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The syntati graph of a so� shiftMarie-Pierre B�eal, Franesa Fiorenzi, and Dominique PerrinInstitut Gaspard-Monge, Universit�e de Marne-la-Vall�ee77454 Marne-la-Vall�ee Cedex 2, Franefbeal,perring�univ-mlv.fr, fiorenzi�mat.uniroma1.itAbstrat. We de�ne a new invariant for the onjugay of irreduibleso� shifts. This invariant, that we all the syntati graph of a so�shift, is the direted ayli graph of harateristi groups of the nonnull regular D-lasses of the syntati semigroup of the shift.Keywords: Automata and formal languages, symboli dynamis.1 IntrodutionSo� shifts [17℄ are sets of bi-in�nite labels in a labeled graph. If the graph an behosen strongly onneted, the so� shift is said to be irreduible. A partiularsublass of so� shifts is the lass of shifts of �nite type, de�ned by a �nite set offorbidden bloks. Two so� shifts X and Y are onjugate if there is a bijetiveblok map from X onto Y . It is an open question to deide whether two so�shifts are onjugate, even in the partiular ase of irreduible shifts of �nite type.There are many invariants for onjugay of subshifts, algebrai or ombinato-rial, see [13, Chapter 7℄, [6℄, [12℄, [3℄. For instane the entropy is a ombinatorialinvariant whih gives the omplexity of allowed bloks in a shift. The zeta fun-tion is another invariant whih ounts the number of periodi orbits in a shift.In this paper, we de�ne a new invariant for irreduible so� shifts. This invari-ant is based on the struture of the syntati semigroup of the language of �nitebloks of the shift. Irreduible so� shifts have a unique (up to isomorphisms ofautomata) minimal deterministi presentation, alled the right Fisher over ofthe shift. The syntati semigroup S of an irreduible so� shift is the transitionsemigroup of its right Fisher over.In general, the struture of a �nite semigroup is determined by the Green'srelations (denotedR, L,H;D;J ) [16℄. Our invariant is the ayli direted graphwhose nodes are the harateristi groups of the non null regular D-lasses of S.The edges orrespond to the partial order �J between these D-lasses. We allit the syntati graph of the so� shift. The result an be extended to the aseof reduible so� shifts.The proof of the invariant is based on Nasu's Classi�ation Theorem for so�shifts [15℄ that extends William's one for shifts of �nite type. This theorem saysthat two irreduible so� shifts X;Y are onjugate if and only if there is a se-quene of transition matries of right Fisher oversA = A0; A1; : : : ; Al�1; Al =B, suh that Ai�1; Ai are elementary strong shift equivalent for 1 � i � l, where



A and B are the transition matries of the right Fisher overs of X and Y , re-spetively. This means that there are transition matries Ui; Vi suh that, afterreoding the alphabets of Ai�1 and Ai, we have Ai�1 = UiVi and Ai = ViUi. Abipartite shift is assoiated in a natural way to a pair of elementary strong shiftequivalent and irreduible so� shifts [15℄.The key point in our invariant is the fat that an elementary strong shiftequivalene relation between transition matries implies some onjugay rela-tions between the idempotents in the syntati semigroup of the bipartite shift.We show that partiular lasses of irreduible so� shifts an be haraterizedwith this syntati invariant: the lass of irreduible shifts of �nite type and thelass of irreduible aperiodi so� shifts.Basi de�nitions related to symboli dynamis are given in Setion 2.1. Werefer to [13℄ or [9℄ for more details. See also [10℄, [11℄, [4℄ about so� shifts.Basi de�nitions and properties related to �nite semigroups and their strutureare given Setion 2.2. We refer to [16, Chapter 3℄ for a more omprehensiveexpository. Nasu's Classi�ation Theorem is realled in Setion 2.3. We de�neand prove our invariant in Setion 3. A omparison of this syntati invariant tosome well known other ones is given in Setion 4. Proofs of Propositions 1 and2 are omitted. The extension to the ase of reduible so� shifts is disussed atthe end of Setion 3.2 De�nitions and bakground2.1 So� shifts and their presentationsLet A be a �nite alphabet, i.e. a �nite set of symbols. The shift map � : AZ! AZis de�ned by �((ai)i2Z) = (ai+1)i2Z, for (ai)i2Z2 AZ. If AZ is endowed with theprodut topology of the disrete topology on A, a subshift is a losed �-invariantsubset of AZ.If X is a subshift of AZ and n a positive integer, the nth higher power of Xis the subshift of (An)Z de�ned by Xn = f(ain; : : : ; ain+n�1)i2Z j (ai)i2Z2 Xg.A �nite automaton is a �nite multigraph labeled on A. It is denoted A =(Q;E), where Q is a �nite set of states, and E a �nite set of edges labeled onA. It is equivalent to a symboli adjaeny (Q�Q)-matrix A, where Apq is the�nite formal sum of the labels of all the edges from p to q. A so� shift is theset of the labels of all the bi-in�nite paths on a �nite automaton. If A is a �niteautomaton, we denote by XA the so� shift de�ned by the automaton A. Severalautomata an de�ne the same so� shift. They are also alled presentations orovers of the so� shift. We will assume that all presentations are essential : allstates have at least one outgoing edge and one inoming edge. An automatonis deterministi if for any given state and any given symbol, there is at mostone outgoing edge labeled with this given symbol. A so� shift is irreduible if ithas a presentation with a strongly onneted graph. Irreduible so� shifts havea unique (up to isomorphisms of automata) minimal deterministi presentationalled the right Fisher over of the shift.



