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Beta-expansions for ubi Pisot numbersFr�ed�erique BassinoI.G.M., Universit�e de Marne La Vall�ee77454 Marne-la-Vall�ee Cedex 2. Franee-mail: bassino�univ-mlv.frAbstrat. Real numbers an be represented in an arbitrary base � > 1using the transformation T� : x ! �x (mod 1) of the unit interval; anyreal number x 2 [0; 1℄ is then expanded into d�(x) = (xi)i�1 wherexi = b�T i�1� (x).The losure of the set of the expansions of real numbers of [0; 1[ is asubshift of fa 2 N j a < �gN, alled the beta-shift. This dynamialsystem is haraterized by the beta-expansion of 1; in partiular, it isof �nite type if and only if d�(1) is �nite; � is then alled a simplebeta-number.We �rst ompute the beta-expansion of 1 for any ubi Pisot number.Next we show that ubi simple beta-numbers are Pisot numbers.IntrodutionRepresentations of real numbers in an arbitrary base � > 1, alled beta-expan-sions, have been introdued by R�enyi ([14℄). They arise from the orbits of thepieewise-monotone transformation of the unit interval : T� : x ! �x (mod 1).Suh transformations were extensively studied in ergodi theory ([13℄).More preisely, any real number x 2 [0; 1℄ is expanded into d�(x) = (xi)i�1where xi = b�T i�1� (x). The nonnegative integers di are elements of the digitalphabet A = fa 2 N j a < �g. These representations generalize standardrepresentations in an integral base to a real base; indeed the beta-expansion ofany real number of [0; 1[ an equivalently be obtained by the greedy algorithm.Only the beta-expansion of 1 di�ers.Properties of beta-expansions are strongly related to symboli dynamis ([4℄).The losure of the set of in�nite sequenes, appearing as beta-expansions ofnumbers of the interval [0; 1[, is a dynamial system, that is, a losed shift-invariant subset of AN, alled the beta-shift.An important property of the beta-shift is that its nature is entirely deter-mined, in a ombinatorial manner, by the beta-expansion of 1: the beta-shift isso�, that is to say the set of its �nite fators is reognized by a �nite automaton,if and only the beta-expansion of 1 is eventually periodi ([3℄); it is of �nite type,that is to say the set of its �nite fators is de�ned by forbidding a �nite set ofwords, if and only if the beta-expansion of 1 is �nite ([12℄).When the beta-expansion of 1 is eventually periodi, � is alled a beta-numberand when the beta-expansion of 1 is �nite, � is said to be a simple beta-number.



The eventually periodi beta-expansions were extensively studied by Ber-trand ([3℄) and by Shmidt ([15℄). In partiular, it is known that Pisot numbersare beta-numbers. Conerning Salem numbers, we only know that if � is a Salemnumber of degree 4, then the beta-expansion of 1 is eventually periodi ([5℄). Itis onjetured that Salem numbers of degree 6 are still beta-numbers, but notall Salem numbers of degree 8 ([7℄).The domain of the Galois onjugates of all beta-numbers was also investigatedindependently by Solomyak ([16℄) and by Flatto, Lagarias and Poonen ([8℄).For a general presentation of the beta-shift one an refer to [9℄.In the following, we summarize properties of beta-numbers. We ompute thebeta-expansion of 1 for any ubi Pisot number and we establish a harateriza-tion of ubi simple beta-numbers, showing that they are Pisot numbers.A very lose problem, seen from the point of view of numeration systems, wasstudied by Akiyama ([1℄). He showed that in the ubi ase, the real numbers ofthe set N[��1 ℄ have a �nite beta-expansion if and only � is a Pisot unit and 1has a �nite beta-expansion. This �niteness problem is equivalent to a problemof fratal tiling generated by Pisot numbers.1 Beta-numbersReal numbers an be represented in an arbitrary base � > 1 using the trans-formation T� : x ! �x (mod 1) of the unit interval; any real number x 2 [0; 1℄is then expanded into d�(x) = (xi)i�1 where xi = b�T i�1� (x). When a beta-expansion is of the form uv!, the expansion is said to be eventually periodi. Ifa representation ends with in�nitely many zeros, like u0!, it is said to be �niteand the ending zeros are omitted.Let us denote by S� the losure of all beta-expansions of real numbers of[0; 1[ and by � the (one-sided) shift de�ned by �((xi)i�1) = (xi+1)i�1. The setS� endowed with the shift is alled the beta-shift, it is a subshift of AN, A beingthe digit set, i.e., A = fa 2 N j a < �g.An important property ([13℄) of the beta-shift S� is that its nature is entirelydetermined by d�(1) the beta-expansion of 1. Indeed, setting d�(1) = d�(1) ifd�(1) is in�nite and d�(1) = (d1d2 : : : dn�1(dn � 1))! if d�(1) = d1d2 : : : dn�1dn,a sequene x of nonnegative integers belongs to S� if and only if it satis�es thefollowing lexiographial order onditions: 8p � 0; �p(x) � d�(1).Reall that the beta-expansion of 1 also an be haraterized ([13℄) by lexio-graphial order onditions: let d = (di)i�1 be a sequene of nonnegative integersdi�erent from 10!, suh thatPi�1 di��i = 1, with d1 � 1 and for i � 2, di � d1,then d is the beta-expansion of 1 if and only if for all p � 1, �p(d) < d.We reall that an algebrai integer � stritly greater than 1 is alled a Perronnumber if all its Galois onjugates have modulus stritly less than �, a Pisotnumber if all its Galois onjugates have modulus stritly less than 1, and aSalem number if all its onjugates are less than 1 in modulus and at least oneonjugate has modulus 1.



