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The synta
ti
 graph of a so�
 shiftMarie-Pierre B�eal, Fran
es
a Fiorenzi, and Dominique PerrinInstitut Gaspard-Monge, Universit�e de Marne-la-Vall�ee77454 Marne-la-Vall�ee Cedex 2, Fran
efbeal,perring�univ-mlv.fr, fiorenzi�mat.uniroma1.itAbstra
t. We de�ne a new invariant for the 
onjuga
y of irredu
ibleso�
 shifts. This invariant, that we 
all the synta
ti
 graph of a so�
shift, is the dire
ted a
y
li
 graph of 
hara
teristi
 groups of the nonnull regular D-
lasses of the synta
ti
 semigroup of the shift.Keywords: Automata and formal languages, symboli
 dynami
s.1 Introdu
tionSo�
 shifts [17℄ are sets of bi-in�nite labels in a labeled graph. If the graph 
an be
hosen strongly 
onne
ted, the so�
 shift is said to be irredu
ible. A parti
ularsub
lass of so�
 shifts is the 
lass of shifts of �nite type, de�ned by a �nite set offorbidden blo
ks. Two so�
 shifts X and Y are 
onjugate if there is a bije
tiveblo
k map from X onto Y . It is an open question to de
ide whether two so�
shifts are 
onjugate, even in the parti
ular 
ase of irredu
ible shifts of �nite type.There are many invariants for 
onjuga
y of subshifts, algebrai
 or 
ombinato-rial, see [13, Chapter 7℄, [6℄, [12℄, [3℄. For instan
e the entropy is a 
ombinatorialinvariant whi
h gives the 
omplexity of allowed blo
ks in a shift. The zeta fun
-tion is another invariant whi
h 
ounts the number of periodi
 orbits in a shift.In this paper, we de�ne a new invariant for irredu
ible so�
 shifts. This invari-ant is based on the stru
ture of the synta
ti
 semigroup of the language of �niteblo
ks of the shift. Irredu
ible so�
 shifts have a unique (up to isomorphisms ofautomata) minimal deterministi
 presentation, 
alled the right Fis
her 
over ofthe shift. The synta
ti
 semigroup S of an irredu
ible so�
 shift is the transitionsemigroup of its right Fis
her 
over.In general, the stru
ture of a �nite semigroup is determined by the Green'srelations (denotedR, L,H;D;J ) [16℄. Our invariant is the a
y
li
 dire
ted graphwhose nodes are the 
hara
teristi
 groups of the non null regular D-
lasses of S.The edges 
orrespond to the partial order �J between these D-
lasses. We 
allit the synta
ti
 graph of the so�
 shift. The result 
an be extended to the 
aseof redu
ible so�
 shifts.The proof of the invariant is based on Nasu's Classi�
ation Theorem for so�
shifts [15℄ that extends William's one for shifts of �nite type. This theorem saysthat two irredu
ible so�
 shifts X;Y are 
onjugate if and only if there is a se-quen
e of transition matri
es of right Fis
her 
oversA = A0; A1; : : : ; Al�1; Al =B, su
h that Ai�1; Ai are elementary strong shift equivalent for 1 � i � l, where



