we get d2k+1 � a� 4. From ek � b+ 
 andb(k � 1) + 
(k � 2) � (k � 2)� (k � 1)a, we get d2k+1 � 0.For k � 3 and 2 � i � k � 1, d2k+2�i = �(i� 2) + a(i � 1) + bi+ 
(i + 1).As b + 
 < ei, we get d2k+2�i < 
. As �a + 2 � b + 
 and b + 2
 � 0, we getd2k+2�i � i.As ek � b + 
, we obtain dk+2 � 0. Sin
e 
 � a � 2, dk+1 > dk+2 and sin
eb+ 
 � �2, dk > dk+1. Moreover from b(k � 1) + 
(k � 2) � (k � 2)� (k � 1)a,we get dk � a� 2.For k � 3, as jb� 1j < a+ 
, we obtain d2 < � � � < dk�1. As b+ 
 < ek�1 andb+2
 � 0, we get dk�1 < a� 2. Moreover from 
 � a� 2 and a+ b+ 
� 1 > 0,we get that d2 = 2a+ b� 3 is nonnegative.All di's are smaller than d1, only d2k+2 and dk 
an be equal to d1. Thereforewe have to verify that d2 � dk+1 when k � 3 (otherwise d2 = dk and dk > dk+1).If dk = a � 2, then b + 
 = ek, and dk+1 = a � 
 � 1. As a + b + 
 � 1 > 0, weobtain dk+1 � d2. In 
ase of equality, if k = 3, then d3 = dk and dk > dk+2,otherwise d3 > d2 and dk+1 > dk+2, therefore d3 > dk+2.So lexi
ographi
al order 
onditions are satis�ed and d1 : : : d2k+2 is the beta-expansion of 1.When b(k�1)+ 
(k�2) > (k�2)� (k�1)a, as b � �a, we get k � 3. Let mbe the integer de�ned by m = minfi 2 N su
h that (i+1)b+ i
 > i� (i+1)ag.Note that by de�nition of m, m � k � 2 and sin
e b � �a, m � 1. In this 
ase,the 
omplementary fa
tor is Q(X) = mXi=0 X i:The beta-expansion of 1 is then eventually periodi
 with period 1, the lengthof the preperiod is m+ 2.When m = 1, P (X) = X4 � (a� 1)X3 � (a+ b)X2 � (b+ 
)X � 
 andd�(1) = (a� 2)(2a+ b� 2)(2a+ 2b+ 
� 2)(2a+ 2b+ 2
� 2)!:Here d3 = dm+2 = a+b�1+m(a+b+
�1) and d4 = dm+3 = (m+1)(a+b+
�1).When m > 1,P (X) = Xm+3 � (a� 1)Xm+2 � (a+ b� 1)Xm+1 �Pmi=3(a+ b+ 
� 1)X i�(a+ b+ 
)X2 � (b+ 
)X � 




and d�(1) = d1d2 : : : dm+2d!m+3, withd1 = a� 2; d2 = 2a+ b� 3;dm+3�i = 2a+ b� 3 + (m+ 1� i)(a+ b+ 
� 1) m � 3; 3 � i � m;dm+1 = 2a+ b� 2 + (m� 1)(a+ b+ 
� 1);dm+2 = a+ b� 1 +m(a+ b+ 
� 1);dm+3 = (m+ 1)(a+ b+ 
� 1):In both 
ases, d1 = a� 2. Sin
e b(k � 1) + 
(k � 2) > (k � 2)� (k � 1)a and
 � a� 2, we get �2a+3 � b. Moreover as b � �a, 1 � d2 � a� 2 when m = 1,and 0 � d2 � a�3 otherwise. By de�nition of m, (m+1)b+m
 > m� (m+1)a,thus dm+2 � 0 and dm+3 � 
. Sin
e ek � b+ 
 < ek�1 and m � k� 2, we obtaindm+3 � a� 3 and dm+2 � a� 
� 3.When m > 1, sin
e mb+(m� 1)
 � (m� 1)�ma, we get dm+1 � a� 2. As0 � 2a+ b� 2 and a+ b+ 
� 1 > 0, dm+1 > 0. Moreover as a+ b+ 
� 1 > 0,one has d2 < d3 < : : : < dm+1. Note that, when m � 3, d2 6= a� 2.We now study the 
ases where di is not stri
tly smaller than d1. When m = 1,only d2 may be equal to a� 2, then b = �a and d3 = 
� 2, thus d3 < d2. Whenm > 1, only dm+1 may be equal to a� 2, then mb = �ma� (m� 1)
+(m� 1),and thus d2 � dm+2 = a� 1� 
 is a positive integer.We have proved that the lexi
ographi
al order 
onditions on d�(1):d1d2 : : : d!m+3 >lex didi+1 : : : d!m+3 for 2 � i � m+ 3;are satis�ed, showing in this way that the announ
ed beta-expansions of 1 areright.Remark 2. The polynomials Q that appear in the 
ubi
 
ase are 
y
lotomi
. Inthe general 
ase, Q 
an be non
y
lotomi
 and even nonre
ipro
al ([6℄).3 Cubi
 simple beta-numbersIn the following, we establish that 
ubi
 simple beta-numbers are Pisot numbers.Next we give ne
essary and suÆ
ient 
onditions on the 
oeÆ
ients of the minimalpolynomial of � for � to be a simple beta-number.Theorem 3. If � is a 
ubi
 simple beta-number then � is a Pisot number.Remark 3. This is no longer true for simple beta-numbers of degree 4. For ex-ample, the positive root of X4� 3X3� 2X2� 3 is a simple beta-number, but isnot a Pisot number.Proof. Let � be a 
ubi
 simple beta-number and letM�(X) = X3 � aX2 � bX � 
be its minimal polynomial. Then � has no positive real algebrai
 
onjugate and
 is a positive integer smaller than b�
.