Let A = (Q;E) be a �nite deterministi (essential) automaton on the al-phabet A. Eah �nite word w of A� de�nes a partial funtion from Q to Q.This funtion sends the state p to the state q, if w is the label of a path formp to q. The semigroup generated by all these funtions is alled the transitionsemigroup of the automaton. When XA is not the full shift, the semigroup hasa null element, denoted 0, whih orresponds to words whih are not fators ofany bi-in�nite word of XA. The syntati semigroup of an irreduible so� shiftis de�ned as the transition semigroup of its right Fisher over.Example 1. The so� shift presented by the automaton of Figure 1 is alled theeven shift. Its syntati semigroup is de�ned by the table in the right part of the�gure.
1 2bba 1 2a 1 �b 2 1ab 2 �ba � 1bb 1 2bab � 2aba � � :

Fig. 1. The right Fisher over of the even shift and its syntati semigroup. Sine aaand a de�ne the same partial funtion from Q to Q, we write aa = a in the syntatisemigroup. We also have aba = 0, or ab2k+1a = 0 for any nonnegative integer k. Theword bb is the identity in this semigroup.
2.2 Struture of �nite semigroupsWe refer to [16℄ for more details about the notions de�ned in this setion.Given a semigroup S, we denote by S1 the following monoid: if S is a monoid,S1 = S. If S is not a monoid, S1 = S [ f1g together with the law � de�ned byx � y = xy if x; y 2 S and 1 � x = x � 1 = x for eah x 2 S1.We reall the Green's relations whih are fundamentals equivalene relationsde�ned in a semigroup S. The four equivalene relations R, L, H, J are de�nedas follows. Let x; y 2 S, xRy , xS1 = yS1;xLy , S1x = S1y;xJ y , S1xS1 = S1yS1;xHy , xRy and xLy:



Another relation D is de�ned by:xDy , 9z 2 S xRz and zLy:In a �nite semigroup J = D. We reall the de�nition of the quasi-order �J :x �J y , S1xS1 � S1yS1:An R-lass is an equivalene lass for a relation R (similar notations hold for theother Green's relations). An idempotent is an element e 2 S suh that ee = e. Aregular lass is a lass ontaining an idempotent. In a regularD-lass, anyH-lassontaining an idempotent is a maximal subgroup of the semigroup. Moreover,two regularH-lasses ontained in a same D-lass are isomorphi (as groups), seefor instane [16, Proposition 1.8℄. This group is alled the harateristi groupof the regular D-lass. The quasi-order �J indues a partial order between theD-lasses (still denoted �J ). The struture of the transition semigroup S is oftendesribed by the so alled \egg-box" pitures of the D-lasses.We say that two elements x; y 2 S are onjugate if there are elements u; v 2S1 suh that x = uv and y = vu. Two idempotents belong to a same regularD-lass if and only if they are onjugate, see for instane [16, Proposition 1.12℄.Let S be a transition semigroup of an automaton A = (Q;E) and x 2 S. Therank of x is the ardinal of the image of x as a partial funtion from Q to Q.The kernel of x is the partition indued by the equivalene relation � over thedomain of x where p � q if and only p; q have the same image by x. The kernelof x is thus a partition of the domain of x. We desribe the egg-box pitureswith Example 1 ontinued in Figure 2.121=2 b�b2 1 21 �a ab2 ba �bab �� �0Fig. 2. The syntati semigroup of the even shift of Example 1 is omposed of threeD-lasses D1, D2, D3, of rank 2, 1 and 0, respetively, represented by the above tablesfrom left to right. Eah square in a table represents an H-lass. Eah row represents anR-lass and eah olumn an L-lass. The ommon kernel of the elements in eah row iswritten on the left of eah row. The ommon image of the elements in eah olumn iswritten above eah olumn. Idempotents are marked with the symbol �. Eah D-lassof this semigroup is regular. The harateristi groups of D1, D2, D3 are Z=2Z, thetrivial group Z=Zand Z=Z, respetively.Let X be an irreduible so� shift and S its syntati semigroup. It is knownthat S has a unique D-lass of rank 1 whih is regular (see [4℄ or [5℄, see also[8℄).We de�ne a �nite direted ayli graph (DAG) assoiated with X as follows.The set of verties of the DAG is the set of non null regular D-lasses of S, but



the regular D-lass of null rank, if there is one. Eah vertex is labeled with therank of the D-lass and its harateristi group. There is an edge from the vertexassoiated with aD-lassD to the vertex assoiated with a D-lassD0 if and onlyif D0 �J D. We all this ayli graph the syntati graph of X (see Figure 3for an example). Note that the regular D-lass of null rank, if there is one, isnot taken into aount in a syntati graph. This is linked to the fat that a fullshift (i.e. the set of all bi-in�nite words on a �nite alphabet) an be onjugateto a non full shift. rank 2, Z=2Zrank 1, Z=ZFig. 3. The syntati graph of the even shift of Example 1. We have D2 �J D1 sine,for instane, S1abS1 � S1bS1.2.3 Nasu's Classi�ation Theorem for so� shiftsIn this setion, we reall Nasu's Classi�ation Theorem for so� shifts [15℄ (seealso [13, p. 232℄), whih extends William's Classi�ation Theorem for shifts of�nite type (see [13, p. 229℄).Let X � AZ; Y � BZ be two subshifts and m; a be nonnegative integers. Amap � : X ! Y is a (m; a)-blok map (or (m; a)-fator map) if there is a map Æ :Am+a+1 ! B suh that �((ai)i2Z) = (bi)i2Zwhere Æ(ai�m : : : ai�1aiai+1 : : : ai+a)= bi. A blok map is a (m; a)-blok map for some nonnegative integers m; a. Thewell known theorem of Curtis, Hedlund and Lyndon [7℄ asserts that ontinuousand shift-ommuting maps are exatly blok maps. A onjugay is a one-to-oneand onto blok map (then, being a shift ompat, its inverse is also a blok map).Let A be a symboli adjaeny (Q � Q)-matrix of an automaton A withentries in a �nite alphabet A. Let B be a �nite alphabet and f a one-to-one mapfrom A to B. The map f is extended to a morphism from �nite formal sums ofelements of A to �nite formal sums of elements of B. We say that f transformsA into an adjaeny (Q�Q)-matrix B if Bpq = f(Apq).We now de�ne the notion of strong shift equivalene between two symboliadjaeny matries.Let A and B be two �nite alphabets. We denote by AB the set of words abwith a 2 A and b 2 B.Two symboli adjaeny matries A, with entries in A, and B, with entries inB, are elementary strong shift equivalent if there is a pair of symboli adjaeny



