
Cyclic languages andStrongly cyclic languagesMarie-Pierre B�eal1, Olivier Carton2 and Christophe Reutenauer31 LITP - Institut Blaise Pascal, Universit�e Denis Diderot2 Place Jussieu 75251 Paris cedex 05. beal@litp.ibp.fr2 Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee93166 Noisy le Grand cedex. carton@univ-mlv.fr3 Math�ematiques, Universit�e du Qu�ebec �a Montr�ealC.P. 8888, succ. Centre-Ville, Montr�eal Canada H3C 3P8.christo@catalan.math.uqam.caAbstract. We prove that cyclic languages are the boolean closure oflanguages called strongly cyclic languages. The result is used to giveanother proof of the rationality of the zeta function of rational cycliclanguages.1 IntroductionCyclic languages and strongly cyclic languages are two classes of languages of�nite words over a �nite alphabet. A cyclic language is conjugation-closed and forany two words having a power in common, if one of them is in the language, thenso is the other. A strongly cyclic language is the set of words stabilizing a subsetof the set of states of a �nite deterministic automaton, the subset stabilizeddepending on the word stabilizing it. One says that the language stabilizes theautomaton. A strongly cyclic language is rational.We prove that a rational cyclic language is a boolean combination of stronglycyclic languages. More precisely, each rational cyclic language can be written asa chain of strongly cyclic languages. This result allows us to extend the com-putation of the zeta function (and generalized zeta function) of strongly cycliclanguages done in [B�ea95] to the class of rational cyclic languages. The zetafunction of a formal language L is �(L) = exp(Pan znn ), where an is the numberof words of length n in L. The motivations of this de�nition and the connectionswith algebraic geometry and symbolic dynamics are discussed in [BR90]. Thezeta function of a strongly cyclic language L is equal to the zeta function ofthe so�c system de�ned by the �nite automaton stabilized by L. The rationalityand computability of the zeta function of a so�c system have been established in[Bow78] and [Man71]. The formula of computation given in [Bow78] are provedin [B�ea95] by the use of a construction on �nite automata called external power.The rationality of the zeta function of a rational cyclic language has been es-tablished in [BR90]. The result we give here leads to another proof and to adi�erent computation.



We assume that the reader knows the basics of formal languages (see [Eil72]).We also assume that the reader is familiar with the elementary notions of semi-group theory. For example, notions like syntactic monoid, Green relations, regu-lar D-classes, minimal ideal and 0-minimal ideal are supposed to be known. Werefer to [Lal79] and [Pin86] for a presentation of this subject.The paper is organized as follows. Section 2 and 3 give the basic propertiesof cyclic languages and strongly cyclic languages. The chain-decomposition of arational cyclic language in strongly cyclic languages is established in section 4.The computation of the zeta function and the generalized zeta function is donein the last section.2 Cyclic languagesIn this section, we introduce cyclic languages and give some basic properties. Inthe following, we denote by A a �nite alphabet. In the sequel,M will always de-note a �nite monoid. Every element s of M has a power which is an idempotent.We denote by s! this idempotent.De�nition 1. A language L of A� is said to be cyclic if it satis�es8u 2 A�; 8n > 0 u 2 L , un 2 L8u; v 2 A� uv 2 L, vu 2 LA language is cyclic if it is closed under conjugation, power and root. If L is asubmonoid of A� which is cyclic, it is then pure [BP84].Example 1. If A = fa; bg, the language L = A�aA� = A� � b� of words havingat least one a is cyclic.Example 2. The languageL = fapbn1an2bn2 : : : ankbnkaq j ni � 0 and p+ q = n1g [fbpan1bn1an2bn2 : : : ankbq j ni � 0 and p+ q = nkgis cyclic but not rational.We will now only consider rational cyclic languages. Rational cyclic languageshave the following straightforward characterization in terms of �nite monoids.Proposition2. Let L � A� be a rational language. Let ' : A�!!M be a mor-phism from A� onto a monoid M such that L = '�1(P ). The language L iscyclic if and only if 8s 2M; 8n > 0 s 2 P , sn 2 P8s; t 2M st 2 P , ts 2 PFrom the previous characterization, we deduce some useful facts about thestructure of the image of a rational cyclic language onto a �nite monoid recog-nizing this language. We also deduce a property of the syntactic monoid of acyclic language.