The 
ondition on the produ
t 
 of the roots of the polynomial M�, i.e.,j
j � b�
, dire
tly implies, when the Galois 
onjugates of � are not real numbers,that � is a Pisot number.The only other 
ase is the 
ase where both Galois 
onjugates 
1 and 
2 of �are negative real numbers. We then assume that � is a 
ubi
 simple beta-numberthat is not a Pisot number, and show that these hypotheses are 
ontradi
tory.Let 
1 and 
2 be the Galois 
onjugates of �. As 0 < 
 � b�
, if one of the 
i'sis smaller than �1 the other one is greater than �1. Moreover, as the modulusof a Galois 
onjugate of a beta-number is smaller than the golden ratio, one 
ansuppose, for example, that�1 +p52 < 
2 < �1 < 
1 < 0 < �Consequently, M�(�1) > 0, in other words, b > a + 
 + 1. Note that herea 2 fb�
 � 2; b�
 � 1g.As � is a simple beta-number, d�(1) = d1d2 : : : dn. Denote by P the asso
iated�-polynomial: P (X) = Xn � nXi=1 diXn�iand denote by Q =Pi�0 qiX i the quotient of the division upon the in
reasingpowers of P by M�. In other words,P (X) =M�(X)Q(X)We shall show, by indu
tion, that q0 � 1, and that for all i � 0, jqi+1j > jqijwith sgn(qi+1) = �sgn(qi). We shall 
on
lude from the growth of the moduli ofits 
oeÆ
ients that Q is an in�nite series, and thus that d�(1) is not �nite.In what follows, we mainly use the fa
t that the di's are nonnegative integerssmaller than b�
 and the inequality b � a+ 
+ 2.First of all, as dn = q0
 and dn and 
 are positive integers, q0 � 1. Sin
edn�1 = q0b+ q1
 and q0 � 1, dn�1 � q0a+ 2q0 + (q0 + q1)
. When a = b�
 � 1,we dire
tly get from dn�1 � b�
, that q1 < �q0. When a = b�
 � 2, thelexi
ographi
al order 
onditions on d�(1) imply thatdn�1dn < d1d2 : : : dn:By de�nition of beta-expansions, d1 = b�
 and here d2 < dn. Indeed as
2 = 12 �a� � +r(a� �)2 � 4
� � ;and 
2 > �(1 +p5)=2, we get that
 > p5� 12 � + 1 +p52 �f�g;



and in parti
ular, that 
 > �=2, 
onsequently dn = 
 and that �f�g < 
. Thusd2 = b�f�g
 is stri
tly smaller than dn. Therefore the previous lexi
ographi
alorder 
ondition implies that dn�1 < b�
. So, as dn�1 � b�
+(q0+q1)
, q1 < �q0.As dn�2 = q0a+q1b+q2
 and q1 < �q0 < 0, dn�2 � (q1+q0)a+2q1+(q1+q2)
,that is dn�2 < �b�
+ (q1 + q2)
, so q2 > �q1.For all positive integers i, dn�(2i+1) = �q2i�2 + q2i�1a+ q2ib+ q2i+1
. Fromq2i > 0, we get dn�(2i+1) � (q2i�1 + q2i)a + q2i + (q2i � q2i�2) + (q2i + q2i+1)
.From (q2i�1 + q2i) � 1, q2i > 2i and (q2i � q2i�2) > 1, we obtain dn�(2i+1) >b�
+ (q2i + q2i+1)
, and thus q2i+1 < �q2i.For all positive integers i, dn�(2i+2) = �q2i�1 + q2ia+ q2i+1b+ q2i+2
. Fromq2i+1 < 0, we get dn�(2i+1) � (q2i + q2i+1)a+ q2i+1 + (q2i+1 � q2i�1) + (q2i+1 +q2i+2)
. As (q2i + q2i+1) � �1, q2i+1 < �(2i+ 1) and (q2i+1 � q2i�1) < �1, weget dn�(2i+2) < �b�
+ (q2i+1 + q2i+2)
, thus q2i+2 > �q2i+1.So Q is an in�nite series; 
onsequently if � is not a Pisot number, d�(1) isnot �nite.As a 
onsequen
e of Theorems 2 and 3, we obtain the above 
hara
terizationof 
ubi
 simple beta-numbers.Proposition 2. Let � be a 
ubi
 Pisot number and letM�(x) = X3 � aX2 � bX � 
be its minimal polynomial.Then � is a simple beta-number if and only it satis�es one of the following
onditions:{ Case 1: b � 0 and 
 > 0{ Case 2: �a < b < 0 and b+ 
 � 0{ Case 3: b � �a and b(k � 1) + 
(k � 2) � (k � 2) � (k � 1)a, where k isthe integer in f2; 3; : : : ; a � 2g su
h that, denoting ek = 1 � a + (a � 2)=k,ek � b+ 
 < ek�1.The problem of �nding su
h a 
hara
terization remains open for simple beta-numbers of higher degree.Referen
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