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Beta-expansions for cubic Pisot numbers

Frédérique Bassino

I.G.M., Université de Marne La Vallée
77454 Marne-la-Vallée Cedex 2. France
e-mail: bassinoQuniv-mlv.fr

Abstract. Real numbers can be represented in an arbitrary base 8 > 1
using the transformation T : x — Sz (mod 1) of the unit interval; any
real number z € [0,1] is then expanded into dg(z) = (%i)i>1 where
5 = |ATS ().

The closure of the set of the expansions of real numbers of [0,1] is a
subshift of {a € N | a < B}V, called the beta-shift. This dynamical
system is characterized by the beta-expansion of 1; in particular, it is
of finite type if and only if dg(1) is finite; 3 is then called a simple
beta-number.

We first compute the beta-expansion of 1 for any cubic Pisot number.
Next we show that cubic simple beta-numbers are Pisot numbers.

Introduction

Representations of real numbers in an arbitrary base § > 1, called beta-expan-
sions, have been introduced by Rényi ([14]). They arise from the orbits of the
piecewise-monotone transformation of the unit interval : T : z — Sz (mod 1).
Such transformations were extensively studied in ergodic theory ([13]).

More precisely, any real number z € [0, 1] is expanded into dg(z) = (z;)i>1
where x; = LﬂTé_l(Cﬂ)J. The nonnegative integers d; are elements of the digit
alphabet A = {a € N | a < B}. These representations generalize standard
representations in an integral base to a real base; indeed the beta-expansion of
any real number of [0, 1] can equivalently be obtained by the greedy algorithm.
Only the beta-expansion of 1 differs.

Properties of beta-expansions are strongly related to symbolic dynamics ([4]).
The closure of the set of infinite sequences, appearing as beta-expansions of
numbers of the interval [0,1], is a dynamical system, that is, a closed shift-
invariant subset of AN, called the beta-shift.

An important property of the beta-shift is that its nature is entirely deter-
mined, in a combinatorial manner, by the beta-expansion of 1: the beta-shift is
sofic, that is to say the set of its finite factors is recognized by a finite automaton,
if and only the beta-expansion of 1 is eventually periodic ([3]); it is of finite type,
that is to say the set of its finite factors is defined by forbidding a finite set of
words, if and only if the beta-expansion of 1 is finite ([12]).

When the beta-expansion of 1 is eventually periodic, f is called a beta-number
and when the beta-expansion of 1 is finite, 3 is said to be a simple beta-number.



The eventually periodic beta-expansions were extensively studied by Ber-
trand ([3]) and by Schmidt ([15]). In particular, it is known that Pisot numbers
are beta-numbers. Concerning Salem numbers, we only know that if 3 is a Salem
number of degree 4, then the beta-expansion of 1 is eventually periodic ([5]). It
is conjectured that Salem numbers of degree 6 are still beta-numbers, but not
all Salem numbers of degree 8 ([7]).

The domain of the Galois conjugates of all beta-numbers was also investigated
independently by Solomyak ([16]) and by Flatto, Lagarias and Poonen ([8]).

For a general presentation of the beta-shift one can refer to [9].

In the following, we summarize properties of beta-numbers. We compute the
beta-expansion of 1 for any cubic Pisot number and we establish a characteriza-
tion of cubic simple beta-numbers, showing that they are Pisot numbers.

A very close problem, seen from the point of view of numeration systems, was
studied by Akiyama ([1]). He showed that in the cubic case, the real numbers of
the set N[371] have a finite beta-expansion if and only 3 is a Pisot unit and 1
has a finite beta-expansion. This finiteness problem is equivalent to a problem
of fractal tiling generated by Pisot numbers.

1 Beta-numbers

Real numbers can be represented in an arbitrary base § > 1 using the trans-
formation T3 :  — Bz (mod 1) of the unit interval; any real number z € [0, 1]
is then expanded into dg(z) = (x;);>1 where z; = LBTE.*I(:U)J. When a beta-
expansion is of the form uv®, the expansion is said to be eventually periodic. If
a representation ends with infinitely many zeros, like u0¥, it is said to be finite
and the ending zeros are omitted.