Corollary 3. Let ' : A�!!M be a morphism from A� onto a monoid M suchthat L = '�1(P ). Let H a regular H-class of M . One has H � P or H \P = ;.Proof. Let us suppose h1 2 H belongs to P . For any h2 2 H , we have h!1 =h!2 = e where e is the idempotent of H . We then have h!1 = h!2 2 P and h2 2 P .Corollary 4. Let ' : A�!!M be a morphism from A� onto a monoid M suchthat L = '�1(P ). Let H1 and H2 be two regular H-classes of a regular D-class.If one has H1 � P , one also has H2 � P .Proof. Let e1 and e2 be the respective idempotents of H1 and H2. As two idem-potents of a same D-class are conjugated (see [Pin86]), there are two elementsx1 and x2 of M such that x1x2 = e1 and x2x1 = e2. If H1 � P , we havee1 = x1x2 2 P and then e2 = x2x1 2 P and the H-class H2 satis�es H2 � P bythe previous corollary.Corollary 5. The syntactic monoid of a cyclic language has a zero.Proof. LetM be the syntactic monoid of a rational cyclic language and let D theminimal ideal of M . Then D is a completely regular D-class. By the previouscorollary, we have D � P or D \ P = ;. Let s be an element of D. For anyx; y 2 M , we have xsy 2 D because D is the minimal ideal of M . If we haveD � P , the contexts of s are M �M . If we have D \ P = ;, the contexts of sare ; � ;. In both cases, all the elements of D are equivalent for the Nerodecongruence, and D has only one element. The syntactic monoid of L has then azero.3 Strongly cyclic languagesWe now de�ne the notion of a strongly cyclic language.De�nition 6. Let A = (Q;A;E) be a deterministic �nite automaton where Qis the set of states and E the set of transitions. We say that a word w stabilizesa subset P � Q of states if we have P:w = P . This means8p 2 P p:w 2 P8p0 2 P 9p 2 P p:w = p0We denote by Stab(A) the set of the words w such that w stabilizes a sub-set P of states in the automaton A. It should be noticed that in this de�nitionthe subset P of states stabilized by w may depend on w. We point out thatthe empty word " stabilizes the set Q and therefore belongs to Stab(A) for anyautomaton A. We say that a language L is strongly cyclic if there is an automa-ton A such that L = Stab(A). In this case, we say that the language L stabilizesthe automaton A. The terminology is justi�ed since strongly cyclic languages arecyclic. It could be proved directly but we shall obtain this fact as a consequenceof the characterization of strongly cyclic languages.
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Fig. 1. Automata A1 and A2Example 3. The languages (b + aa)� + (ab�a)� + a� and b� are respectively thestrongly cyclic languages associated with the automata A1 and A2 of Figure 1.The following result gives a characterization of the words w stabilizing asubset of states in an automaton.Proposition7. Let A = (Q;A;E) be a deterministic �nite automaton. A word wstabilizes a subset P of states in A if and only if there is some state q of A suchthat for any integer n, the transition q:wn exists.Proof. Suppose �rst that the word w stabilizes the subset P of states. By de�-nition, for any state p 2 P , the transition p:wn exists.Conversely, suppose all the transitions q:wn exist for some state q of A. Sincethe automaton is �nite, there are two integers l < m such that q:wl = q:wm. LetP be the set fq:wi j l � i � mg. It is straightforward that the word w stabilizesthe subset P .The following theorem gives a characterization of the strongly cyclic lan-guages.Theorem8. Let L be a rational language di�erent from A�. The following con-ditions are equivalent.1. The language L is strongly cyclic.2. There is a morphism ' from A� onto a monoid M having a zero such thatL = '�1(fs 2M j s! 6= 0g).3. The syntactic monoid M(L) of L has a zero and the image of L in M(L) isfs 2M j s! 6= 0g.Proof. Suppose �rst that the language stabilizes the automaton A. Let M thetransition monoid of A and ' the canonical morphism from A� ontoM . Weshow then that this monoid has a zero and that the image of L is equal tofs 2 M j s! 6= 0g. Let w be a word not belonging to L. By Proposition 7, foreach q 2 Q, there is an integer nq such that the transition q:wnq does not exist.For n greater than every nq, the transitions q:wn do not exist for any q. Thetransition induced by wn is then the empty transition and the element '(wn)



