
HAL Id: hal-00619846
https://hal.science/hal-00619846

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Factor oracle : a new structure for pattern matching
Cyril Allauzen, Maxime Crochemore, Mathieu Raffinot

To cite this version:
Cyril Allauzen, Maxime Crochemore, Mathieu Raffinot. Factor oracle : a new structure for pattern
matching. 26th Seminar on Current Trends in Theory and Practice of Informatics (SOFSEM’99),
Nov 1999, Milovy, Czech Republic, Czech Republic. pp.291-306, �10.1007/3-540-47849-3_18�. �hal-
00619846�

https://hal.science/hal-00619846
https://hal.archives-ouvertes.fr

Factor oracle: a new structure for patternmatchingCyril Allauzen Maxime Crochemore? Mathieu Ra�notInstitut Gaspard-Monge, Universit�e de Marne-la-Vall�ee,77454 Marne-la-Vall�ee Cedex 2, France.http://www-igm.univ-mlv.fr/LabInfo/fallauzen,mac,raffinotg@monge.univ-mlv.frAbstract We introduce a new automaton on a word p, sequence of let-ters taken in an alphabet �, that we call factor oracle. This automaton isacyclic, recognizes at least the factors of p, has m+1 states and a linearnumber of transitions. We give an on-line construction to build it. Weuse this new structure in string matching algorithms that we conjectureoptimal according to the experimental results. These algorithms are ase�cient as the ones that already exist using less memory and being moreeasy to implement.Keywords: indexing, �nite automaton, pattern matching, algorithm de-sign.1 IntroductionA word p is a �nite sequence p = p1p2 : : : pm of letters taken in an alphabet �.We keep the notation p along this paper to denote the word on which we areworking.E�cient pattern matching on �xed texts are based on indexes built on top ofthe text. Many indexing techniques exist for this purpose. The simplest methodsuse precomputed tables of q-grams while more achieved methods use more elab-orated data structures. These classical structures are: su�x arrays, su�x trees,su�x automata or DAWGs1, and factor automata (see [11]). When regardedas automata, they accept the set of factors (substrings) of the text. All thesestructures lead to very time-e�cient pattern matching algorithms but require afairly large amount of memory space. It is considered, for example, that the im-plementation of su�x arrays can be achieved using �ve bytes per text characterand that other structures need about twelve bytes per text character.Several strategies have been developed to reduce the memory space requiredto implement structures for indexes.? Work by this author is supported in part by Programme \G�enomes" of C.N.R.S.1 DAWGs, Directed Acyclic Word Graphs, are just su�x automata in which all statesare terminal states

One of the oldest method is to merge the compression techniques appliedboth by the su�x tree and the su�x automaton. It leads to the notion of com-pact su�x automaton (or compact DAWG) [5]. The direct construction of thisstructure is given in [12, 13].A second method to reduce the size of indexes has been considered in the textcompression method in [10]. It consists in representing the complement languageof the factors (substrings) of the text. More precisely, only minimal factors notoccurring in the text need to be considered [9,8]. Which allow to store them ina tree and to save space.We present in this paper a third method. We want to build an automaton (a)that is acyclic (b) that recognizes at least the factors of p (c) that has the fewerstates as possible and (d) that has a linear number of transitions. We alreadynotice that such an automaton has necessarily at least m+ 1 states.The su�x or factor automaton [4, 7] sati�es (a)-(b)-(d) but not (c) whereasthe sub-sequence automaton [3] satis�es (a)-(b)-(c) but not (d), which makesthe problem non trivial.We propose an intermediate structure that we call the factor oracle : anautomaton with m + 1 states that satis�es these four requirements.We use this new structure to design new string matching algorithms. Thesealgorithms have a very good average behaviour that we conjecture as optimal.The main advantages of these new algorithms are (1) that they are easy to imple-ment for an optimal behaviour and (2) the memory saving that the factor oracleallows with respect to the su�x automaton. The structure has been extended in[2] to implement the index of a �nite set of texts.The paper is structured as follows: Section 2 discusses the construction of thefactor oracle, Section 3 describes a string matching based on the factor oracleand shows experimental results, and �nally we conclude in Section 4. Proofs ofthe results presented in the paper may be found in [1]. We now de�ne notionsand de�nitions that we need along this paper.A word x 2 �� is a factor of p if and only if p can be written p = uxv withu; v 2 ��. We denote Fact(p) the set of all the factors of word p. A factor x of pis a pre�x (resp. a su�x) of p if p = xu (resp. p = ux) with u 2 ��. The set ofall the pre�xes of p is denoted by Pref(p) and the one of all the su�xes Su�(p).We say that x is a proper factor (resp. proper pre�x, proper su�x) of p if x is afactor (resp. pre�x, su�x) of p distinct from p and from the empty word �.We denote prefp(i) the pre�x of length i of p for 0 � i � jpj.We denote for u 2 Fact(p), poccur(u; p) = minfjzj ; z = wu et p = wuvg,the ending position of the �rst occurrence of u in p.Finally,we de�ne for u 2 Fact(p) the set endposp(u) = fi j p = wupi+1 : : : pmg.If two factors u and v of p are such that endposp(u) = endposp(v), we denoteu �p v. It is very easy to verify that �p is an equivalence relation; it is in factthe syntaxic equivalence of the language Su�(p).