Let us denote by Sg the closure of all beta-expansions of real numbers of
[0,1[ and by o the (one-sided) shift defined by o((2;)i>1) = (Zit1)i>1. The set
S5 endowed with the shift is called the beta-shift, it is a subshift of AN, A being
the digit set, i.e., A={a € N|a < f}.

An important property ([13]) of the beta-shift Sz is that its nature is entirely
determined by ds(1) the beta-expansion of 1. Indeed, setting d*(1) = dg(1) if
dg(l) is infinite and d*(l) = (dldg . dn—l(dn — 1))w if dﬁ(l) = d1d2 . dn—ldna
a sequence = of nonnegative integers belongs to Sg if and only if it satisfies the
following lexicographical order conditions: Vp > 0, oP(z) < d*(1).

Recall that the beta-expansion of 1 also can be characterized ([13]) by lexico-
graphical order conditions: let d = (d;);>1 be a sequence of nonnegative integers
different from 10“, such that ), , d;f~" =1,withd; > 1landfori > 2, d; <di,
then d is the beta~expansion of 1 if and only if for all p > 1, o?(d) < d.

We recall that an algebraic integer 3 strictly greater than 1 is called a Perron
number if all its Galois conjugates have modulus strictly less than 3, a Pisot
number if all its Galois conjugates have modulus strictly less than 1, and a
Salem number if all its conjugates are less than 1 in modulus and at least one
conjugate has modulus 1.



Let § be a beta-number. Denote by dg(1) = di ...dp(dp+1 - - - dntp)®, where
n and p are chosen minimal, the beta-expansion of 1. Then the adjacency matrix
Mg of the finite automaton recognizing the set of its finite factors (Fig.1) is a
primitive (i.e., its associated graph is strongly connected and the lengths of its
cycles are relatively prime) nonnegative integral matrix whose spectral radius is
B3; so, from the Perron-Frobenius theorem, 3 is a Perron number.

0,1,...,d; — 1

0. dngp—1

Fig. 1. Automaton recognizing the set of the finite factors of Sg

The characteristic polynomial of Mg

n+p n
P(X)=X"7P - N d; Xl - x4y g X
=1 =1

is called, following the terminology introduced by Hollander ([11]), the associated
beta-polynomial.

As P is a multiple of the minimal polynomial Mz of 5, P(0) = dp4p —d, is a
multiple of |Mg(0)| = | ] B:|, where ; runs over the set of algebraic conjugates
of B. So, we get that |[] £;] has to be smaller than |3].

As a consequence, in the quadratic case, the only beta-numbers are the Pisot
numbers. Conversely, it is known that if § is a Pisot number then  is a beta-
number ([2]). An important gap remains between Pisot and Perron numbers.

Ezample 1. The quadratic number 3 = (1 4+ 1/13)/2 is not a beta-number since
Mp(X) = X% - X — 3 and Mz(0) > |5].



Let /3 be the Pisot number (3++/5)/2, then 3 is a beta-number and ds = 21%.
Let 8 be the golden ratio (1 + v/5)/2, then j is a simple beta-number and
ds(1) = 11.

On the other hand, the domain of the Galois conjugates of beta-numbers was
studied by Solomyak ([16]) and independently by Flatto, Lagarias and Poonen
([8])- They showed in particular that if the beta-expansion of 1 is eventually
periodic then the Galois conjugates of 5 have modulus less than the golden ratio
(1++/5)/2. Tt was already known (see [9]) that 3 cannot have a Galois conjugate
greater than 1.

Solomyak ([16]) proved that the topological closure of conjugates of beta-
numbers and the one of conjugates of simple beta-numbers are the same. How-
ever, there is an important difference between the conjugates of beta-numbers
and the ones of simple beta numbers: if 5 is a simple beta-number then S has
no algebraic conjugate that is a nonnegative real number.

