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Abstract. We study the determinization of transducers over infinite
words. We consider transducers with all their states final. We give an
effective characterization of sequential functions over infinite words. We
also describe an algorithm to determinize transducers over infinite words.

1 Introduction

The aim of this paper is the study of determinization of transducers over infinite
words, that is of machines realizing rational transductions. A transducer is a
finite state automaton (or a finite state machine) whose edges are labeled by
pairs of words taken in finite alphabets. The first component of each pair is called
the input label. The second one the output label. The rational relation defined
by a transducer is the set of pairs of words which are labels of an accepting
path in the transducer. We assume that the relations defined by our transducers
are functions which each string of the domain to a string. This is a decidable
property [8].

The study of transducers has many applications. Transducers are used to
model coding schemes (compression schemes, convolutional coding schemes, cod-
ing schemes for constrained channels, for instance). They are widely used in
computer arithmetic [7] and in natural language processing [13]. Transducers
are also used in programs analysis [6]. The determinization of a transducer is
the construction of another transducer which defines the same function and has
a deterministic (or right resolving) input automaton. Such transducers allow a
sequential encoding and thus are called sequential transducers.

The characterization of sequential functions on finite words was obtained by
Choffrut [4,5]. His proof contains implicitly an algorithm for determinization of
a transducer. This algorithm has also been described by Mohri [11] and Roche
and Shabes [13, p. 223-233]. In this paper, we address the same problem for
infinite words. We consider transducers and functions over infinite words and



our transducers have all their states final. The reason why we assume that all
states are final is that the case of transducers with final states seems to be much
more complex. Indeed, the determinization of automata over infinite words is
already very difficult [14]. In particular, it is not true that any rational set of
infinite words is recognized by a deterministic automaton with final states and
Biichi acceptance condition. Other accepting conditions, as the Muller condition
for instance, must be used.

We first give an effective characterization of sequential functions over infinite
words. This characterization extends to infinite words the twinning property
introduced by Choffrut [4]. We prove that a function is sequential if it is a
continuous map whose domain can be recognized by a deterministic Biichi au-
tomaton, and such that the transducer obtained after removing some special
states has the twinning property. These conditions can be simplified in the case
where the transducer has no cycling path with an empty output label. We use
this characterization to describe an algorithm checking whether a function re-
alized by a transducer is sequential. This algorithm becomes polynomial when
the transducer has no cycling path with an empty output label. Finally, we give
an algorithm to determinize a transducer. The algorithm is much more complex
than in the case of finite words.

The paper is organized as follows. Section 2 is devoted to basic notions of
transducers and rational functions. We give in Sect. 3 a characterization of se-
quential functions while the algorithm for determinization of transducers is de-
scribed in Sect. 4.

2 Transducers

In the sequel, A and B denote finite alphabets. The set of finite and right-
infinite words over A are respectively denoted by A* and A“. The empty word
is denoted by e. The set A“ is endowed with the usual topology induced by
the following metric: the distance d(z,y) is equal 27" where n is the minimum
min{i | x; # y;}. In this paper, a function from A“ to BY is said to be continuous
iff it is continuous with respect to this topology.

A transducer over A x B is composed of a finite set @) of states, a set E C
Q x A* x B* x @Q of edges and a set I C @ of initial states. An edge e = (p, u,v,q)
from p to q is denoted by p RN q. The words u and v are called the input label
and the output label. Thus, a transducer is the same object as an automaton,
except that the labels of the edges are pairs of words instead of letters. In the
literature, transducers also have a set of final states. In this paper, we only
consider transducers all of which states are final and with Biichi acceptance
condition. Any infinite path which starts at an initial state is then successful.
We omit the set of final states in the notation.

An infinite path in the transducer A is an infinite sequence

u0|v0\ u1|v1\ u2|v2\
7 q1 7 q2 ?

do qs- -



of consecutive edges. Its input label is the word x = woujus ... whereas its
output label is the word y = vgvivs . ... The path is said to start at qq.