A and B are the transition matri
es of the right Fis
her 
overs of X and Y , re-spe
tively. This means that there are transition matri
es Ui; Vi su
h that, afterre
oding the alphabets of Ai�1 and Ai, we have Ai�1 = UiVi and Ai = ViUi. Abipartite shift is asso
iated in a natural way to a pair of elementary strong shiftequivalent and irredu
ible so�
 shifts [15℄.The key point in our invariant is the fa
t that an elementary strong shiftequivalen
e relation between transition matri
es implies some 
onjuga
y rela-tions between the idempotents in the synta
ti
 semigroup of the bipartite shift.We show that parti
ular 
lasses of irredu
ible so�
 shifts 
an be 
hara
terizedwith this synta
ti
 invariant: the 
lass of irredu
ible shifts of �nite type and the
lass of irredu
ible aperiodi
 so�
 shifts.Basi
 de�nitions related to symboli
 dynami
s are given in Se
tion 2.1. Werefer to [13℄ or [9℄ for more details. See also [10℄, [11℄, [4℄ about so�
 shifts.Basi
 de�nitions and properties related to �nite semigroups and their stru
tureare given Se
tion 2.2. We refer to [16, Chapter 3℄ for a more 
omprehensiveexpository. Nasu's Classi�
ation Theorem is re
alled in Se
tion 2.3. We de�neand prove our invariant in Se
tion 3. A 
omparison of this synta
ti
 invariant tosome well known other ones is given in Se
tion 4. Proofs of Propositions 1 and2 are omitted. The extension to the 
ase of redu
ible so�
 shifts is dis
ussed atthe end of Se
tion 3.2 De�nitions and ba
kground2.1 So�
 shifts and their presentationsLet A be a �nite alphabet, i.e. a �nite set of symbols. The shift map � : AZ! AZis de�ned by �((ai)i2Z) = (ai+1)i2Z, for (ai)i2Z2 AZ. If AZ is endowed with theprodu
t topology of the dis
rete topology on A, a subshift is a 
losed �-invariantsubset of AZ.If X is a subshift of AZ and n a positive integer, the nth higher power of Xis the subshift of (An)Z de�ned by Xn = f(ain; : : : ; ain+n�1)i2Z j (ai)i2Z2 Xg.A �nite automaton is a �nite multigraph labeled on A. It is denoted A =(Q;E), where Q is a �nite set of states, and E a �nite set of edges labeled onA. It is equivalent to a symboli
 adja
en
y (Q�Q)-matrix A, where Apq is the�nite formal sum of the labels of all the edges from p to q. A so�
 shift is theset of the labels of all the bi-in�nite paths on a �nite automaton. If A is a �niteautomaton, we denote by XA the so�
 shift de�ned by the automaton A. Severalautomata 
an de�ne the same so�
 shift. They are also 
alled presentations or
overs of the so�
 shift. We will assume that all presentations are essential : allstates have at least one outgoing edge and one in
oming edge. An automatonis deterministi
 if for any given state and any given symbol, there is at mostone outgoing edge labeled with this given symbol. A so�
 shift is irredu
ible if ithas a presentation with a strongly 
onne
ted graph. Irredu
ible so�
 shifts havea unique (up to isomorphisms of automata) minimal deterministi
 presentation
alled the right Fis
her 
over of the shift.



Let A = (Q;E) be a �nite deterministi
 (essential) automaton on the al-phabet A. Ea
h �nite word w of A� de�nes a partial fun
tion from Q to Q.This fun
tion sends the state p to the state q, if w is the label of a path formp to q. The semigroup generated by all these fun
tions is 
alled the transitionsemigroup of the automaton. When XA is not the full shift, the semigroup hasa null element, denoted 0, whi
h 
orresponds to words whi
h are not fa
tors ofany bi-in�nite word of XA. The synta
ti
 semigroup of an irredu
ible so�
 shiftis de�ned as the transition semigroup of its right Fis
her 
over.Example 1. The so�
 shift presented by the automaton of Figure 1 is 
alled theeven shift. Its synta
ti
 semigroup is de�ned by the table in the right part of the�gure.
1 2bba 1 2a 1 �b 2 1ab 2 �ba � 1bb 1 2bab � 2aba � � :

Fig. 1. The right Fis
her 
over of the even shift and its synta
ti
 semigroup. Sin
e aaand a de�ne the same partial fun
tion from Q to Q, we write aa = a in the synta
ti
semigroup. We also have aba = 0, or ab2k+1a = 0 for any nonnegative integer k. Theword bb is the identity in this semigroup.
2.2 Stru
ture of �nite semigroupsWe refer to [16℄ for more details about the notions de�ned in this se
tion.Given a semigroup S, we denote by S1 the following monoid: if S is a monoid,S1 = S. If S is not a monoid, S1 = S [ f1g together with the law � de�ned byx � y = xy if x; y 2 S and 1 � x = x � 1 = x for ea
h x 2 S1.We re
all the Green's relations whi
h are fundamentals equivalen
e relationsde�ned in a semigroup S. The four equivalen
e relations R, L, H, J are de�nedas follows. Let x; y 2 S, xRy , xS1 = yS1;xLy , S1x = S1y;xJ y , S1xS1 = S1yS1;xHy , xRy and xLy:



Another relation D is de�ned by:xDy , 9z 2 S xRz and zLy:In a �nite semigroup J = D. We re
all the de�nition of the quasi-order �J :x �J y , S1xS1 � S1yS1:An R-
lass is an equivalen
e 
lass for a relation R (similar notations hold for theother Green's relations). An idempotent is an element e 2 S su
h that ee = e. Aregular 
lass is a 
lass 
ontaining an idempotent. In a regularD-
lass, anyH-
lass
ontaining an idempotent is a maximal subgroup of the semigroup. Moreover,two regularH-
lasses 
ontained in a same D-
lass are isomorphi
 (as groups), seefor instan
e [16, Proposition 1.8℄. This group is 
alled the 
hara
teristi
 groupof the regular D-
lass. The quasi-order �J indu
es a partial order between theD-
lasses (still denoted �J ). The stru
ture of the transition semigroup S is oftendes
ribed by the so 
alled \egg-box" pi
tures of the D-
lasses.We say that two elements x; y 2 S are 
onjugate if there are elements u; v 2S1 su
h that x = uv and y = vu. Two idempotents belong to a same regularD-
lass if and only if they are 
onjugate, see for instan
e [16, Proposition 1.12℄.Let S be a transition semigroup of an automaton A = (Q;E) and x 2 S. Therank of x is the 
ardinal of the image of x as a partial fun
tion from Q to Q.The kernel of x is the partition indu
ed by the equivalen
e relation � over thedomain of x where p � q if and only p; q have the same image by x. The kernelof x is thus a partition of the domain of x. We des
ribe the egg-box pi
tureswith Example 1 
ontinued in Figure 2.121=2 b�b2 1 21 �a ab2 ba �bab �� �0Fig. 2. The synta
ti
 semigroup of the even shift of Example 1 is 
omposed of threeD-
lasses D1, D2, D3, of rank 2, 1 and 0, respe
tively, represented by the above tablesfrom left to right. Ea
h square in a table represents an H-
lass. Ea
h row represents anR-
lass and ea
h 
olumn an L-
lass. The 
ommon kernel of the elements in ea
h row iswritten on the left of ea
h row. The 
ommon image of the elements in ea
h 
olumn iswritten above ea
h 
olumn. Idempotents are marked with the symbol �. Ea
h D-
lassof this semigroup is regular. The 
hara
teristi
 groups of D1, D2, D3 are Z=2Z, thetrivial group Z=Zand Z=Z, respe
tively.Let X be an irredu
ible so�
 shift and S its synta
ti
 semigroup. It is knownthat S has a unique D-
lass of rank 1 whi
h is regular (see [4℄ or [5℄, see also[8℄).We de�ne a �nite dire
ted a
y
li
 graph (DAG) asso
iated with X as follows.The set of verti
es of the DAG is the set of non null regular D-
lasses of S, but



the regular D-
lass of null rank, if there is one. Ea
h vertex is labeled with therank of the D-
lass and its 
hara
teristi
 group. There is an edge from the vertexasso
iated with aD-
lassD to the vertex asso
iated with a D-
lassD0 if and onlyif D0 �J D. We 
all this a
y
li
 graph the synta
ti
 graph of X (see Figure 3for an example). Note that the regular D-
lass of null rank, if there is one, isnot taken into a