is a zero of the monoid M . This means that '(w)! = 0. On the contrary, forany word w 2 L, the transition induced by wn is not the empty transition sincethere is a state q 2 Q such that the transition q:wn exists. This proves that'(w)! 6= 0. We have then proved that L is equal to '�1(fs 2M j s! 6= 0g)Suppose now there is a morphism ' from A� onto a monoid N having a zerosuch that L = '�1(ft 2 N j t! 6= 0g). Since the morphism is onto, the syntacticmonoid M of L is a quotient of N : there is morphism  : N!!M from N onto M .The image  (0) of the zero of N is then a zero of M . Since the zero of N does notbelong to the image of L, the zero ofM does not belong to the image of L. Let ta element of N such that t! = 0. We have  (t)! =  (t!) = 0. On the contrary,if t! 6= 0, the element t! belongs to the image of L, and so does  (t!). Thisimplies  (t!) 6= 0. Finally, we have ft 2 N j t! 6= 0g =  �1(fs 2M j s! 6= 0g).Suppose that the syntactic monoid M of L has a zero and that the imageof L in M is fs 2 M j s! 6= 0g. We denote by ' the canonical morphism fromA� ontoM . We build the following deterministic automaton A = (Q;A;E). Theset of states of A is the set Q = M � f0g of the non-zero elements of M . Thetransition q:a is q:a = q'(a) if q'(a) 6= 0 and does not exist otherwise. It can beeasily checked that a transition q:w is q:w = q'(w) if q'(w) 6= 0 and does notexist otherwise. We show now that the language L stabilizes the automaton A.Let w a word in L. For q = '(w), the transition q:wn is q:wn = '(w)n+1 andexists since '(w)n+1 6= 0. On the contrary, for a word w not in L, there is aninteger m such that '(w)n = 0. The transition q:wn does not exist for any q.By the previous Proposition, the language L stabilizes the automaton L. This�nishes the proof.Corollary 9. The previous characterization shows that strongly cyclic languagesare cyclic.
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bFig. 2. Structure of the syntactic monoid of L.The previous theorem can be used to prove that a given language is notstrongly cyclic. Without this characterisation, such results are sometimes hardto obtain.Example 4. The syntactic monoid of the language L = A�aA� is the two elementsmonoid M = fb = 1; a = 0g. The D-class structure of M is shown in Figure 2.



The image of L in M is the singleton f0g and the previous theorem states thatthe language L is not strongly cyclic.4 Decomposition of cyclic languagesIn this section, we prove the main result.By the de�nition of cyclic languages, a boolean combination of cyclic lan-guages is still a cyclic language. In particular, a boolean combination of stronglycyclic languages is a rational cyclic language. The following result gives someconverse.Theorem10. Any rational cyclic language is a boolean combination of stronglycyclic languages.The proof of the theorem is based on the following lemma. By a strict quotientof M , we mean a quotient which is strictly smaller than M .Lemma11. Let L be a rational cyclic language and ' : A�!!M a morphismfrom A� onto a �nite monoid M such that L = '�1(P ). Let suppose furthermorethat the monoid M has a zero and that this zero does not belong to P .Then, either L is recognized by a strict quotient of M or there exists a stronglycyclic language L0 such that L � L0 and such that the language L0 � L is recog-nized by a strict quotient of M .In both cases, the zero of the quotient does not belong to the image of thelanguage (L in the �rst case and L0 � L in the second case).Proof. Let P the image of L in M . Suppose D1; : : : ; Dn are the 0-minimal D-classes of M . For any s 2 Di and x; y 2M , we have xsy = 0 or xsy 2 Di.Suppose D1 satis�es D1\P = ;. For any x; y 2M , we have xsy 62 P . All theelements of D1 are equivalent to 0 by the Nerode congruence. The language L isthen recognized by the Rees quotient M=I where I is the ideal I = D1 [ f0g.We can suppose that every Di satis�es Di \ P 6= ;. There exists then si 2Di \ P . Since si 2 P , the idempotent s!i is not zero and belongs then to Dibecause this D-class is 0-minimal. The element si belongs then to a regular H-class Hi of Di. Let s be an element of Di. If s! = 0, the element s does notbelong to P because 0 does not belong to P . On the contrary, If s! 6= 0, theelement s belongs to a regular H-class H 0i of Di. Since Hi \ P 6= ;, we haveHi � P and H 0i � P by Corollaries 3 and 4. Finally, we have proved thatDi \ P = fs 2 Di j s! 6= 0gLet P 0 be de�ned by P 0 = fs 2 M j s! 6= 0g. By Theorem 8, the languageL0 = '�1(P 0) is strongly cyclic. It is straightforward that P � P 0. Since wehave Di \ (P 0 � P ) = ;, the language L0 �L is recognized by the Rees quotientM=I where the ideal is equal to f0g [Sni=1Di. This quotient is strictly smallerthan M and this �nishes the proof of the lemma.