matries (U; V ) with entries in disjoint alphabets U and V respetively, suh thatthere is a one-to-one map from A to UV whih transforms A into UV , and thereis a one-to-one map from B to VU whih transforms B into V U .Two symboli adjaeny matries A and B are strong shift equivalent withinright Fisher overs if there is a sequene of symboli adjaeny matries of rightFisher overs A = A0; A1; : : : ; Al�1; Al = Bsuh that for 1 � i � l the matries Ai�1 tand Ai are elementary strong shiftequivalent.Theorem 1 (Nasu). Let X and Y be irreduible so� shifts and let A andB be the symboli adjaeny matries of the right Fisher overs of X and Y ,respetively. Then X and Y are onjugate if and only if A and B are strong shiftequivalent within right Fisher overs.Example 2. Let us onsider the two (onjugate) irreduible so� shifts X and Yde�ned by the right Fisher overs A = (Q;E) and B = (Q0; E0) in Figure 4.
1 2bba 20 3010a0b0b0 d00

Fig. 4. Two onjugate shifts X and Y .The symboli adjaeny matries of these automata are respetivelyA = �a bb 0� ; B = 24a0 0 d00 0 b00 b0 035 :Then A and B are elementary strong shift equivalent withU = �u1 0 u20 u2 0 � ; V = 24v1 0v2 00 v235 :



Indeed, UV = �u1v1 u2v2u2v2 0 � ; V U = 24v1u1 0 v1u2v2u1 0 v2u20 v2u2 0 35 :The one-to-one maps from A = fa; bg to UV and from B = fa0; b0; 0; d0g to VUare desribed in the tables below.a u1v1b u2v2 ; a0 v1u1b0 v2u20 v2u1d0 v1u2 :An elementary strong shift equivalene enables the onstrution of an irreduibleso� shift Z on the alphabet U [V as follows. The so� shift Z is de�ned by theautomaton C = (Q [Q0; F ), where the symboli adjaeny matrix C of C isQ Q0QQ0 �0 UV 0� :The shift Z is alled the bipartite shift de�ned by U; V (see Figure 5). An edgeof C labeled on U goes from a state in Q to a state in Q0. An edge of C labeledon V goes from a state in Q0 to a state in Q. Remark that the seond higherpower of Z is the disjoint union of X and Y . Note also that C is a right Fisherover (i.e. is minimal).
110 23020u2 v2u2v2u1v1 Fig. 5. The bipartite shift Z.3 A syntati invariantIn this setion, we de�ne a syntati invariant for the onjugay of irreduibleso� shifts.Theorem 2. Let X and Y be two irreduible so� shifts. If X and Y are on-jugate, then they have the same syntati graph.