ount in a synta
ti
 graph. This is linked to the fa
t that a fullshift (i.e. the set of all bi-in�nite words on a �nite alphabet) 
an be 
onjugateto a non full shift. rank 2, Z=2Zrank 1, Z=ZFig. 3. The synta
ti
 graph of the even shift of Example 1. We have D2 �J D1 sin
e,for instan
e, S1abS1 � S1bS1.2.3 Nasu's Classi�
ation Theorem for so�
 shiftsIn this se
tion, we re
all Nasu's Classi�
ation Theorem for so�
 shifts [15℄ (seealso [13, p. 232℄), whi
h extends William's Classi�
ation Theorem for shifts of�nite type (see [13, p. 229℄).Let X � AZ; Y � BZ be two subshifts and m; a be nonnegative integers. Amap � : X ! Y is a (m; a)-blo
k map (or (m; a)-fa
tor map) if there is a map Æ :Am+a+1 ! B su
h that �((ai)i2Z) = (bi)i2Zwhere Æ(ai�m : : : ai�1aiai+1 : : : ai+a)= bi. A blo
k map is a (m; a)-blo
k map for some nonnegative integers m; a. Thewell known theorem of Curtis, Hedlund and Lyndon [7℄ asserts that 
ontinuousand shift-
ommuting maps are exa
tly blo
k maps. A 
onjuga
y is a one-to-oneand onto blo
k map (then, being a shift 
ompa
t, its inverse is also a blo
k map).Let A be a symboli
 adja
en
y (Q � Q)-matrix of an automaton A withentries in a �nite alphabet A. Let B be a �nite alphabet and f a one-to-one mapfrom A to B. The map f is extended to a morphism from �nite formal sums ofelements of A to �nite formal sums of elements of B. We say that f transformsA into an adja
en
y (Q�Q)-matrix B if Bpq = f(Apq).We now de�ne the notion of strong shift equivalen
e between two symboli
adja
en
y matri
es.Let A and B be two �nite alphabets. We denote by AB the set of words abwith a 2 A and b 2 B.Two symboli
 adja
en
y matri
es A, with entries in A, and B, with entries inB, are elementary strong shift equivalent if there is a pair of symboli
 adja
en
y



matri
es (U; V ) with entries in disjoint alphabets U and V respe
tively, su
h thatthere is a one-to-one map from A to UV whi
h transforms A into UV , and thereis a one-to-one map from B to VU whi
h transforms B into V U .Two symboli
 adja
en
y matri
es A and B are strong shift equivalent withinright Fis
her 
overs if there is a sequen
e of symboli
 adja
en
y matri
es of rightFis
her 
overs A = A0; A1; : : : ; Al�1; Al = Bsu
h that for 1 � i � l the matri
es Ai�1 tand Ai are elementary strong shiftequivalent.Theorem 1 (Nasu). Let X and Y be irredu
ible so�
 shifts and let A andB be the symboli
 adja
en
y matri
es of the right Fis
her 
overs of X and Y ,respe
tively. Then X and Y are 
onjugate if and only if A and B are strong shiftequivalent within right Fis
her 
overs.Example 2. Let us 
onsider the two (
onjugate) irredu
ible so�
 shifts X and Yde�ned by the right Fis
her 
overs A = (Q;E) and B = (Q0; E0) in Figure 4.
1 2bba 20 3010a0b0b0 d0
0

Fig. 4. Two 
onjugate shifts X and Y .The symboli
 adja
en
y matri
es of these automata are respe
tivelyA = �a bb 0� ; B = 24a0 0 d0
0 0 b00 b0 035 :Then A and B are elementary strong shift equivalent withU = �u1 0 u20 u2 0 � ; V = 24v1 0v2 00 v235 :



