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Abstract. We define a code in a sofic shift as a set of blocks of symbols
of the shift such that any block of the shift has at most one decomposition
in code words. It is maximal if it is not strictly included in another one.
Such a code is complete in the sofic shift if any block of the shift occurs
within some concatenation of code words. We prove that a maximal code
in an irreducible sofic shift is complete in this shift. We give an explicit
construction of a regular completion of a regular code in a sofic shift.
This extends the well known result of Ehrenfeucht and Rozenberg to the
case of codes in sofic systems. We also give a combinatorial proof of a
result concerning the polynomial of a code in a sofic shift.

1 Introduction

In this paper, we continue the study of codes in sofic shifts initiated in [1]. This
generalization of the theory of (variable length) codes extends previous works of
Reutenauer [2], Restivo [3] and Ashley et al. [4]. The main result of this paper
is an extension of a classical result of Schützenberger [5] relating the notions of
completeness and maximality of codes.

Let S be a sofic shift, i.e. the set of bi-infinite sequences of symbols labelling
paths in a finite automaton. The set of factors of S, denoted by Fact(S), is the
set of blocks appearing in the elements of S. We call S-code a set of elements of
Fact(S) such that any element of Fact(S) has at most one decomposition in code
words. A set of words X is S-complete if any element of Fact(S) occurs within
some concatenation of elements of X . An S-code is maximal if it is maximal for
inclusion.

We prove that, for any irreducible sofic shift S, any maximal S-code is S-
complete. Moreover, we give an effective embedding of a regular S-code into
an S-complete one. This extends the well known theorem of Ehrenfeucht and
Rozenberg [6] to codes in a sofic shift.

Our definition of S-codes generalizes the notion introduced by Restivo [3]
and Ashley et al. [4]. In the first place, they consider subshifts of finite type
instead of the more general notion of sofic shifts. Although shifts of finite type
can also be described by a finite automaton, there is a real gap between the two
classes. Indeed, representations of shifts of finite type have nice strong properties
of synchronization that do not have general sofic shifts. These properties are
used to complete the codes. In the second place, they consider codes such that



all concatenations of code words are in Fact(S), a condition that we do not
impose. Our definition here is also slightly more general than the one used in
our previous paper [1]. Indeed, we only require the unique factorization for the
words of Fact(S) and not for all products of code words. We think that this
definition is more natural. The results of [1] all extend straightforwardly to this
new class.

In the last section, we give a combinatorial proof of the main result of our
previous paper [1] concerning the polynomial of a finite code. This proof is
interesting because it is simpler and also because it relates our result to ones
due to S. Williams [7] and M. Nasu [8].

The paper is organized as follows. We first recall some basic definitions from
the area of symbolic dynamics and from the theory of codes. We introduce the
notions of S-code, maximal S-code, and S-complete code when S denotes a
sofic shift. In Section 3, we prove that any maximal S-code is S-complete. A
combinatorial proof of the result of [1] is given in the last section.

2 Codes and Sofic Shifts

2.1 Sofic Shifts

Let A be a finite alphabet. We denote by A∗ the set of finite words, by A+ the set
of nonempty finite words, and by AZ the set of bi-infinite words on A. A subshift
is a closed subset S of AZ which is invariant by the shift transformation σ (i.e.
σ(S) = S) defined by σ((ai)i∈Z) = (ai+1)i∈Z.

A finite automaton is a finite multigraph labeled on a finite alphabet A. It is
denoted A = (Q, E), where Q is a finite set of states, and E a finite set of edges
labeled by A. All states of these automata can be considered as both initial and
final states.