The following lemma states that the class of strongly cyclic languages isclosed under union and intersection.Lemma12. Let L1 and L2 be two strongly cyclic languages. Both languagesL1 [ L2 and L1 \ L2 are then strongly cyclic.Proof. We suppose that L1 and L2 respectively stabilizes the automata A1 =(Q1; A;E1) and A2 = (Q2; A;E2). We can suppose that Q1 \ Q2 = ;. Thelanguage L1 [L2 stabilizes then the automaton A1 [A2. The language L1 \L2stabilizes the automaton A1�A2 = (Q1�Q2; A;E3) where the transition E3 isde�ned by (p1; p2):a = (q1; q2) if the transitions p1:a = q1 and p2:a = q2 exist.We can now complete the proof of the theorem.Proof. We prove that every cyclic language L can be written as a chain ofstrongly cyclic languages. This means that there are strongly cyclic languagesL1; : : : ; Ln satisfying L1 � L2 � � � � � Ln such thatL = L1 � L2 + L3 � � � � � LnWe prove the result by induction on the size of a �nite monoidM having azero and recognizing the language L. We suppose that there is a morphism ' :A�!!M from A� onto a �nite monoid M such that L = '�1(P ). We also supposethat the monoid M has a zero. By Corollary 5, the syntactic monoid of L hasthis property. If the monoid M has only one element, the language L is either ;or A� which are both strongly cyclic. The empty language ; stabilizes the emptyautomaton. The full language stabilizes the automaton having one state and atransition for each letter from this state to this state.If the zero of M belongs to the image of L in M , we replace L by A� � Lwhich is also cyclic. It is then su�cient to prove the result for A��L. Indeed, ifthe complement A��L of L can be written as a chain A��L = L1�L2+� � ��Ln,the language L can be written L = A��L1+L2�� � ��Ln which is also a chainof strongly cyclic languages.We can now suppose that the zero of M does not belong to the image P of Lin M . By Lemma 11, either L is recognized by a strict quotient of M and theinduction hypothesis immediately applies or there is a strongly cyclic language L0such that L0 � L is recognized by a strict quotient of M . By the inductionhypothesis, the language L0 � L can be written as a chain of strongly cycliclanguages, i.e., L0�L = L2�L3+ � � ��Ln. The language L can be then writtenas the chain L = L1 � L2 + � � � � Ln where the language L1 is equal to L0 [ L2which is strongly cyclic by Lemma 12.We point out that the zero of the smaller monoid recognizing L0 � L doesnot belong to the image of L0 � L. It is not necessary to replace this languageby its complement any more.We give here an example.
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Fig. 3. Structure of the syntactic monoid of L.Example 5. Let L be the language (b+ aa)� + (ab�a)� + a� � b�. The structureof the syntactic monoid of L is given on �gure 3. The image P of L in M(L) isequal to P = fa; aa; aba; aabg.The subset P 0 de�ned in the proof is equal to P 0 = f1; a; aa; b; aba; aabg andthe language L0 is (b + aa)� + (ab�a)� + a�. The language L0 � L is then equalto b� which is strongly cyclic. The languages L0 and L0�L stabilize respectivelythe automata A1 and A2 (see Figure 1 p. 4).We have directly proved that every rational cyclic language can be writtenas a chain of strongly cyclic languages. In fact, it is just necessary to prove thatrational cyclic languages are boolean combination of strongly cyclic languages.A general result states that if a class F of sets is closed under union and in-tersection, every set belonging to the boolean closure of F can be written as achain of sets of F . For further details see [Car93] (chapter 3).5 Zeta function of a cyclic languageWe �rst give the de�nitions of generalized zeta function and zeta function of alanguage of �nite words over a �nite alphabet A.If A is a �nite alphabet, we note ZhhAii (resp. Z[[A]]) the algebra of noncommutative (resp. commutative) formal series with coe�cients in Z over thealphabet A. The subset of non commutative polynomials is denoted by ZhAi. Wenote ' the natural algebra homomorphism from ZhhAii to Z[[A]] which makesthe letters commute. For example, '(2ab�3ba) = �ab. We note � the morphismfrom Z[[A]] to Z[[z]] de�ned by �(a) = z for each letter a of A.