An infinite path is then successful if it starts at an initial state. A pair (z,y)
of infinite words is recognized by the transducer if it labels a successful path.
A transducer defines then a relation R C A¥ x B“. The transducer computes
a function if for any word x € A“, there exists at most one word y € BY
such that (z,y) € R. We call it the function realized by the transducer. Thus
a transducer can be seen as a machine computing nondeterministically output
words from input words. We denote by dom(f) the domain of the function f. A
transducer that realizes a function can be transformed in an effective way in a
transducer labelled in A x B* that realizes the same function. These transducers
are sometimes called real time transducers.

Let 7 be a transducer. The underlying input automaton of T is obtained by
omitting the output label of each edge. A transducer 7 is said to be sequential
if it is labeled in A x B* and if the following conditions are satisfied.

— it has a unique initial state,
— the underlying input automaton is deterministic.

These conditions ensure that for each word z € A%, there is at most one word
y € B¥ such that (x,y) is recognized by 7. Thus, the relation computed by 7 is
a partial function from A% into B“. A function is sequential if it can be realized
by a sequential transducer.

Fig. 1. Transducer of Example 1

Ezample 1. Let A = {0,1} be the binary alphabet. Consider the sequential
transducer 7 pictured in Fig. 1. If the infinite word z is the binary expansion of
areal number a € [0, 1), the output corresponding to z in 7 is the binary expan-
sion of a/3. The transducer T realizes the division by 3 on binary expansions.
The transducer obtained by exchanging the input and output labels of each edge
realizes of course the multiplication by 3. However, this new transducer is not
sequential.



3 Characterization of Sequential Functions

In this section, we characterize functions realized by transducers with all states
final that can be realized by sequential transducers. This characterization uses
topological properties of the function and some twinning property of the trans-
ducer. It extends the result of Choffrut [4,5] to infinite words.

The characterization of the sequentiality is essentially based on the following
notion introduced by Choffrut [5, p. 133] (see also [3, p. 128]). Two states g
and ¢’ of a transducer are said to be twinned if and only if for any pair of paths

. ulu v|v'
i—q—q

. u|u” , ’U‘U”

i ——q —q,

where i and i’ are two initial states, the output labels satisfy the following
property. Either v/ = v” = ¢ or there exists a finite word w such that either

v’ = v'w and wv” = v'w, or v = vw'w and wv' = v”w. The latter case is
equivalent to the following two conditions:

M M "

0) 1 =10,

(ii) w'v"™ =u"v"

A transducer has the twinning property if any two states are twinned.

Before stating the main result, we define a subset of states which play a par-
ticular role in the sequel. We say that a state ¢ of a transducer is constant if
all infinite paths starting at this state have the same output label. This unique
output is an ultimately periodic word. It should be noticed that any state acces-
sible from a constant state is also constant. We now state the characterization
of sequential functions.

Proposition 1. Let f be a function realized by a transducer T. Let T' be the
transducer obtained by removing from T all states which are constant. Then the
function f is sequential if and only if the following three properties hold:

— the domain of f can be recognized by a deterministic Biichi automaton,
— the function f is continuous,
— the transducer T' has the twinning property.

Since the function f is realized by a transducer, the domain of f is rational.
However, it is not true that any rational set of infinite words is recognized by a
deterministic Biichi automaton. Landweber’s theorem states that a set of infinite
words is recognized by a deterministic Biichi automaton if and only if it is
rational and Gy [16]. Recall that a set is said to be G5 is it is equal to a countable
union of open sets for the usual topology of A“.

It is worth pointing out that the domain of a function realized by a transducer
may be any rational set although it is supposed that all states of the transducer
are final. The final states of a Biichi automaton can be encoded in the outputs of
a transducer in the following way. Let A = (Q, F, I, F) be a Biichi automaton.