A sofic shift is the set of labels of all bi-infinite paths in a finite automaton.
A sofic shift is irreducible if there is such a finite automaton with a strongly
connected graph. In this case the automaton also is said to be irreducible. An
automaton A = (Q, E) is deterministic if, for any state p ∈ Q and any word u,
there is at most one path labeled u and going out of p. When it exists, the
target state of this path is denoted by p · u. An automaton is unambiguous if
there is at most one path labeled by u going from a state p to a state q for any
given triple p, u, q. Irreducible sofic shifts have a unique (up to isomorphisms of
automata) minimal deterministic automaton, that is a deterministic automaton
having the fewest states among all deterministic automata representing the shift.
This automaton is called the Fischer cover of the shift. A subshift of finite type
is defined as the bi-infinite words on a finite alphabet avoiding a finite set of
finite words. It is a sofic shift. The full shift on the finite alphabet A is the set
of all bi-infinites sequences on A, i.e. the set AZ.

The entropy of a sofic shift S is defined as

h(S) = lim
n→∞

1

n
log2 sn,



where sn is the number of words of length n of Fact(S). The Fischer cover of a
transitive sofic shift of null entropy is made of one cycle.

Example 1. Let S be the irreducible sofic subshift on A = {a, b} defined by the
automaton on the left of Figure 1. This automaton is the Fischer cover of S.
This shift is the so-called even system since its bi-infinite sequences are those
having an even number of b’s between two a’s. It is not a shift of finite type.

Let T be the irreducible shift on A = {a, b} defined by the forbidden block
bb. It is a shift of finite type. Its Fischer cover is given on the right of Figure 1.
This shift is the so-called golden mean system.
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Fig. 1. The Fischer covers of the even system S on the left, and of the golden mean
system T on the right.

Let S be a subshift on the alphabet A. We denote by Fact(S) the set of finite
factors (or blocks) of elements of S. Each element of Fact(S) is the label of a
finite path of the Fischer cover of S.

Let A be a finite automaton. A word w is said to be a synchronizing word
of A if and only if any path in A labeled by w ends in a same state depending
only on w. If p denotes this states, one says that w synchronizes to p. For instance
the words a, bab are synchronizing words of the Fischer cover of the even system.
In the golden mean shift, which is a shift of finite type, each word of length 1,
i.e. a or b, is a synchronizing word. For any Fischer cover of a shift of finite type,
there is a positive integer k such that any word of length k is synchronizing.

Let L be a language of finite words. A word w is a synchronizing word of L
if and only if whenever u, v are words such that uw and wv belong to L, one has
uwv belongs to L. Note that if w is a synchronizing word of an automaton A
recognizing a sofic shift S, it is a synchronizing word of the language Fact(S).

It is known that the Fischer cover of an irreducible sofic shift S has a syn-
chronizing word [9, Proposition 3.3.16]. If w is one of them, for any words u, v
such that uwv ∈ Fact(S), uwv is a synchronizing word also.

2.2 Codes

Let S be a sofic shift. A set of finite words X ⊂ Fact(S) on an alphabet A is an
S-code if and only if whenever w = x1x2 . . . xn = y1y2 . . . ym, where xi, yj ∈ X ,
n, m are positive integers, and w ∈ Fact(S), one has n = m and xi = yi for
1 ≤ i ≤ n. Thus the classical definition of a code corresponds to the case where S
is the full shift. Any code is an S-code but the converse is false as shown with
the following example.



Example 2. The set {a, ab, ba} is not a code but it is not difficult to see that it is
an S-code in the even system. Indeed any word with two factorizations contains
the block aba.

Let S be a sofic shift. A set X on the alphabet A is said to be complete in S,
or S-complete, if X is an S-code and any word in Fact(S) is a factor of a word
in X∗. For instance the code X = {a, bb} is complete in the even system.

An S-code X is maximal if it is not strictly included in another S-code.
In [2] is an example of an S-complete code which is not maximal. Indeed,

let us consider the shift of finite type S defined on the alphabet A = {a, b} and
avoiding the blocks aa and bb. The S-code X = {ab} is S-complete but not
maximal since X is strictly included in the S-code Y = {ab, ba}.