Indeed, let 8 be a simple beta-number and set dz(1) = d; ...d,. Consider

0,1,...,d; — 1

0,....d,—1

Fig. 2. Automaton recognizing the set of the finite factors of Sg

the finite automaton recognizing the set of the finite factors of the associated
beta-shift (Fig. 2). Let Mg be the transition matrix of this automaton. The
characteristic polynomial of Mg, which is called the associated beta-polynomial,

P(X)=X"— zn: d; X"t
i=1

has only one positive real root.



Ezample 2. Salem numbers are roots of reciprocal polynomials. Thus if g is a
Salem number, 1/8 > 0 is a Galois conjugate of 3, and so 3 is not a simple
beta-number.

The previous conditions are sufficient for a quadratic algebraic integer to be
a simple beta-number.

Proposition 1. [10] The simple beta-numbers of degree 2 are exactly the qua-
dratic Pisot numbers without a positive real Galois conjugate. They are the pos-
itive roots of the polynomials

X?—aX —b with a>b>1,
The beta-expansion of 1 is then dg(1) = ab.

Ezample 8. The minimal polynomial of (1 ++/5)/2is X2 — X — 1, (1 ++/5)/2
is a simple beta-number and dg(1) = 11.

The minimal polynomial of (3 ++/5)/2 is X? — 3X + 1, therefore (3 +/5)/2
is not, a simple beta-number.

2 Beta-expansions of 1 for cubic Pisot numbers

Let us recall the characterization of cubic Pisot numbers due to Akiyama ([1])
Theorem 1 (Akiyama [1]). Let 5 > 1 be a cubic number and let
Ms(z) = X* —aX? - bX —c

be its minimal polynomial.
Then 8 is a Pisot number if and only if it both inequalities

b—1l<a+c and (c* —b) < sgn(c)(l + ac)
hold.
Remark 1. Note that a must be a nonnegative integer.
The following theorem gives the f-expansion of 1 for any cubic Pisot number.
Theorem 2. Let 8 be a cubic Pisot number and let
Ms(z) = X? —aX? - bX — ¢
be its minimal polynomial. Then the beta-expansion of 1 is

— Case 1 : When b > a, then dg(1) = (a+1)(b—1—a)(a+c—D)(b—c)e.
— Case 2: When 0 <b<a, if ¢ > 0, dg(1) = abe, otherwise,

ds(1) = a[(b—=1)(c+ a)]*.



— Case 3: When —a <b <0, ifb+c¢>0, then dg(1) = (a — 1)(a+ b)(b+ c)c,
otherwise dg(1) = (a —1)(a+b—1)(a+b+c—1)¥
— Case J: When b < —a, let k be the integer of {2,3,...,a — 2} such that,
denoting e, =1 —a+ (a—2)/k, ex, <b+ec<eg_1.
(] If b(k‘ — 1) + C(k — 2) < (k — 2) — (k‘ — 1)&, dﬁ(l) =d.. .d2k+2 with

dlza—Z,
diyo—i=—(k+3—i)+ak+2—-i)+bk+1—9)+c(k—1i),3<i<k
di, = —k+ak +bk—1)+c(k—2)

dit1 = —(k—1) +ak + bk +c(k —1)

diyo = —(k—2)+a(k — 1) + bk + ck

dopyo—i =—(—2)+ali—1)+bi+c(i+1) £>3,2<i<(k—1)
d2k+1:b+2c and d2k+2:C.

o Ifb(k — 1)+ c(k —2) > (k—2) — (k— 1)a, let m be the integer defined
by m = min{i € N such that (i + 1)b+ic>i— (i + 1)a}.