We give a few lemmas before proving Theorem 2.Let X (respetively Y ) be an irreduible so� shift whose symboli adjaenymatrix of its right Fisher over is a (Q � Q)-matrix (respetively (Q0 � Q0)-matrix) denoted by A (respetively by B). We assume that A and B are elemen-tary strong shift equivalent through a pair of matries (U; V ). The orrespondingalphabets are denoted A, B, U , and V as before. We denote by f a one-to-onemap from A to UV whih transforms A into UV and by g a one-to-one mapfrom B to VU whih transforms B into V U . Let Z be the bipartite irreduibleso� shift assoiated to U; V . We denote by S (respetively T , R) the syntatisemigroup of X (respetively Y , Z).Let w 2 R. If w is non null, the bipartite nature of Z implies that w is afuntion from Q[Q0 to Q[Q0 whose domain is inluded either in Q or in Q0, andwhose image is inluded either in Q or in Q0. If w 6= 0 with a domain inludedin P and an image inluded in P 0, we say that w has the type (P; P 0). Remarkthat w has type (Q;Q) if and only if w 6= 0 and w 2 (f(A))�, and w has type(Q0; Q0) if and only if w 6= 0 and w 2 (g(B))�.Lemma 1. Elements of R in a same non null H-lass have the same type.Proof We show the property for the (Q;Q)-type. Let w 2 H and w of type(Q;Q). If w = w0v with w0; v 2 R, then w0 has type (Q; �). If w = zw0 withz; w0 2 R, then w0 has type (�; Q). Thus, wHw0 implies that w0 has type (Q;Q).� The H-lasses of R ontaining elements of type (Q;Q) (respetively (Q0; Q0))are alled (Q;Q)-H-lasses (respetively (Q0; Q0)-H-lasses).Let w = a1 : : : an be an element of S, we de�ne the element f(w) as f(a1): : : f(an). Note that this de�nition is onsistent sine if a1 : : : an = a01 : : : a0m inS, then f(a1) : : : f(an) = f(a01) : : : f(a0m) in R. Similarly we de�ne an elementg(w) for any element w of T .Conversely, let w be an element of R belonging to f(A)� (� (UV)�). Thenw = f(a1) : : : f(an), with ai 2 A. We de�ne f�1(w) as a1 : : : an. Similarly wede�ne g�1(w). Again these de�nitions and notations are onsistent. Thus f is asemigroup isomorphism from S to the subsemigroup of R of transition funtionsde�ned by the words in (f(A))�. Notie that f(0) = 0 if 0 2 S. Analogously,g is a semigroup isomorphism from T to the subsemigroup of R of transitionfuntions de�ned by the words in (g(B))�.Lemma 2. Let w;w0 2 R of type (Q;Q). Then wHw0 in R if and only iff�1(w)Hf�1(w0) in S.Proof Let w = f(a1) : : : f(an) and w0 = f(a01) : : : f(a0m), with ai; a0j 2 A. Wehave w = w0v with v 2 R if and only if v = f(�a1) : : : f(�ar) with �ai 2 A andf(a1) : : : f(an) = f(a01) : : : f(a0m)f(�a1) : : : f(�ar). This is equivalent to a1 : : : an =a01 : : : a0m�a1 : : : �ar, that is f�1(w)R1 � f�1(w0)R1. Analogously, we have w0 =wv0 with v0 2 R, if and only if f�1(w0)R1 � f�1(w)R1. This proves that wRw0



in R if and only if f�1(w)Rf�1(w0) in S. In the same way, one an prove thesame statement for the relation L and hene for the relation H. �A similar statement holds for (Q0; Q0)-H-lasses.Lemma 3. Let w;w0 2 R of type (Q;Q). Then w �J w0 in R if and only iff�1(w) �J f�1(w0) in S. This implies that wJw0 in R if and only if f�1(w)J f�1(w0) in S.Proof The �rst statement an be prooved as in the previous lemma. �Similar results hold between T and R. As a onsequene we get the followinglemma.Lemma 4. The bijetion f between S and the elements of R belonging to (f(A))�,indues a bijetion between the non null H-lasses of S and the (Q;Q)-H-lassesof R. Moreover this bijetion keeps the relations J , �J and the rank of the H-lasses.A similar statement holds for the bijetion g.We now ome to the main lemma, whih shows the link between the ele-mentary strong shift equivalene of the symboli adjaeny matries and theonjugay of some idempotents in the semigroup. This link is the key point ofthe invariant.Lemma 5. Let H be a regular (Q;Q)-H-lass of R. Then there is a regular(Q0; Q0)-H-lass in the same D-lass as H.Proof Let e 2 R be an idempotent element of type (Q;Q). Let u1v1 : : : unvn in(UV)� suh that e = u1v1 : : : unvn. We de�ne �e = v1 : : : unvnu1. Thus eu1 = u1�ein R. Remark that �e depends on the hoie of the word u1v1 : : : unvn representinge in R.If w denotes v1 : : : unvn and v denotes u1, we have e = vw and �e = wv. Itfollows that e and �e are onjugate, thus e2 = e and �e2 are onjugate. Moreover�e3 = wvwvwv = weev = wev = wvwv = �e2:Thus �e2 is an idempotent onjugate to the idempotent e. As a onsequene eand �e2 belong to a same D-lass of R (see Setion 2), and �e2 6= 0. The resultfollows sine �e2 is of type (Q0; Q0). �Note that the number of regular (Q;Q)-H-lasses and the number of regular(Q0; Q0)-H-lasses in a same D-lass of R, may be di�erent in general.We now prove Theorem 2.Proof [of Theorem 2℄ By Nasu's Theorem [15℄ we an assume, without loss ofgenerality, that the symboli adjaeny matries of the right Fisher overs ofX and Y are elementary strong shift equivalent. We de�ne the bipartite shift Z