There is a connection between complete S-codes and a concept which has
been studied in symbolic dynamics. This explains why the results proved in
Section 4 are related with the results of Williams [7] and Nasu [8]. Let X be
a complete S-code. Let A = (Q, E) be the Fischer cover of S. We build an
automaton B computed from X and A as follows. The set of states of B contains
the set of states Q of A. For each path in A labeled by a word in X going from
a state p to a state q, we build a path in B from p to q with dummy states
inbetween. Let T be the subshift of finite type made of the bi-infinite paths of
the graph of B. The labelling of the paths in the automaton B defines a block
map φ from T to S. The set X is an S-code if and only if φ is finite-to-one. It
is S-complete if and only if φ is onto. Thus statements on complete S-codes can
be reformulated as statements on finite-to-one factor maps between irreducible
sofic shifts.

3 Completion of an S-Code

The following result generalizes the theorem of Ehrenfeucht and Rozenberg [6].
As in the case of the extension to subshifts of finite type obtained in [4], the
proof uses the same type of construction as the one of [6]. It requires however,
as we shall see, a careful adaptation to extend to sofic shifts.

Theorem 1. Let S be an irreducible sofic shift. If X is an S-code, there is an
S-code Y such that X ⊆ Y and Y is S-complete. If X is moreover regular, Y
can be chosen regular and is computable in an effective way.

A nonempty word w of A∗ is called unbordered if no proper nonempty left
factor of w is a right factor of w. In other words, w is unbordered if and only if
w ∈ uA+ ∩ A+u implies u = ε, where ε denotes the empty word.

The following lemma provides the construction of an unbordered word in the
set of factors of an irreducible sofic shift. It replaces the construction used in [5,
Proposition 3.6] for the case of the full shift.

Lemma 1. Let S be an irreducible sofic shift which has a positive entropy. Let
z be a word in Fact(S). Then there is a word y in Fact(S) such that z is a factor
of y and y is unbordered.



Proof. Let A be the Fischer cover of S. Let m be the number of states of A and
let k be the length of z. Since S has a positive entropy, there are two distinct
nonempty words u, v labels of first return paths in A to state p. The words
u and v are not two powers a same word since A is deterministic. Moreover
{u, v}∗ is a submonoid of Fact(S). Let w = uk+mvk+m. Since k +m ≥ 2, by [10,
Theorem 9.2.4 pp. 166], w is a primitive word. It follows that the Lyndon word
w′ conjugate to w is unbordered (see for instance [10, Proposition 5.1.2 p. 65]).
Since A is irreducible, there are two words b1, b2 of length at most m such that
the word y = w′b1zb2w

′ ∈ Fact(S).

We claim that y is unbordered. This fact is trivial by considering the length,
greater than 2k + 2m, of w′, the length k + 2m of b1zb2 and the fact that w′ is
unbordered.

Proof (Sketch of proof of Theorem 1). Let S be an irreducible sofic shift. We
denote by A the Fischer cover of S. Let X be an S-code.

Let us suppose that X is not S-complete. Consequently there is a word z in
Fact(S) which is not in Fact(X∗).

We first assume that S has a null entropy. This means that the Fischer cover
A is made of a unique cycle. One can assume that there is a state p such that
p has no outgoing path in A labeled in X . Otherwise X is already S-complete.
Since A is irreducible, one can assume without loss of generality that z is the
label of a path in A going from a state p to itself, and that z is moreover a
synchronizing word of A. We set Y = X ∪ {z}. Now we show that Y is an
S-code. Assume the contrary and consider a relation

x1x2 . . . xn = y1y2 . . . ym,

with x1x2 . . . xn ∈ Fact(S), xi, yj ∈ Y , and xn 6= ym. The set X being an S-
code, at least one of the words xi, yj must be z. Hence, for instance x1x2 . . . xn =
x1x2 . . . xrzxr+1 . . . xn. The word zxr+1 . . . xn is the label of a path in A going
through the state p after reading the label z. Since p has no outgoing path in A
labeled in X , it follows that xr+1 . . . xn = zn−r. Hence there is a positive integer k
such that x1x2 . . . xn = x1x2 . . . xrz

k with x1, x2, . . . , xr 6= z. Since z is not a
factor of X∗, there is also a positive integer l such that y1y2 . . . ym = y1y2 . . . ytz

l

with y1, y2, . . . , yt 6= z. The above relation becomes

x1x2 . . . xrz
k = y1y2 . . . ytz

l,

which contradicts the hypothesis that xn 6= ym since z /∈ Fact(X∗). It is trivial
that Y is S-complete.