Let � be a beta-number. Denote by d�(1) = d1 : : : dn(dn+1 : : : dn+p)!, wheren and p are hosen minimal, the beta-expansion of 1. Then the adjaeny matrixM� of the �nite automaton reognizing the set of its �nite fators (Fig.1) is aprimitive (i.e., its assoiated graph is strongly onneted and the lengths of itsyles are relatively prime) nonnegative integral matrix whose spetral radius is�; so, from the Perron-Frobenius theorem, � is a Perron number.
1 2 3 n n+pn+1

  

0; 1; : : : ; d1 � 1d1 d2
0; : : : ; dn � 10; : : : ; d3 � 10; : : : ; d2 � 1

0; : : : ; dn+p � 10; : : : ; dn+1 � 10; : : : ; dn+p�1 � 1
dn+p�1dn+p

Fig. 1. Automaton reognizing the set of the �nite fators of S�The harateristi polynomial of M�P (X) = Xn+p � n+pXi=1 diXn+p�i �Xn + nXi=1 diXn�iis alled, following the terminology introdued by Hollander ([11℄), the assoiatedbeta-polynomial.As P is a multiple of the minimal polynomialM� of �, P (0) = dn+p�dn is amultiple of jM�(0)j = jQ�ij, where �i runs over the set of algebrai onjugatesof �. So, we get that jQ�ij has to be smaller than b�.As a onsequene, in the quadrati ase, the only beta-numbers are the Pisotnumbers. Conversely, it is known that if � is a Pisot number then � is a beta-number ([2℄). An important gap remains between Pisot and Perron numbers.Example 1. The quadrati number � = (1 +p13)=2 is not a beta-number sineM�(X) = X2 �X � 3 and M�(0) > b�.



Let � be the Pisot number (3+p5)=2, then � is a beta-number and d� = 21!.Let � be the golden ratio (1 + p5)=2, then � is a simple beta-number andd�(1) = 11.On the other hand, the domain of the Galois onjugates of beta-numbers wasstudied by Solomyak ([16℄) and independently by Flatto, Lagarias and Poonen([8℄). They showed in partiular that if the beta-expansion of 1 is eventuallyperiodi then the Galois onjugates of � have modulus less than the golden ratio(1+p5)=2. It was already known (see [9℄) that � annot have a Galois onjugategreater than 1.Solomyak ([16℄) proved that the topologial losure of onjugates of beta-numbers and the one of onjugates of simple beta-numbers are the same. How-ever, there is an important di�erene between the onjugates of beta-numbersand the ones of simple beta numbers: if � is a simple beta-number then � hasno algebrai onjugate that is a nonnegative real number.Indeed, let � be a simple beta-number and set d�(1) = d1 : : : dn. Consider
1 2 3 n−1 n

  

0; 1; : : : ; d1 � 1
0; : : : ; d3 � 10; : : : ; d2 � 1 dn�1

0; : : : ; dn�1 � 10; : : : ; dn � 1
d1 d2

Fig. 2. Automaton reognizing the set of the �nite fators of S�the �nite automaton reognizing the set of the �nite fators of the assoiatedbeta-shift (Fig. 2). Let M� be the transition matrix of this automaton. Theharateristi polynomial of M�, whih is alled the assoiated beta-polynomial,P (X) = Xn � nXi=1 diXn�ihas only one positive real root.