as above. We denote by S, T and R the syntati semigroups of X , Y and Zrespetively.Let D be a non null regular D-lass of S. Let H be a regular H-lass ofS ontained in D. Let H 00 = f(H). By Lemma 4, the groups H and H 00 areisomorphi. Let D00 the D-lass of R ontaining H 00. By Lemma 5, there is atleast one regular (Q0; Q0)-H-lass K 00 in D00, whih is isomorphi to H 00. LetH 0 = g�1(K 00) and let D0 be the D-lass of T ontaining H 0. By Lemma 4, thegroups H 0 and K 00 are isomorphi. Hene the groups H and H 0 are isomorphi.By Lemmas 4 and 5, we have that the above onstrution of D0 from D is abijetive funtion ' from the non null regular D-lasses of S onto the non nullregular D-lasses of T . Moreover the harateristi group of D is isomorphi tothe harateristi group of '(D) and, by Lemma 4, the rank of D is equal to therank of '(D).We now onsider two non null regularD-lassesD1 andD2 of S. By Lemma 4and Lemma 5, D1 �J D2 if and only if '(D1) �J '(D2). It follows that thesyntati graphs of S and T are isomorphi through the bijetion '. �Nasu's Classi�ation Theorem holds for reduible so� shifts by the use ofright Krieger overs instead of right Fisher overs [15℄. This enables the ex-tension of our result to the ase of reduible so� shifts. This extension is notdesribed in this short version of the paper.4 How dynami is this invariant?We briey ompare the syntati onjugay invariant with other lassial on-jugay invariants. We refer to [13℄ for the de�nitions and properties of theselassial invariants.First, on an remark that the syntati invariant does not apture all thedynami. Two so� shifts an have the same syntati graph and a di�erententropy, see the example given in Figure 6.
1 2bba 1 2a bbFig. 6. The two above so� shifts X;Y have the same syntati graph and a di�erententropy. Indeed, we have b =  in the syntati semigroup of Y . Hene the shifts Xand Y have the same syntati semigroup.



The omparison with the zeta funtion is more interesting. Reall that thezeta funtion of a shift X is �(X) = expPn�1 pn znn , where pn is the number ofbi-in�nite words x 2 X suh that �n(x) = x. We give in Figure 7 an exampleof two irreduible so� shifts whih have the same zeta funtion and di�erentsyntati graphs.Irreduible shifts of �nite type an be haraterized with this syntati in-variant. Other equivalent haraterizations of �nite type shifts an be found in[14℄ and in [8℄.Proposition 1. An irreduible so� shifts is of �nite type if and only its syn-tati graph is redued to one node of rank 1 representing the trivial group.Another interesting lass of irreduible so� shifts an be haraterized withthe syntati invariant. It is the lass of aperiodi so� shifts [1℄.Let x 2 X , we denote by period(x) the least positive integer n suh that�n(x) = x if suh an integer exists. It is equal to 1 otherwise.Let X;Y be two subshifts and let � : X ! Y be a blok map. The map issaid aperiodi if period(x) = period(�(x)) for any x 2 X . Roughly speaking,suh a fator map � does not make periods derease.A so� shift X if aperiodi if it is the image of a shift of �nite type by anaperiodi blok map. A haraterization of irreduible aperiodi so� shifts isthe following.Proposition 2. An irreduible so� shift is aperiodi if and only if its syntatigraph ontains only trivial groups.Sh�utzenberger's haraterization of aperiodi languages (see for instane [16,Theorem 2.1℄) asserts that the set of bloks of an aperiodi so� shift is a regularstar free language.
1 2aab bx y 1 2adb x yFig. 7. Two so� shifts X;Y whih have the same zeta funtion 11�4z+z2 (see forinstane [13, Theorem 6.4.8℄, or [2℄ for the omputation of the zeta funtion of aso� shift), and di�erent syntati invariants. Indeed the syntati graph of X is(rank 2;Z=2Z) ! (rank 1;Z=Z) while the syntati graph of Y has only one node(rank 1;Z=Z). Thus they are not onjugate. Notie that Y is a shift of �nite type.
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