We may now assume that S has a positive entropy. Without loss of generality,
by extending z on the right, one can moreover assume that z is a synchronizing
word. By Lemma 1, we construct a word y ∈ Fact(S) which is unbordered and
has z as factor. Moreover y is a synchronizing word of A.

If L is a language of finite words, we denote by u−1L (resp. Lu−1) the set of
words z such that uz ∈ L (resp. zu ∈ L).



We define the sets U and Y by

U = y−1 Fact(S)y−1 − X∗ − A∗yA∗, (1)

Y = X ∪ y(Uy)∗. (2)

The rest of the proof consists in verifying the following three properties.

– The set Y is a subset of Fact(S).
– The set Y is an S-code.
– The set Y is S-complete.

It is clear from Equations (1) and (2) that Y is regular when X is regular.
It can be computed in an effective way from these equations. ⊓⊔

Remark 1. Note that our proof shows that, if S is an irreducible sofic shift with
a positive entropy, and X is a code, then X can be completed into a code Y
(i.e a code for the full shift) which is S-complete. We do not know whether this
property also holds for irreducible shifs of entropy zero.

In [11, 3] (see also [4]), it is proved that if S is an irreducible shift of finite type
and X a code with X∗ ⊆ Fact(S) which is not S-complete, X can be embedded
into an S-complete set which is moreover a code (i.e a code for the full shift). The
proof of our theorem allows us to recover this result. Indeed, when X∗ ⊆ Fact(S),
our construction build an S-code Y which is a code. Moreover, the S-complete
code Y that we have built satisfies also Y ∗ ⊆ Fact(S), when X∗ ⊆ Fact(S).
This is due to the strong synchronization properties of the Fischer cover of an
irreducible shift of finite type.

Example 3. We consider the even system S of Example 1 on the alphabet A =
{a, b}. Let X = {a, ba}. The set X is an S-code but it is not S-complete since
for instance z = bb does not belong to Fact(X∗). The regular completion of X
is obtained following the proof of Theorem 1. We replace z by bba in order to
get a synchronizing word. The proof of Lemma 1 says that the word a2b4bbaa2b4

is an unbordered word of Fact(S). But a smaller y can be chosen. For instance
y = bba also is an unbordered word of Fact(S). We then define U and Y as in
Equations (1) and (2). The set Y is a regular S-complete code.

We derive the following corollary which generalizes to codes in irreducible
sofic shifts the fact that any maximal code is complete [5, Theorem 5.1].

Corollary 1. Let S be an irreducible sofic shift. Any maximal S-code is S-
complete.

4 Polynomial of a Code

In the sequel, S is an irreducible sofic shift recognized by its Fischer cover A =
(Q, E). Let µA (or µ) be the morphism from A∗ into N

Q×Q defined as follows.
For each word u, the matrix µ(u) is defined by

µ(u)pq =

{

1 if p · u = q

0 otherwise.



The matrix αA(u) (or α(u)) is defined by α(u) = µ(u)u. Thus the matrix α(u) is
obtained from µ(u) by replacing its coefficients 1 by the word u. The coefficients
of α(u) are either 0 or u. In this way α is a morphism from A∗ into the monoid
of matrices with elements in the set of subsets of A∗.

The morphism α is extended to subsets of A∗ by linearity.
For a finite set X , we denote by pX the polynomial in commuting variables:

pX = det(I − α(X)).

The following result is proved in [1]. It is a generalization of a result of C. Reute-
nauer [2] who has proved it under more restrictive assumptions.

Theorem 2. Let S be an irreducible sofic shift and let X be a finite complete
S-code. The polynomial pA divides pX .

Example 4. For the even shift and the set X = {aa, ab, ba, bb}, we have

α(A) =

[

a b
b 0

]

and α(X) =

[

aa + bb ab
ba bb

]

,

and pA = 1 − a − bb, pX = 1 − aa − 2bb + b4 = (1 + a − bb)(1 − a − bb).