Whenm =1, dg(1) = (a—2)(2a+b—2)(2a+2b+c—2)(2a+2b+2c—2)¥.
When m > 1, dzg(1) = didy . . . dyyyody, 5, with

dlza—Z, d2:2a+b—3,
dnts—i=2a+b—3+(m+1—-i)(a+b+c—1) m>3,3<i<m,
dpt1=2a+b—2+(m—1)(a+b+c—1),
dps2o=a+b—1+m(a+b+c—1),
dpis=m+1)(a+b+c—1).

Ezample 4. When a > b > 0 and ¢ > 0, we obtain the only beta-expansion of 1
of length 3.

The smallest Pisot number has Mz = X® — X — 1 as minimal polynomial, it
is a simple beta-number and dg(1) = 10001.

The positive root 3 of Mz = X3 —3X? 4+ 2X — 2 is a simple beta-number
and dg(1) = 2102.

The case where b < —a shows that from a cubic simple beta-number, we can
obtain an arbitrary long beta-expansion of 1. For any integer k greater than or
equal to 2, the real root 3 of the irreducible polynomial X3 — (k+2)X2?+2kX —k,
is a simple beta number whose integer part is equal to k, and the beta-expansion
of 1 has length 2k + 2. For k = 2, we get dg(1) = 221002; for k = 3, we get
ds(1) = 31310203.

Ezample 5. The greatest positive root 8 of Mg = X3 —2X? — X + 1 is a beta-
number and dg(1) = 2(01)~.

If 3 is the positive root of X3 —5X?2 +3X — 2, then dz(1) = 413“. When 3
is the greatest positive root of X® —5X? + X + 2 | then dg(1) = 431%.

For any integer k greater than or equal to 3, the real root 8 of the irreducible
polynomial X2 — (k+2)X2+ (2k—1)X — (k— 1), is a beta number whose integer
part is equal to k, and the beta-expansion of 1 is eventually periodic of period



1, the length of its preperiod k. For k = 3, we get dg(1) = 3302¥; for k = 4, we
get dg(1) = 42403

Proof. Tt is known that Pisot numbers are beta-numbers, thus, for any cubic
Pisot number 3, the beta-expansion of 1 is finite or eventually periodic. In any
case, we first compute the associated beta-polynomial P. Next we prove that the
sequence d = (d;);>1 of nonnegative integers obtained from the beta-polynomial
satisfy lexicographical order conditions: for all p > 1, o?(d) < d.

First of all, we recall that, from Theorem 1, a cubic number 3, greater than
1 and having

Mp(X)=X*-aX?-bX —c

as minimal polynomial, is a cubic Pisot number if and only if it both
b—1l<a+c and (¢ —b) < sgn(c)(1+ ac)

hold.

Denote by @ the complementary factor of the beta-polynomial P defined by
P(X) = Mp(X)Q(X). As we shall see in what follows, the value of @ depends
upon the value of the coefficients of Mp.

Case 1: When b > a, as 8 is a Pisot number, from Theorem 1, ¢ is a positive
integer. In this case, the complementary factor is Q(X) = X2 — X + 1 and
dz(1) =(a+1)(b—1—-a)(a+c—Db)(b—c)c.

Indeed, as (¢ — b) < sgn(c)(l + ac) and ¢ > 0, we get ¢ < a + 1. As
b—1l<a+ec, wegetb—1—a<aand 0<a—b+c. Fromb > a, we get that
0<b—a—-1land,asc<a+1,that a—b+c<a.Finallyas0<a—-b+c<a,
we obtain 0 < b —c < a.

Case 2: When 0 < b < a, the complementary factor is then Q(X) = 1 and
the associated beta-polynomial is equal to the minimal polynomial.

If ¢ > 0, then dg(1) = abe. Indeed, as (¢ —b) < sgn(c)(1 + ac), we get ¢ < a.

If ¢ < 0, then dg(1) = a[(b— D)(a+¢)]¥. As [b—1] < a+ ¢, we get
b—1<a—2.As (c>—b) < sgn(c)(1+ac), we get that ¢ > —a and, consequently,
0<c+a<a-—1.