Example 2. Salem numbers are roots of reiproal polynomials. Thus if � is aSalem number, 1=� > 0 is a Galois onjugate of �, and so � is not a simplebeta-number.The previous onditions are suÆient for a quadrati algebrai integer to bea simple beta-number.Proposition 1. [10℄ The simple beta-numbers of degree 2 are exatly the qua-drati Pisot numbers without a positive real Galois onjugate. They are the pos-itive roots of the polynomialsX2 � aX � b with a � b � 1;The beta-expansion of 1 is then d�(1) = ab.Example 3. The minimal polynomial of (1 +p5)=2 is X2 �X � 1, (1 +p5)=2is a simple beta-number and d�(1) = 11.The minimal polynomial of (3+p5)=2 is X2� 3X +1, therefore (3+p5)=2is not a simple beta-number.2 Beta-expansions of 1 for ubi Pisot numbersLet us reall the haraterization of ubi Pisot numbers due to Akiyama ([1℄)Theorem 1 (Akiyama [1℄). Let � > 1 be a ubi number and letM�(x) = X3 � aX2 � bX � be its minimal polynomial.Then � is a Pisot number if and only if it both inequalitiesjb� 1j < a+  and (2 � b) < sgn()(1 + a)hold.Remark 1. Note that a must be a nonnegative integer.The following theorem gives the �-expansion of 1 for any ubi Pisot number.Theorem 2. Let � be a ubi Pisot number and letM�(x) = X3 � aX2 � bX � be its minimal polynomial. Then the beta-expansion of 1 is{ Case 1 : When b � a, then d�(1) = (a+ 1)(b� 1� a)(a+ � b)(b� ).{ Case 2: When 0 � b � a, if  > 0, d�(1) = ab, otherwise,d�(1) = a[(b� 1)(+ a)℄!:



{ Case 3: When �a < b < 0, if b+  � 0, then d�(1) = (a� 1)(a+ b)(b+ ),otherwise d�(1) = (a� 1)(a+ b� 1)(a+ b+ � 1)!{ Case 4: When b � �a, let k be the integer of f2; 3; : : : ; a � 2g suh that,denoting ek = 1� a+ (a� 2)=k, ek � b+  < ek�1.� If b(k � 1) + (k � 2) � (k � 2)� (k � 1)a, d�(1) = d1 : : : d2k+2 withd1 = a� 2;dk+2�i = �(k + 3� i) + a(k + 2� i) + b(k + 1� i) + (k � i); 3 � i � kdk = �k + ak + b(k � 1) + (k � 2)dk+1 = �(k � 1) + ak + bk + (k � 1)dk+2 = �(k � 2) + a(k � 1) + bk + kd2k+2�i = �(i� 2) + a(i� 1) + bi+ (i+ 1) k � 3; 2 � i � (k � 1)d2k+1 = b+ 2 and d2k+2 = :� If b(k � 1) + (k � 2) > (k � 2)� (k � 1)a, let m be the integer de�nedby m = minfi 2 N suh that (i+ 1)b+ i > i� (i+ 1)ag.When m = 1, d�(1) = (a�2)(2a+b�2)(2a+2b+�2)(2a+2b+2�2)!.When m > 1, d�(1) = d1d2 : : : dm+2d!m+3, withd1 = a� 2; d2 = 2a+ b� 3;dm+3�i = 2a+ b� 3 + (m+ 1� i)(a+ b+ � 1) m � 3; 3 � i � m;dm+1 = 2a+ b� 2 + (m� 1)(a+ b+ � 1);dm+2 = a+ b� 1 +m(a+ b+ � 1);dm+3 = (m+ 1)(a+ b+ � 1):Example 4. When a � b � 0 and  > 0, we obtain the only beta-expansion of 1of length 3.The smallest Pisot number has M� = X3�X � 1 as minimal polynomial, itis a simple beta-number and d�(1) = 10001.The positive root � of M� = X3 � 3X2 + 2X � 2 is a simple beta-numberand d�(1) = 2102.The ase where b � �a shows that from a ubi simple beta-number, we anobtain an arbitrary long beta-expansion of 1. For any integer k greater than orequal to 2, the real root � of the irreduible polynomialX3�(k+2)X2+2kX�k,is a simple beta number whose integer part is equal to k, and the beta-expansionof 1 has length 2k + 2. For k = 2, we get d�(1) = 221002; for k = 3, we getd�(1) = 31310203.Example 5. The greatest positive root � of M� = X3 � 2X2 �X + 1 is a beta-number and d�(1) = 2(01)!.If � is the positive root of X3 � 5X2+3X � 2 , then d�(1) = 413!. When �is the greatest positive root of X3 � 5X2 +X + 2 , then d�(1) = 431!.For any integer k greater than or equal to 3, the real root � of the irreduiblepolynomial X3� (k+2)X2+(2k�1)X� (k�1), is a beta number whose integerpart is equal to k, and the beta-expansion of 1 is eventually periodi of period