Indeed, UV = �u1v1 u2v2u2v2 0 � ; V U = 24v1u1 0 v1u2v2u1 0 v2u20 v2u2 0 35 :The one-to-one maps from A = fa; bg to UV and from B = fa0; b0; 
0; d0g to VUare des
ribed in the tables below.a u1v1b u2v2 ; a0 v1u1b0 v2u2
0 v2u1d0 v1u2 :An elementary strong shift equivalen
e enables the 
onstru
tion of an irredu
ibleso�
 shift Z on the alphabet U [V as follows. The so�
 shift Z is de�ned by theautomaton C = (Q [Q0; F ), where the symboli
 adja
en
y matrix C of C isQ Q0QQ0 �0 UV 0� :The shift Z is 
alled the bipartite shift de�ned by U; V (see Figure 5). An edgeof C labeled on U goes from a state in Q to a state in Q0. An edge of C labeledon V goes from a state in Q0 to a state in Q. Remark that the se
ond higherpower of Z is the disjoint union of X and Y . Note also that C is a right Fis
her
over (i.e. is minimal).
110 23020u2 v2u2v2u1v1 Fig. 5. The bipartite shift Z.3 A synta
ti
 invariantIn this se
tion, we de�ne a synta
ti
 invariant for the 
onjuga
y of irredu
ibleso�
 shifts.Theorem 2. Let X and Y be two irredu
ible so�
 shifts. If X and Y are 
on-jugate, then they have the same synta
ti
 graph.



We give a few lemmas before proving Theorem 2.Let X (respe
tively Y ) be an irredu
ible so�
 shift whose symboli
 adja
en
ymatrix of its right Fis
her 
over is a (Q � Q)-matrix (respe
tively (Q0 � Q0)-matrix) denoted by A (respe
tively by B). We assume that A and B are elemen-tary strong shift equivalent through a pair of matri
es (U; V ). The 
orrespondingalphabets are denoted A, B, U , and V as before. We denote by f a one-to-onemap from A to UV whi
h transforms A into UV and by g a one-to-one mapfrom B to VU whi
h transforms B into V U . Let Z be the bipartite irredu
ibleso�
 shift asso
iated to U; V . We denote by S (respe
tively T , R) the synta
ti
semigroup of X (respe
tively Y , Z).Let w 2 R. If w is non null, the bipartite nature of Z implies that w is afun
tion from Q[Q0 to Q[Q0 whose domain is in
luded either in Q or in Q0, andwhose image is in
luded either in Q or in Q0. If w 6= 0 with a domain in
ludedin P and an image in
luded in P 0, we say that w has the type (P; P 0). Remarkthat w has type (Q;Q) if and only if w 6= 0 and w 2 (f(A))�, and w has type(Q0; Q0) if and only if w 6= 0 and w 2 (g(B))�.Lemma 1. Elements of R in a same non null H-
lass have the same type.Proof We show the property for the (Q;Q)-type. Let w 2 H and w of type(Q;Q). If w = w0v with w0; v 2 R, then w0 has type (Q; �). If w = zw0 withz; w0 2 R, then w0 has type (�; Q). Thus, wHw0 implies that w0 has type (Q;Q).� The H-
lasses of R 
ontaining elements of type (Q;Q) (respe
tively (Q0; Q0))are 
alled (Q;Q)-H-
lasses (respe
tively (Q0; Q0)-H-
lasses).Let w = a1 : : : an be an element of S, we de�ne the element f(w) as f(a1): : : f(an). Note that this de�nition is 
onsistent sin
e if a1 : : : an = a01 : : : a0m inS, then f(a1) : : : f(an) = f(a01) : : : f(a0m) in R. Similarly we de�ne an elementg(w) for any element w of T .Conversely, let w be an element of R belonging to f(A)� (� (UV)�). Thenw = f(a1) : : : f(an), with ai 2 A. We de�ne f�1(w) as a1 : : : an. Similarly wede�ne g�1(w). Again these de�nitions and notations are 
onsistent. Thus f is asemigroup isomorphism from S to the subsemigroup of R of transition fun
tionsde�ned by the words in (f(A))�. Noti
e that f(0) = 0 if 0 2 S. Analogously,g is a semigroup isomorphism from T to the subsemigroup of R of transitionfun
tions de�ned by the words in (g(B))�.Lemma 2. Let w;w0 2 R of type (Q;Q). Then wHw0 in R if and only iff�1(w)Hf�1(w0) in S.Proof Let w = f(a1) : : : f(an) and w0 = f(a01) : : : f(a0m), with ai; a0j 2 A. Wehave w = w0v with v 2 R if and only if v = f(�a1) : : : f(�ar) with �ai 2 A andf(a1) : : : f(an) = f(a01) : : : f(a0m)f(�a1) : : : f(�ar). This is equivalent to a1 : : : an =a01 : : : a0m�a1 : : : �ar, that is f�1(w)R1 � f�1(w0)R1. Analogously, we have w0 =wv0 with v0 2 R, if and only if f�1(w0)R1 � f�1(w)R1. This proves that wRw0