Case 3: When —a < b < 0, if b+ ¢ > 0 then the complementary factor is
Q(X) = X +1 and dg(1) = (a — 1)(a + b)(b + ¢)c. Indeed, as —a < b < 0,
we obtain 1 < a+b < a — 1. Since b+ ¢ > 0, ¢ is a positive integer. From
(¢ —b) < sgn(c)(1 + ac), we get that c<a—1and b+c <a—2.

Ifb+c¢ <0, then Q(X)=1and dz(l) =(a—1)(a+b—-1)(a+b+c—1)~.
As —a<b<0,weget 0<a+b—1<a—2 From |b—1]| < a+ ¢, we get that
1<a+b+c—landasb+c<0,weobtaina+b+c—1<a—2.

Case 4: First of all, since |b—1| < a +¢, we get —a+ 2 < b+ ¢. Moreover as
b < —a, we get ¢ > 2 and as (¢* — b) < sgn(c)(1 + ac), we obtain ¢ < a — 2, thus
b+ c < —2. So, there exists an integer k in {2,3,...,a — 2}, such that, denoting
er=1—a+(a—2)/k, e <b+c<ep.

When b(k — 1) + ¢(k — 2) < (k —2) — (k — 1)a, the complementary factor is

(XF - D(XFH 1)
X -1

QX) =



and dﬁ(l) =d... d2k+2 with

dlza—2,
dpoi=—(k+3—i)+ak+2—i)+bk+1—i)+c(k—i)k>33<i<k
dp =—-k+ak+bk—1)+c(k—2)

dip1 = —(k — 1) + ak + bk + c(k — 1)

dpio = —(k — 2) + a(k — 1) + bk + ck

doproi=—(i—2)+a(i—1) +biteli+l) k>3,2<i<(k—1)
d2k+1:b+2c and d2k+2:C.

We now verify that the lexicographical order conditions on dg(1) are satisfied.

As2<c¢<a—2and b+c < -2, we get dapr1 < a—4. From e < b+ ¢ and
b(k—1)+c(k—2) < (k—2)— (k—1)a, we get day1 > 0.

Fork<3and2<i<k—1,doyta—i =—0(0—2)+a(i —1)+bi+c(i+1).
Asb+ec < ey we get dopyo i < c. As —a+2 < b+ cand b+ 2¢c >0, we get
dogq2-5 > 1.

As e, < b+ ¢, we obtain djyo > 0. Since ¢ < a — 2, dgy1 > dpso and since
b+ c < —2,d > dgy1. Moreover from b(k — 1) + ¢(k —2) < (k —2) — (k — 1)a,
we get dp < a— 2.

For k<3,as |[b—1| <a+c, weobtain dy < --- < dg_1. As b+ ¢ < ep_1 and
b+ 2c <0, we get d,—1 < a—2. Moreover fromc<a—2anda+b+c—1>0,
we get that d» = 2a + b — 3 is nonnegative.

All d;’s are smaller than dy, only daj12 and dj can be equal to d;. Therefore
we have to verify that dy > dy41 when k > 3 (otherwise dy = dj, and dg, > dj41).
Ifd, =a—-2,thenb+c=ep,and dyy1 =a—c—1. Asa+b+c—1>0, we
obtain di11 < ds. In case of equality, if £ = 3, then d3 = dj, and dy > djo,
otherwise d3 > da and dg41 > dj42, therefore ds > djya.

So lexicographical order conditions are satisfied and d; . .. dagt2 is the beta-
expansion of 1.

When b(k—1)+c(k—2) > (k—2)— (k—1)a,as b < —a, we get k > 3. Let m
be the integer defined by m = min{i € N such that (i + 1)b+ic >i— (i + 1)a}.
Note that by definition of m, m < k — 2 and since b < —a, m > 1. In this case,
the complementary factor is

Q) =y X
i=0

The beta-expansion of 1 is then eventually periodic with period 1, the length
of the preperiod is m + 2.
Whenm =1, P(X)=X*-(a—1)X? - (a+b)X%? - (b+c)X — c and

ds(l) = (a —2)(2a+b—2)(2a +2b+ c — 2)(2a + 2b + 2¢ — 2)“.