1, the length of its preperiod k. For k = 3, we get d�(1) = 3302!; for k = 4, weget d�(1) = 42403!.Proof. It is known that Pisot numbers are beta-numbers, thus, for any ubiPisot number �, the beta-expansion of 1 is �nite or eventually periodi. In anyase, we �rst ompute the assoiated beta-polynomial P . Next we prove that thesequene d = (di)i�1 of nonnegative integers obtained from the beta-polynomialsatisfy lexiographial order onditions: for all p � 1, �p(d) < d.First of all, we reall that, from Theorem 1, a ubi number �, greater than1 and having M�(X) = X3 � aX2 � bX � as minimal polynomial, is a ubi Pisot number if and only if it bothjb� 1j < a+  and (2 � b) < sgn()(1 + a)hold.Denote by Q the omplementary fator of the beta-polynomial P de�ned byP (X) = M�(X)Q(X). As we shall see in what follows, the value of Q dependsupon the value of the oeÆients of M�.Case 1: When b > a, as � is a Pisot number, from Theorem 1,  is a positiveinteger. In this ase, the omplementary fator is Q(X) = X2 � X + 1 andd�(1) = (a+ 1)(b� 1� a)(a+ � b)(b� ).Indeed, as (2 � b) < sgn()(1 + a) and  > 0, we get  � a + 1. Asjb� 1j < a+ , we get b� 1� a � a and 0 � a� b+ . From b > a, we get that0 � b� a� 1 and, as  � a+1, that a� b+  � a. Finally as 0 � a� b+  � a,we obtain 0 � b�  � a.Case 2: When 0 � b � a, the omplementary fator is then Q(X) = 1 andthe assoiated beta-polynomial is equal to the minimal polynomial.If  > 0, then d�(1) = ab. Indeed, as (2� b) < sgn()(1+a), we get  � a.If  < 0, then d�(1) = a[(b � 1)(a + )℄!. As jb � 1j < a +  , we getb�1 � a�2. As (2�b) < sgn()(1+a), we get that  � �a and, onsequently,0 � + a � a� 1.Case 3: When �a < b < 0, if b +  � 0 then the omplementary fator isQ(X) = X + 1 and d�(1) = (a � 1)(a + b)(b + ). Indeed, as �a < b < 0,we obtain 1 � a + b � a � 1. Sine b +  � 0,  is a positive integer. From(2 � b) < sgn()(1 + a), we get that  � a� 1 and b+  � a� 2.If b+  < 0, then Q(X) = 1 and d�(1) = (a� 1)(a+ b� 1)(a+ b+ � 1)!.As �a < b < 0, we get 0 � a+ b� 1 � a� 2. From jb� 1j < a+ , we get that1 � a+ b+ � 1 and as b+  < 0, we obtain a+ b+ � 1 � a� 2.Case 4: First of all, sine jb� 1j < a+ , we get �a+2 � b+ . Moreover asb � �a, we get  � 2 and as (2� b) < sgn()(1+ a), we obtain  � a� 2, thusb+  � �2. So, there exists an integer k in f2; 3; : : : ; a� 2g, suh that, denotingek = 1� a+ (a� 2)=k, ek � b+  < ek�1.When b(k � 1) + (k � 2) � (k � 2)� (k � 1)a, the omplementary fator isQ(X) = (Xk � 1)(Xk+1 � 1)(X � 1)2