in R if and only if f�1(w)Rf�1(w0) in S. In the same way, one 
an prove thesame statement for the relation L and hen
e for the relation H. �A similar statement holds for (Q0; Q0)-H-
lasses.Lemma 3. Let w;w0 2 R of type (Q;Q). Then w �J w0 in R if and only iff�1(w) �J f�1(w0) in S. This implies that wJw0 in R if and only if f�1(w)J f�1(w0) in S.Proof The �rst statement 
an be prooved as in the previous lemma. �Similar results hold between T and R. As a 
onsequen
e we get the followinglemma.Lemma 4. The bije
tion f between S and the elements of R belonging to (f(A))�,indu
es a bije
tion between the non null H-
lasses of S and the (Q;Q)-H-
lassesof R. Moreover this bije
tion keeps the relations J , �J and the rank of the H-
lasses.A similar statement holds for the bije
tion g.We now 
ome to the main lemma, whi
h shows the link between the ele-mentary strong shift equivalen
e of the symboli
 adja
en
y matri
es and the
onjuga
y of some idempotents in the semigroup. This link is the key point ofthe invariant.Lemma 5. Let H be a regular (Q;Q)-H-
lass of R. Then there is a regular(Q0; Q0)-H-
lass in the same D-
lass as H.Proof Let e 2 R be an idempotent element of type (Q;Q). Let u1v1 : : : unvn in(UV)� su
h that e = u1v1 : : : unvn. We de�ne �e = v1 : : : unvnu1. Thus eu1 = u1�ein R. Remark that �e depends on the 
hoi
e of the word u1v1 : : : unvn representinge in R.If w denotes v1 : : : unvn and v denotes u1, we have e = vw and �e = wv. Itfollows that e and �e are 
onjugate, thus e2 = e and �e2 are 
onjugate. Moreover�e3 = wvwvwv = weev = wev = wvwv = �e2:Thus �e2 is an idempotent 
onjugate to the idempotent e. As a 
onsequen
e eand �e2 belong to a same D-
lass of R (see Se
tion 2), and �e2 6= 0. The resultfollows sin
e �e2 is of type (Q0; Q0). �Note that the number of regular (Q;Q)-H-
lasses and the number of regular(Q0; Q0)-H-
lasses in a same D-
lass of R, may be di�erent in general.We now prove Theorem 2.Proof [of Theorem 2℄ By Nasu's Theorem [15℄ we 
an assume, without loss ofgenerality, that the symboli
 adja
en
y matri
es of the right Fis
her 
overs ofX and Y are elementary strong shift equivalent. We de�ne the bipartite shift Z