Here ds = dpao = a+b—14+m(a+b+c—1)and dy = dpyy3 = (m+1)(a+b+c—1).
When m > 1,

P(X)= X" — (a—1)X™*2 — (a+b—1)X"™! =" (a+b+c—1)Xi

—(a+b+e)X2—(b+c)X —c



and dg(l) =dids>... dm+2d(fn+37 with

d1=a—2, d2=2a+b—3,
dmis—i=2a+b—3+(m+1—-i)(a+b+c—1) m>3,3<i<m,
dpt1=2a+b—-2+(m—-1)(a+b+c—1),
dpto=a+b—1+m(a+b+c—1),
dpis=(m+1)(a+b+c—1).

In both cases, d; = a — 2. Since b(k—1) +¢(k —2) > (k—2) — (k— 1)a and
c<a—2,weget —2a+3 <b. Moreover as b < —a,1<dy <a—2whenm=1,
and 0 < dy < a— 3 otherwise. By definition of m, (m+1)b+mc > m — (m+1)a,
thus d;+2 > 0 and dy, 13 > c. Since e, < b+c¢ < e;—1 and m < k — 2, we obtain
dmts <a—3 and dpya <a—c—3.

When m > 1, since mb+ (m —1)c < (m — 1) —ma, we get dpt1 < a—2. As
0<2a+b-2anda+b+c—1>0,dnsy1 >0. Moreover asa+b+c—1>0,
one has dy < d3 < ... < dpt1. Note that, when m > 3, dx # a — 2.

We now study the cases where d; is not strictly smaller than d;. When m =1,
only d» may be equal to a — 2, then b = —a and d3 = ¢ — 2, thus d3 < d>. When
m > 1, only d,;,+1 may be equal to a — 2, then mb = —ma — (m — 1)c+ (m — 1),
and thus ds — dy,42 = a — 1 — ¢ is a positive integer.

We have proved that the lexicographical order conditions on dg(1):

dldg...d;‘)n+3 Slex didi+1...d:}n+3 for 2 <i<m+ 3,

are satisfied, showing in this way that the announced beta-expansions of 1 are
right.

Remark 2. The polynomials @) that appear in the cubic case are cyclotomic. In
the general case, () can be noncyclotomic and even nonreciprocal ([6]).

3 Cubic simple beta-numbers

In the following, we establish that cubic simple beta-numbers are Pisot numbers.
Next we give necessary and sufficient conditions on the coefficients of the minimal
polynomial of 5 for 3 to be a simple beta-number.

Theorem 3. If § is a cubic simple beta-number then (3 is a Pisot number.

Remark 3. This is no longer true for simple beta-numbers of degree 4. For ex-
ample, the positive root of X* —3X3 —2X?2 — 3 is a simple beta-number, but is
not a Pisot number.

Proof. Let B be a cubic simple beta-number and let
Mp(X)=X*-aX?-bX —c

be its minimal polynomial. Then  has no positive real algebraic conjugate and
¢ is a positive integer smaller than |f5].



The condition on the product c¢ of the roots of the polynomial Mg, i.e.,
le] < |B], directly implies, when the Galois conjugates of § are not real numbers,
that 8 is a Pisot number.