We present here two combinatorial proofs of this result, which come as an alter-
native to the analytic proof presented in [1]. Both proofs rely on the reduction
of automata with multiplicities.

The first proof goes along the same line as the proof of a result of S. Williams
presented in Kitchen’s book [12, p. 156], giving a necessary condition to the
existence of a finite-to-one factor map between irreducible sofic shifts.

We first build as in Section 2 an automaton B computed from X and A as
follows. The set of states of B contains the set of states Q of A. For each path in
A labeled by a word in X going from state p to state q, we build a path in B from
p to q with dummy states inbetween as shown in Example 5. The automaton B
is unambiguous if and only if the set X is an S-code. It represents S if and only
if the set X is S-complete.

Example 5. Consider the code X = {aa, ab, ba, bb} in the even system S. The
automaton B is represented in the right part of Figure 2.
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Fig. 2. The automaton A (on the left), and the automaton B computed from A and
X = {aa, ab, ba, bb} (on the right).



Since X is a complete S-code, B is unambiguous and represents S. Without loss
of generality, one can assume that B is irreducible. Otherwise, one keeps only a
strongly connected component of B representing S. By construction,

pA = det(I − αA(A)) and pX = det(I − αB(A)).

Hence, Theorem 2 is a consequence of the following result.

Proposition 1. Let S be an irreducible sofic shift and let A be its Fischer cover.
If B is an unambiguous and irreducible automaton representing S, det(I−αA(A))
divides det(I − αB(A)).

Proof (Sketch of proof). The degree of a word u in an automaton is defined as
the number of paths labeled by u. The degree of an automaton is the minimal
non-null value of the degree of words. Any unambiguous irreducible automaton
of degree k has the following property: for any word u of degree k and any word
w such that uwu has a non-null degree, uwu has degree k.

We first assume that the Fischer cover A of S is codeterministic (or left
resolving): for any state p ∈ Q and any word u, there is at most one path
labeled by u and ending at p. In this case the degree of A is d = 1. Indeed, since
A is a Fischer cover, it has a synchronizing word. Since A is codeterministic,
each synchronizing word has degree 1.

Let v (resp. w) be a word which has a non-null and minimal degree k (resp.
d = 1) in B (resp. in A). Since B is irreducible, there are words z, z′ such that
vzwz′v has a non-null degree. Hence vzwz′v has degree k in B and degree d = 1
in A. We set u = vzwz′v.

An N-automaton with a set of states Q is a triple 〈I, µ, T 〉, where I and T
are two vectors — respectively initial row vector and final column vector — with
entries in N, and where µ is a morphism from A∗ into N

Q×Q. It is equivalently
defined by the triple 〈I, α(A), T 〉. Two N-automata 〈I, µ, T 〉 and 〈J, µ′, F 〉 are
equivalent if and only if, for any word w ∈ A∗, Iµ(w)T = Jµ′(w)F .

Let 1A be the row-vector with all coefficients equal to 1 of size the num-
ber of states of A, and 1t

A its transpose. It follows from the definition of the
word u that the two N-automata C = 〈k1AµA(u), µA, µA(u)1t

A〉, and D =
〈d1BµB(u), µB, µB(u)1t

B〉, are equivalent.
The standard Schützenberger reductions of the N-automata C and D over

the field R are similar. The reduction of each N-automaton is obtained through
a left reduction followed by a right reduction (see for instance [13] or [14]).

Since u has degree 1, the initial row (resp. final column) vector of C has a
unique non-null coefficient. Consequently, since A is deterministic (resp. code-
terministic) and irreducible, the automaton C is left (resp. right) reduced. Hence
C is already reduced.