We construct a transducer 7 by adding an output to any transition of A. A
transition p % ¢ of A becomes p aly, g in T where v is empty if p is not final
and is equal to a fixed letter b if p is final. It is clear that the output of a path is
infinite if and only if the path goes infinitely often through a final state. Thus the
domain of the transducer 7T is the set recognized by A. For instance, the domain
of a transducer may be not recognizable by a deterministic Biichi automaton
as in the following example. It is however true that the domain is closed if the
transducer has no cycling path with an empty output.

ale blb

(o ——)

ble

Fig. 2. Transducer of Example 2

Ezxample 2. The domain of the function f realized by the transducer of Fig. 2 is
the set (a + b)*b* of words having a finite number of a. The function f cannot
be realized by a sequential transducer since its domain is not a G5 set.

It must be also pointed out that a function realized by a transducer may be
not continuous although it is supposed that all states of the transducer are final
as it is shown in the following example.

Example 3. The image of an infinite word = by the function f realized by the
transducer of Fig. 3 is f(z) = a* if x has an infinite number of @ and f(z) = a"b%
if the number of @ in z is n. The function f is not continuous. For instance, the
sequence r, = b"ab* converges to b while f(x,) = ab” does not converge
to f(b¥) = b¥.

Before describing the algorithm for determinization, we first study a partic-
ular case. It turns out that the first two conditions of the proposition are due to
the fact that the transducer 7 may have cycling paths with an empty output.
If the transducer 7 has no cycling path with an empty output, the previous
proposition can be stated in the following way.

Proposition 2. Let f be a function realized by a transducer T which has no
cycling path with an empty output. Let T' be the transducer obtained by removing
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Fig. 3. Transducer of Example 3

from T all states which are constant. Then the function f is sequential if and
only if the transducer T' has the twinning property.

The previous proposition can be directly deduced from Proposition 1 as fol-
lows. If the transducer 7 has no cycling path with an empty output, any infinite
path has an infinite output. Thus, an infinite word = belongs to the domain of f
if and only if it is the input label of an infinite path in 7. The domain of f
is then a closed set. It is then recognized by a deterministic Biichi automaton
whose all states are final. This automaton can be obtained by the usual subset
construction on the input automaton of 7. Furthermore, if the transducer 7 has
no cycling path with an empty output, the function f is necessarily continuous.

We now study the decidability of the conditions of Propositions 1 and 2. We
have the following results.

Proposition 3. It is decidable if a function f given by a transducer with all
states final is sequential. Furthermore, if the transducer has no cycling path with
an empty output, this can be decided in polynomial time.

A Biichi automaton recognizing the domain of the function can be easily deduced
from the transducer. It is then decidable if this set can be recognized by a
deterministic Biichi automaton [16, thm 5.3]. However, this decision problem is
NP-complete.

It is decidable in polynomial time whether a function given by a transducer
with final states is continuous [12]. The twinning property of a transducer is
decidable in polynomial time [2].

4 Determinization of Transducers

In this section, we describe an algorithm to determinize a transducer which sat-
isfies the properties of Proposition 1. This algorithm proves that the conditions
of the proposition are sufficient. The algorithm is exponential in the number of
states of the transducer.



Let T = (Q, E, I) be a transducer labelled in Ax B* that realizes a function f.
Let 7' be the transducer obtained by removing from 7 all states which are
constant. We assume that 7' has the twinning property. We denote by C' the
set of states which are constant. For a state ¢ of C', we denote by y,, the unique
output of ¢ which is an ultimately periodic word. We suppose that the domain
of f is recognized by the deterministic Biichi automaton A. This automaton is
used in the constructed transducer to ensure that the output is infinite only
when the input belongs to the domain of the function.

We describe the deterministic transducer D realizing the function f. Roughly
speaking, this transducer is the synchronized product of the automaton A of the
domain and of an automaton obtained by a variant of the subset construction
applied on the transducer. In the usual subset contruction, a state of the deter-
ministic automaton is a subset of states which memorizes all accessible states.
In our variant of the subset construction, a state is a subset of pairs formed of
a state and a word which is either finite of infinite.