The only other case is the case where both Galois conjugates v; and 7, of 3
are negative real numbers. We then assume that [ is a cubic simple beta-number
that is not a Pisot number, and show that these hypotheses are contradictory.
Let 71 and 2 be the Galois conjugates of 8. As 0 < ¢ < |f], if one of the ~;’s
is smaller than —1 the other one is greater than —1. Moreover, as the modulus
of a Galois conjugate of a beta-number is smaller than the golden ratio, one can
suppose, for example, that

1445
2

< <-l<y<0<p

Consequently, Mz(—1) > 0, in other words, b > a + ¢ + 1. Note that here
ae {8l -218) -1}

As 3 is a simple beta-number, dg(1) = dids . . . d,,. Denote by P the associated
B-polynomial:

P(X)=X"— zn: ;X"
i=1

and denote by Q@ =Y., a: X ¢ the quotient of the division upon the increasing
powers of P by Mga. In other words,

P(X) = Ms(X)Q(X)

We shall show, by induction, that go > 1, and that for all ¢ > 0, |gir1| > |q;]
with sgn(g;+1) = —sgn(q;). We shall conclude from the growth of the moduli of
its coefficients that @ is an infinite series, and thus that dz(1) is not finite.

In what follows, we mainly use the fact that the d;’s are nonnegative integers
smaller than | 3] and the inequality b > a + ¢ + 2.

First of all, as d,, = qoc and d,, and ¢ are positive integers, go > 1. Since
dn—1 = qb+ qcand go > 1, dn—1 > qoa + 2qo + (go + g1)c. When a = |8 — 1,
we directly get from d,—1 < [B], that ¢1 < —qo. When a = |3] — 2, the
lexicographical order conditions on dg(1) imply that

dn—1d, < dids...d,.

By definition of beta-expansions, d; = |3] and here d» < d,,. Indeed as

=g (=04 fla-pr-5).

and 75 > —(1++/5)/2, we get that

V5 -1 1+
c> 5 B8+ 5

\/gﬂ{ﬂ},




and in particular, that ¢ > /2, consequently d,, = ¢ and that {} < ¢. Thus
dy = | B{B}] is strictly smaller than d,. Therefore the previous lexicographical
order condition implies that d,—1 < |3]. So,as dp—1 > |B]+(q0+q1)c, ¢1 < —qo-

Asdp_s = qoa+qib+gacand g1 < —qo < 0, dn—> < (q14+4q0)a+2q1+(q1 +¢2)c,
that is dp—2 < =B8] + (@1 + ¢2)c, 50 @2 > —q1.

For all positive integers i, d,,_(2;41) = —@2i—2 + @2i—1a + ¢2ib + q2i41¢. From
q2i > 0, we get d,_(2i41) > (q2i1 + @2i)a + q2i + (@20 — q2i—2) + (q2i + @2i11)c
From (g2i—1 + q2i) > 1, g2; > 2i and (g2; — g2i—2) > 1, we obtain d,_(2;41) >
L8] + (g2i + q2iy1)c, and thus goi11 < —g2i.

For all positive integers i, d,,_(2i42) = —q2i—1 + q2i@ + q2i+1b + g2 42¢. From
@i+1 <0, we get dp,(2i11) < (q2i + @it1)a + @21 + (Q2i41 — @2i—1) + (@201 +
Qit2)c As (q2i + q2iv1) < =1, @uit1 < —(20 + 1) and (g2i+1 — g2i-1) < —1, we
get dp_(2i42) < —[B) + (g2i1 + qit2)c, thus guire > —goiy1-

So @ is an infinite series; consequently if 8 is not a Pisot number, dg(1) is
not finite.

As a consequence of Theorems 2 and 3, we obtain the above characterization
of cubic simple beta-numbers.

Proposition 2. Let 8 be a cubic Pisot number and let
Ms(z) = X* —aX? - bX — ¢

be its minimal polynomial.
Then B is a simple beta-number if and only it satisfies one of the following
conditions:

— Case 1: b>0 and ¢ >0

— Case 2: —a<b<0andb+c>0

— Case 8: b < —a and b(k — 1) + c(k — 2) < (k—2) — (k — 1)a, where k is
the integer in {2,3,...,a — 2} such that, denoting e, =1 —a + (a —2)/k,
er <b+c<ep1.

The problem of finding such a characterization remains open for simple beta-
numbers of higher degree.
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