and d�(1) = d1 : : : d2k+2 withd1 = a� 2;dk+2�i = �(k + 3� i) + a(k + 2� i) + b(k + 1� i) + (k � i); k � 3; 3 � i � kdk = �k + ak + b(k � 1) + (k � 2)dk+1 = �(k � 1) + ak + bk + (k � 1)dk+2 = �(k � 2) + a(k � 1) + bk + kd2k+2�i = �(i� 2) + a(i� 1) + bi+ (i+ 1) k � 3; 2 � i � (k � 1)d2k+1 = b+ 2 and d2k+2 = :We now verify that the lexiographial order onditions on d�(1) are satis�ed.As 2 �  � a� 2 and b+  � �2, we get d2k+1 � a� 4. From ek � b+  andb(k � 1) + (k � 2) � (k � 2)� (k � 1)a, we get d2k+1 � 0.For k � 3 and 2 � i � k � 1, d2k+2�i = �(i� 2) + a(i � 1) + bi+ (i + 1).As b +  < ei, we get d2k+2�i < . As �a + 2 � b +  and b + 2 � 0, we getd2k+2�i � i.As ek � b + , we obtain dk+2 � 0. Sine  � a � 2, dk+1 > dk+2 and sineb+  � �2, dk > dk+1. Moreover from b(k � 1) + (k � 2) � (k � 2)� (k � 1)a,we get dk � a� 2.For k � 3, as jb� 1j < a+ , we obtain d2 < � � � < dk�1. As b+  < ek�1 andb+2 � 0, we get dk�1 < a� 2. Moreover from  � a� 2 and a+ b+ � 1 > 0,we get that d2 = 2a+ b� 3 is nonnegative.All di's are smaller than d1, only d2k+2 and dk an be equal to d1. Thereforewe have to verify that d2 � dk+1 when k � 3 (otherwise d2 = dk and dk > dk+1).If dk = a � 2, then b +  = ek, and dk+1 = a �  � 1. As a + b +  � 1 > 0, weobtain dk+1 � d2. In ase of equality, if k = 3, then d3 = dk and dk > dk+2,otherwise d3 > d2 and dk+1 > dk+2, therefore d3 > dk+2.So lexiographial order onditions are satis�ed and d1 : : : d2k+2 is the beta-expansion of 1.When b(k�1)+ (k�2) > (k�2)� (k�1)a, as b � �a, we get k � 3. Let mbe the integer de�ned by m = minfi 2 N suh that (i+1)b+ i > i� (i+1)ag.Note that by de�nition of m, m � k � 2 and sine b � �a, m � 1. In this ase,the omplementary fator is Q(X) = mXi=0 X i:The beta-expansion of 1 is then eventually periodi with period 1, the lengthof the preperiod is m+ 2.When m = 1, P (X) = X4 � (a� 1)X3 � (a+ b)X2 � (b+ )X �  andd�(1) = (a� 2)(2a+ b� 2)(2a+ 2b+ � 2)(2a+ 2b+ 2� 2)!:Here d3 = dm+2 = a+b�1+m(a+b+�1) and d4 = dm+3 = (m+1)(a+b+�1).When m > 1,P (X) = Xm+3 � (a� 1)Xm+2 � (a+ b� 1)Xm+1 �Pmi=3(a+ b+ � 1)X i�(a+ b+ )X2 � (b+ )X � 