as above. We denote by S, T and R the synta
ti
 semigroups of X , Y and Zrespe
tively.Let D be a non null regular D-
lass of S. Let H be a regular H-
lass ofS 
ontained in D. Let H 00 = f(H). By Lemma 4, the groups H and H 00 areisomorphi
. Let D00 the D-
lass of R 
ontaining H 00. By Lemma 5, there is atleast one regular (Q0; Q0)-H-
lass K 00 in D00, whi
h is isomorphi
 to H 00. LetH 0 = g�1(K 00) and let D0 be the D-
lass of T 
ontaining H 0. By Lemma 4, thegroups H 0 and K 00 are isomorphi
. Hen
e the groups H and H 0 are isomorphi
.By Lemmas 4 and 5, we have that the above 
onstru
tion of D0 from D is abije
tive fun
tion ' from the non null regular D-
lasses of S onto the non nullregular D-
lasses of T . Moreover the 
hara
teristi
 group of D is isomorphi
 tothe 
hara
teristi
 group of '(D) and, by Lemma 4, the rank of D is equal to therank of '(D).We now 
onsider two non null regularD-
lassesD1 andD2 of S. By Lemma 4and Lemma 5, D1 �J D2 if and only if '(D1) �J '(D2). It follows that thesynta
ti
 graphs of S and T are isomorphi
 through the bije
tion '. �Nasu's Classi�
ation Theorem holds for redu
ible so�
 shifts by the use ofright Krieger 
overs instead of right Fis
her 
overs [15℄. This enables the ex-tension of our result to the 
ase of redu
ible so�
 shifts. This extension is notdes
ribed in this short version of the paper.4 How dynami
 is this invariant?We brie
y 
ompare the synta
ti
 
onjuga
y invariant with other 
lassi
al 
on-juga
y invariants. We refer to [13℄ for the de�nitions and properties of these
lassi
al invariants.First, on 
an remark that the synta
ti
 invariant does not 
apture all thedynami
. Two so�
 shifts 
an have the same synta
ti
 graph and a di�erententropy, see the example given in Figure 6.
1 2bba 1 2a bb

Fig. 6. The two above so�
 shifts X;Y have the same synta
ti
 graph and a di�erententropy. Indeed, we have b = 
 in the synta
ti
 semigroup of Y . Hen
e the shifts Xand Y have the same synta
ti
 semigroup.



The 
omparison with the zeta fun
tion is more interesting. Re
all that thezeta fun
tion of a shift X is �(X) = expPn�1 pn znn , where pn is the number ofbi-in�nite words x 2 X su
h that �n(x) = x. We give in Figure 7 an exampleof two irredu
ible so�
 shifts whi
h have the same zeta fun
tion and di�erentsynta
ti
 graphs.Irredu
ible shifts of �nite type 
an be 
hara
terized with this synta
ti
 in-variant. Other equivalent 
hara
terizations of �nite type shifts 
an be found in[14℄ and in [8℄.Proposition 1. An irredu
ible so�
 shifts is of �nite type if and only its syn-ta
ti
 graph is redu
ed to one node of rank 1 representing the trivial group.Another interesting 
lass of irredu
ible so�
 shifts 
an be 
hara
terized withthe synta
ti
 invariant. It is the 
lass of aperiodi
 so�
 shifts [1℄.Let x 2 X , we denote by period(x) the least positive integer n su
h that�n(x) = x if su
h an integer exists. It is equal to 1 otherwise.Let X;Y be two subshifts and let � : X ! Y be a blo
k map. The map issaid aperiodi
 if period(x) = period(�(x)) for any x 2 X . Roughly speaking,su
h a fa
tor map � does not make periods de
rease.A so�
 shift X if aperiodi
 if it is the image of a shift of �nite type by anaperiodi
 blo
k map. A 
hara
terization of irredu
ible aperiodi
 so�
 shifts isthe following.Proposition 2. An irredu
ible so�
 shift is aperiodi
 if and only if its synta
ti
graph 
ontains only trivial groups.S
h�utzenberger's 
hara
terization of aperiodi
 languages (see for instan
e [16,Theorem 2.1℄) asserts that the set of blo
ks of an aperiodi
 so�
 shift is a regularstar free language.
1 2aab bx y 1 2adb 
x yFig. 7. Two so�
 shifts X;Y whi
h have the same zeta fun
tion 11�4z+z2 (see forinstan
e [13, Theorem 6.4.8℄, or [2℄ for the 
omputation of the zeta fun
tion of aso�
 shift), and di�erent synta
ti
 invariants. Indeed the synta
ti
 graph of X is(rank 2;Z=2Z) ! (rank 1;Z=Z) while the synta
ti
 graph of Y has only one node(rank 1;Z=Z). Thus they are not 
onjugate. Noti
e that Y is a shift of �nite type.
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