Let L be a language of �nite words over A, we note L the characteristic seriesof L. This series belongs to ZhhAii and admits the decomposition:L = Xw2Lw =Xn�0Ln;where Ln is the homogeneous part of degree n of L.De�nition 13. The generalized zeta function of a language L over the alphabetA is now the following commutative series:Z(L) = exp(Xn�1 '(Ln)n ):De�nition 14. The zeta function of a language L over the alphabet A is thefollowing series : �(L) = �(Z(L)) = exp(Xn�1 anznn );where an is the number of words of L of length n.It is shown for example in [B�ea95] that the generalized zeta function of astrongly cyclic language L of an automaton A is the generalized zeta function ofthe so�c system de�ned by A, that is the set of bi-in�nite words that are labelsof bi-in�nite paths of A. The zeta function of a so�c system counts periodicorbits of the symbolic dynamic system. The zeta function of a strongly cycliclanguage is a rational series. The computation of the generalized zeta functionand the zeta function of a strongly cyclic language was done in [B�ea95] by usinga construction on �nite automata called external power.If A = (Q = f1; 2; : : : ; ng; E; T ) is a deterministic automaton, the externalpower of order k, where 1 � k � jQj, of the automaton A is the automaton(Q0; E0) labelled in f�1; 1g � A, where Q0 = f(i1; i2; :::; ik)1�i1<i2<���<ik�ng.There exists an edge labelled �(�)a from (i1; i2; :::; ik) to (j1; j2; :::; jk) if for eachl with 1 � l � k, there exists one edge in E labelled a going out from il and(j1; j2; :::; jk) is the image of (i1 � a; : : : ; ik � a) by a permutation � of signature�(�). The automaton A is equal to its external power of order 1 by identi�cationof +a to a. The matrix associated to an automaton labelled on f�1; 1g�A is thesquare matrix (xij)1�i;j�n where xpq is the sum (in ZhAi) of the labels of edgesfrom p to q. The commutative matrix associated is the matrix ('(xij))1�i;j�n.We denote by Qi the commutative matrix associated to the external powerof order i of the automaton A. We then have (see [B�ea95])Z(L) = nYi=1(det(I �Qi))(�1)iwhere I is the identity matrix of the same size as Qi.



Computation of the zeta function of a cyclic languageThe result of section 4 can be used to extend the previous computation of zetafunctions of strongly cyclic languages to all cyclic languages. This gives an otherproof of the rationality of the zeta function of a cyclic language established in[BR90]. The computation is the following:Let L be a cyclic language. By section 4 it can be written as a chain L1 �L2 + � � � + (�1)r�1Lr, where Lj+1 � Lj for 1 � j � (r � 1) and where all Ljare strongly cyclic languages. By de�nition of the generalized zeta function wehave: Z(L) = exp(Xn�1 '(Ln)n )= exp(Xn�1 rXj=1(�1)j�1'(Ljn)n )= exp( rXj=1(�1)j�1Xn�1 '(Ljn)n )= rYj=1 exp(Xn�1 '(Ljn)n )(�1)j�1= rYj=1(Z(Lj))(�1)j�1 :Example 6. We compute the generalized zeta function Z(L) and the zeta function�(L) of the cyclic language L = (b + aa)� + (ab�a)� + a� � b� introduced inexample 5. The language L admits the chain-decomposition L = L1 �L2 whereL1 = Stab(A1) (see �gure 1) and L2 = Stab(A2) (see �gure 1). We get:Z(L1) = j1 + aj����1� b �a�a 1 ����Z(L2) = 1j1� bjZ(L) = Z(L1)Z(L2) = (1 + a)(1� b)1� b� aa�(L) = 1� z21� z � z2 :References[B�ea93] Marie-Pierre B�eal. Codage symbolique. Masson, 1993.[B�ea95] Marie-Pierre B�eal. Puissance ext�erieure d'un automate d�eterministe, ap-plication au calcul de la fonction zêta d'un syst�eme so�que. R.A.I.R.O.-Informatique Th�eorique et Applications, 29(2):85{103, 1995.
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