and d�(1) = d1d2 : : : dm+2d!m+3, withd1 = a� 2; d2 = 2a+ b� 3;dm+3�i = 2a+ b� 3 + (m+ 1� i)(a+ b+ � 1) m � 3; 3 � i � m;dm+1 = 2a+ b� 2 + (m� 1)(a+ b+ � 1);dm+2 = a+ b� 1 +m(a+ b+ � 1);dm+3 = (m+ 1)(a+ b+ � 1):In both ases, d1 = a� 2. Sine b(k � 1) + (k � 2) > (k � 2)� (k � 1)a and � a� 2, we get �2a+3 � b. Moreover as b � �a, 1 � d2 � a� 2 when m = 1,and 0 � d2 � a�3 otherwise. By de�nition of m, (m+1)b+m > m� (m+1)a,thus dm+2 � 0 and dm+3 � . Sine ek � b+  < ek�1 and m � k� 2, we obtaindm+3 � a� 3 and dm+2 � a� � 3.When m > 1, sine mb+(m� 1) � (m� 1)�ma, we get dm+1 � a� 2. As0 � 2a+ b� 2 and a+ b+ � 1 > 0, dm+1 > 0. Moreover as a+ b+ � 1 > 0,one has d2 < d3 < : : : < dm+1. Note that, when m � 3, d2 6= a� 2.We now study the ases where di is not stritly smaller than d1. When m = 1,only d2 may be equal to a� 2, then b = �a and d3 = � 2, thus d3 < d2. Whenm > 1, only dm+1 may be equal to a� 2, then mb = �ma� (m� 1)+(m� 1),and thus d2 � dm+2 = a� 1�  is a positive integer.We have proved that the lexiographial order onditions on d�(1):d1d2 : : : d!m+3 >lex didi+1 : : : d!m+3 for 2 � i � m+ 3;are satis�ed, showing in this way that the announed beta-expansions of 1 areright.Remark 2. The polynomials Q that appear in the ubi ase are ylotomi. Inthe general ase, Q an be nonylotomi and even nonreiproal ([6℄).3 Cubi simple beta-numbersIn the following, we establish that ubi simple beta-numbers are Pisot numbers.Next we give neessary and suÆient onditions on the oeÆients of the minimalpolynomial of � for � to be a simple beta-number.Theorem 3. If � is a ubi simple beta-number then � is a Pisot number.Remark 3. This is no longer true for simple beta-numbers of degree 4. For ex-ample, the positive root of X4� 3X3� 2X2� 3 is a simple beta-number, but isnot a Pisot number.Proof. Let � be a ubi simple beta-number and letM�(X) = X3 � aX2 � bX � be its minimal polynomial. Then � has no positive real algebrai onjugate and is a positive integer smaller than b�.



The ondition on the produt  of the roots of the polynomial M�, i.e.,jj � b�, diretly implies, when the Galois onjugates of � are not real numbers,that � is a Pisot number.The only other ase is the ase where both Galois onjugates 1 and 2 of �are negative real numbers. We then assume that � is a ubi simple beta-numberthat is not a Pisot number, and show that these hypotheses are ontraditory.Let 1 and 2 be the Galois onjugates of �. As 0 <  � b�, if one of the i'sis smaller than �1 the other one is greater than �1. Moreover, as the modulusof a Galois onjugate of a beta-number is smaller than the golden ratio, one ansuppose, for example, that�1 +p52 < 2 < �1 < 1 < 0 < �Consequently, M�(�1) > 0, in other words, b > a +  + 1. Note that herea 2 fb� � 2; b� � 1g.As � is a simple beta-number, d�(1) = d1d2 : : : dn. Denote by P the assoiated�-polynomial: P (X) = Xn � nXi=1 diXn�iand denote by Q =Pi�0 qiX i the quotient of the division upon the inreasingpowers of P by M�. In other words,P (X) =M�(X)Q(X)We shall show, by indution, that q0 � 1, and that for all i � 0, jqi+1j > jqijwith sgn(qi+1) = �sgn(qi). We shall onlude from the growth of the moduli ofits oeÆients that Q is an in�nite series, and thus that d�(1) is not �nite.In what follows, we mainly use the fat that the di's are nonnegative integerssmaller than b� and the inequality b � a+ + 2.First of all, as dn = q0 and dn and  are positive integers, q0 � 1. Sinedn�1 = q0b+ q1 and q0 � 1, dn�1 � q0a+ 2q0 + (q0 + q1). When a = b� � 1,we diretly get from dn�1 � b�, that q1 < �q0. When a = b� � 2, thelexiographial order onditions on d�(1) imply thatdn�1dn < d1d2 : : : dn:By de�nition of beta-expansions, d1 = b� and here d2 < dn. Indeed as2 = 12 �a� � +r(a� �)2 � 4� � ;and 2 > �(1 +p5)=2, we get that > p5� 12 � + 1 +p52 �f�g;