A state of D is a pair (p, P) where p is a state of A and P is a set containing
two kinds of pairs. The first kind are pairs (g, z) where ¢ belong to @\ C and z is
a finite word over B. The second kind are pairs (g, z) where ¢ belongs to C' and
z is an ultimately periodic infinite word over B. We now describe the transitions
of D. Let (p, P) be a state of D and let a be a letter. Let R be equal to the set
defined as follows

R={(¢,2w) | ¢ ¢ C and (q,2) € P, q¢C’andqﬂ>q'€E}

U{(¢, 2wy, ) | ¢ € C and I(q,2) € P, ¢ ¢ C and ¢ ol q € E}

U{(¢,2) | ¢ € Cand3(g,2) € P, g € C and ¢ % ¢ € E}

We now define the transition from the state (p, P) input labeled by a. If R
is empty, there is no transition from (p, P) input labeled by a. Otherwise, the
output of this transition is the word v defined as follows. Let p % p' be the
transition in A from p labeled by a. If p' is not a final state of A, we define v as
the empty word. If p' is a final state, we define v as the first letter of the words
z if R only contains pairs (¢, z) with ¢’ € C' and if all the infinite words z are
equal. Otherwise, we define v as the longest common prefix of all the finite or
infinite words z for (¢',z) € R. The state P’ is then defined as follows

P'={(d,2) | (¢,v2) € R}

There is then a transition (p, P) % (p, P') in D. The initial state of D is
the pair (i4,.JJ) where i4 is the initial state of A and where J = {(i,e) | i €
Tandi ¢ CYU{(,y;) | i € I and i € C}. If the state p’ is not final in A4, the
output of the transition from (p, P) to (p', P’) is empty and the words z of the
pairs (g, z) in P, may have a nonempty common prefix. We only keep in D the
accessible part from the initial state. The transducer D has a deterministic input
automaton. It turns out that the transducer D has a finite number of states.



The following proposition finally states that the sequential transducer D is
finite and that it is equivalent to the transducer 7. Both transducers realize the
same function over infinite words.

Proposition 4. The sequential transducer D has a finite number of states and
it realizes the same function f as the transducer T .

It is not straightforward that the transducer D has actually a finite number of
states. It must be proved that the finite words which occur as second component
of the pairs in the states are bounded. It follows then that the infinite words
occuring as second component of the pairs are suffixes of a finite number of
ultimately periodic words. Therefore, there are finitely many such words.

It must also be proved that the transducer D realizes the same function as 7.
This follows mainly from the following lemma which states the key property of
the edges in D.

Lemma 1. Let u be a finite word. Let (i, J) RUUN (p, P) be the unique path
in D with input label w from the initial state. Then, the state p is the unique
state of A such that iq - p is a path in A and the set P is equal to

Pz{(q,z)|3iﬂ>qm7’suchthatv'=vz ifq¢ C
v'y, =vz if g € C}

This construction is illustrated by the following example.

Fig. 4. Transducer of Example 4

Example 4. Consider the transducer pictured in Fig. 4. A deterministic Biichi
automaton recognizing the domain is pictured in Fig. 5. If the algorithm for
determinization is applied to this transducer, one gets the transducer pictured
in Fig. 6.

These determinizations do not preserve the dynamic properties of the trans-
ducers as the locality of its output automaton. Recall that a finite automaton is
local if any two biinfinite paths with the same label are equal. We mention that
in [9], an algorithm is given to determinize transducers over bi-infinite words



Fig. 6. Determinization of the transducer of Fig. 4

that have a right closing input (or that are n-deterministic or deterministic with
a finite delay in the input) and a local output (see also [10, p. 143] and [1,
p. 110-115]). This algorithm preserves the locality of the output. These features
are important for coding applications.
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