Finally, one can prove that the transition matrix of D is similar to a matrix
having a principal subblock equal to the transition matrix of its left (or right)
reduced form. It follows that det(I − αA(A)) divides det(I − αB(A)). The ex-
tension to sofic shifts that may not have a codeterministic Fischer cover can be
obtained with a specialization argument (see [1]). ⊓⊔



Example 6. We continue with Example 5. The word bab has degree 2 in B and 1
in A. Hence the N-automata

C = 〈
ˆ

0 2
˜

, µA(A) =

»

a b

b 0

–

,

»

0
1

–

〉, and D = 〈
ˆ

0 1 0 0 0 1 0
˜

, µB(A),
ˆ

0 1 0 0 0 1 0
˜

t

〉,

are equivalent. We obtain a right-reduction of the automaton D = 〈I, E =
αB(A), T 〉 by computing a basis of the vector space generated by the vectors in
µ(A∗)T . We can choose the basis (T, µ(b)T, µ(ab)T ) since µ(a)T = 0, µ(bb)T =
T , µ(bab)T = T and µ(aab)T = µ(ab)T . This basis is extended to a basis of R

7,
for instance with the first 4 column vectors e1, . . . e4 of the canonical basis of R

7.
Let F and H be the matrices

F =

2

6

6

6

6

6

6

6

6

6

6

4

2

4

0 b b

b 0 0
0 a a

3

5

2

4

b 0 0 0
0 b 0 0
a 0 0 0

3

5

2

6

6

4

0 0 0
0 0 0
0 0 0
0 0 0

3

7

7

5

2

6

6

4

−a −b a 0
−b 0 0 b

a 0 0 0
−a 0 0 0

3

7

7

5

3

7

7

7

7

7

7

7

7

7

7

5

, H =

2

6

6

4

»

0 b

b a

– »

0
0

–

ˆ

1 0
˜ ˆ

0
˜

3

7

7

5

.

We get that E is similar to F . Let us denote by G the upper left block matrix

of size 3 of F . The right-reduced automaton 〈
(

2 0 0

)

, G =
( 0 b b

b 0 0
0 a a

)

,
( 1

0
0

)

〉 can be

now reduced on the left side. We get that G is similar to H . The upper left block
matrix of size 2 of G is similar to αA(A). As a consequence, det(I − αA(A)) =
1 − a − bb divides det(I − H) which divides det(I − F ) = det(I − αB(A)) =
(1 − a − bb)(1 + a − bb).

A variant of the combinatorial proof uses an argument due to Nasu [8].
We denote by M (resp. M ′) the matrix M =

∑

a∈A µA(a) and (resp. M ′ =
∑

a∈A µB(a)). It is known from the Perron-Frobenius theory that M and M ′

have the same positive spectral radius λ, the logarithm of λ being called the
topogical entropy of the sofic shift S [9]. Let U , V (resp. U ′, V ′) be two real
positive left and right eigenvectors of M (resp. of M ′) for the eigenvalue λ. One
can choose these vectors such that UV = U ′V ′ = 1. With these settings, the
two R-automata C = 〈U, µA, V 〉 and D = 〈U ′, µB, V ′〉 are equivalent.

The proof of this equivalence relies on the following arguments. One first
divides µA and µB by λ to assume that λ = 1.

For any word x ∈ A∗ and any R-automaton S = 〈I, µ, T 〉, we denote by
πS(x) the real coefficient Iµ(x)T . Hence C and D are equivalent if and only if
πC(x) = πD(x) for any x ∈ A∗. The functions πC and πD define two rational
probability measures on A∗ [15]. These measures satisfy the following properties.

– A right (and left) invariance property: for any x ∈ A∗, with S equal to C
or D.

∑

w∈Ak

πS(xw) = πS(x).



– An ergodic property: for any x ∈ A∗, with S equal to C or D.

lim
n→∞

1

n

n−1
∑

i=0

∑

w∈Ai

πS(xwy) = πS(x)πS(y).

Moreover, since the automata A and B are unambiguous, one can show that
there are positive real numbers ρ, ρ′ such that for any x ∈ A∗, πC(x) ≤ ρ πD(x)
and πD(x) ≤ ρ′πC(x). The equivalence of C and D follows from these inequalities.
The reduction of the automata is used to finish the proof as before.
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