and in partiular, that  > �=2, onsequently dn =  and that �f�g < . Thusd2 = b�f�g is stritly smaller than dn. Therefore the previous lexiographialorder ondition implies that dn�1 < b�. So, as dn�1 � b�+(q0+q1), q1 < �q0.As dn�2 = q0a+q1b+q2 and q1 < �q0 < 0, dn�2 � (q1+q0)a+2q1+(q1+q2),that is dn�2 < �b�+ (q1 + q2), so q2 > �q1.For all positive integers i, dn�(2i+1) = �q2i�2 + q2i�1a+ q2ib+ q2i+1. Fromq2i > 0, we get dn�(2i+1) � (q2i�1 + q2i)a + q2i + (q2i � q2i�2) + (q2i + q2i+1).From (q2i�1 + q2i) � 1, q2i > 2i and (q2i � q2i�2) > 1, we obtain dn�(2i+1) >b�+ (q2i + q2i+1), and thus q2i+1 < �q2i.For all positive integers i, dn�(2i+2) = �q2i�1 + q2ia+ q2i+1b+ q2i+2. Fromq2i+1 < 0, we get dn�(2i+1) � (q2i + q2i+1)a+ q2i+1 + (q2i+1 � q2i�1) + (q2i+1 +q2i+2). As (q2i + q2i+1) � �1, q2i+1 < �(2i+ 1) and (q2i+1 � q2i�1) < �1, weget dn�(2i+2) < �b�+ (q2i+1 + q2i+2), thus q2i+2 > �q2i+1.So Q is an in�nite series; onsequently if � is not a Pisot number, d�(1) isnot �nite.As a onsequene of Theorems 2 and 3, we obtain the above haraterizationof ubi simple beta-numbers.Proposition 2. Let � be a ubi Pisot number and letM�(x) = X3 � aX2 � bX � be its minimal polynomial.Then � is a simple beta-number if and only it satis�es one of the followingonditions:{ Case 1: b � 0 and  > 0{ Case 2: �a < b < 0 and b+  � 0{ Case 3: b � �a and b(k � 1) + (k � 2) � (k � 2) � (k � 1)a, where k isthe integer in f2; 3; : : : ; a � 2g suh that, denoting ek = 1 � a + (a � 2)=k,ek � b+  < ek�1.The problem of �nding suh a haraterization remains open for simple beta-numbers of higher degree.Referenes[1℄ S. Akiyama. Cubi Pisot units with �nite beta expansions. In F.Halter-Koh andR.F. Tihy, editors, Algebrai Number Theory and Diophantine Analysis, 11{26. deGruyter, 2000.[2℄ A. Bertrand. D�eveloppements en base de Pisot et r�epartition modulo 1. C. R.Aad. Si. Paris, 285:419{421, 1977.[3℄ A. Bertrand-Mathis. D�eveloppement en base �, r�epartition modulo 1 de la suite(x�n)n�0, langages od�es et �-shift. Bull. So. Math. Frane, 114:271{323, 1986.[4℄ F. Blanhard. �-expansions and symboli dynamis. Theor. Comput. Si., 65:131{141, 1989.



[5℄ D. W. Boyd. Salem numbers of degree four have periodi expansions. In Numbertheory, pages 57{64. de Gruyter, 1989.[6℄ D. W. Boyd. On beta expansions for Pisot numbers. Mathematis of Computation,65(214):841{860, 1996.[7℄ D. W. Boyd. On the beta expansion for Salem numbers of degree 6. Mathematisof Computation, 65(214):861{875, 1996.[8℄ L. Flatto, J. Lagarias, and B. Poonen. The zeta funtion of the beta transformation.Ergodi Theory Dynamial Systems, 14:237{266, 1994.[9℄ C. Frougny. Numeration Systems, hapter 7, in M. Lothaire, Algebrai Com-binatoris on Words. Cambridge University Press, to appear, available athttp://www-igm.univ-mlv.fr/�berstel/Lothaire/.[10℄ C. Frougny and B. Solomyak. Finite �-expansions. Ergodi Theory DynamialSystems, 12:713{723, 1992.[11℄ M. Hollander. Greedy numeration systems and regularity. Theory of ComputingSystems, 31:111{133, 1998.[12℄ S. Ito and Y. Takahashi. Markov subshifts and realization of �-expansions. J.Math. So. Japan, 26:33{55, 1974.[13℄ W. Parry. On the beta expansions of real numbers. Ata Math. Aad. Si. Hung.,11:401{416, 1960.[14℄ A. R�enyi. Representations for real numbers and their ergodi properties. AtaMath. Aad. Si. Hung., 8:477{493, 1957.[15℄ K. Shmidt. On periodi expansions of Pisot numbers and Salem numbers. Bull.London Math. So., 12:269{278, 1980.[16℄ B. Solomyak. Conjugates of beta-numbers and the zero-free domain for a lass ofanalyti funtions. Pro. London Math. So., 68(3):477{498, 1994.