2 Factor oracle2.1 Construction algorithmBuild Oracle(p = p1p2 : : : pm)1. For i from 0 to m2. Create a new state i3. For i from 0 to m� 14. Build a new transition from i to i + 1 by pi+15. For i from 0 to m� 16. Let u be a minimal length word in state i7. For all � 2 �;� 6= pi+18. If u� 2 Fact(pi�juj+1 : : : pm)9. Build a new transition from i to i + poccur(u�; pi�juj+1 : : : pm) by �Figure1. High-level construction algorithm of the OracleDe�nition 1 The factor oracle of a word p = p1p2 : : : pm is the automaton buildby the algorithm Build Oracle (�gure 1) on the word p, where all the states areterminal. It is denoted by Oracle(p).The factor oracle of the word p = abbbaab is given as an example �gure 2.On this example, it can be noticed that the word aba is recognized whereas it isnot a factor of p.0 a1 2 3 4 5 6 7aa b b b a bb aaFigure2. Factor oracle of abbbaab. The word aba is recognizes whereas it is not afactor.Note: all the transitions that reach state i of Oracle(p) are labeled by pi.Lemma 1 Let u 2 �� be a minimal length word among the words recognized instate i of Oracle(p). Then, u 2 Fact(p) and i = poccur(u; p).

Corollary 1 Let u 2 �� be a minimal length word among the words recognizedin state i of Oracle(p), u is unique.We denote min(i) the minimal length word of state i.Corollary 2 Let i and j be two states of Oracle(p) such as j < i. Let u = min(i)and v = min(j), u can not be a su�x of v.Lemma 2 Let i be a state of Oracle(p) and u = min(i). u is a su�x of anyword c 2 �� which is the label of a path leading from state 0 to state i.Lemma 3 Let w 2 Fact(p). w is recognized by Oracle(p) in a state j � poccur(w; p).Note: In lemma 3, j is really less or equal than poccur(w; p), and not alwaysequal. The example given �gure 3 represents the automaton Oracle(abbcabc),and the state reached after the reading of the word abc is strictly less thanpoccur(abc; abbcabc).0 c1 2 3 4 5 6 7a b b c a b cb cFigure3. Example of a factor (abc) that is not recognized at the end of his �rstoccurrence but before.Corollary 3 Let w 2 Fact(p). Every word v 2 Su�(w) is recognized by Oracle(p)in a state j � poccur(w).Lemma 4 Let i be a state of Oracle(p) and u = min(i). Any path ending by uleads to a state j � i.Lemma 5 Let w 2 �� be a word recognized by Oracle(p) in i, then any su�xof w is recognized in a state j � i.The number of states of Oracle(p) with p = p1p2 : : : pm is m + 1. We nowconsider the number of transitions.Lemma 6 The number TOr(p) of transitions in Oracle(p = p1p2 : : : pm) satis�esm � TOr(p) � 2m� 1.

2.2 On-line algorithmThis section presents an on-line construction of the automaton Oracle(p), thatmeans a way of building the automaton by reading the letters of p one by onefrom left to right.We denote repetp(i) the longest su�x of prefp(i) that appears at least twicein prefp(i).We de�ne a function Sp de�ned on the states of the automaton, called supplyfunction, that maps each state i > 0 of Oracle(p) to state j in which the readingof repetp(i) ends. We arbitrarily set Sp(0) = �1.Notes:{ Sp(i) is well de�ned for every state i of Oracle(p) (Corollary 3).{ For any state i of Oracle(p), i > Sp(i) (lemma 3).We denote k0 = m, ki = Sp(ki�1) for i � 1. The sequence of the ki is �nite,strictly decreasing and ends in state 0. We denoteCSp = fk0 = m; k1; : : : ; kt = 0gthe su�x path of p in Oracle(p).Lemma 7 Let k > 0 be a state of Oracle(p) such that s = Sp(k) is strictlypositive. We denote wk = repetp(k) and ws = repetp(s). Then ws is a su�x ofwk.Corollary 4 Let CSp = fk0; k1 : : : ; kt = 0g be the su�x path of p in Oracle(p)and let wi = repetp(ki�1) for 1 � i � t and w0 = p. Then, for 0 < l � t, wl is asu�x of all the wi, 0 � i < l � t.We now consider for a word p = p1p2 : : : pm and a letter � 2 � the construc-tion of Oracle(p�) from Oracle(p).We denote Oracle(p) + � the automaton Oracle(p) on which a transition by� from state m to state m+1 is added. We already notice that a transition thatexists in Oracle(p) + � also exists in Oracle(p�), so that the di�erence betweenthe two automata may only rely on transitions by � to state m+ 1 that have tobe added to Oracle(p) + � in order to get Oracle(p�).We are investigating states from which there may be transitions by � to statem+ 1.Lemma 8 Let k be a state of Oracle(p) + � such that there is a transition fromk by � to m + 1 in Oracle(p�). Then k has to be one of the states on the su�xpath CSp = fk0 = m; k1; : : : ; kt = 0g in Oracle(p) + �.Among the states on the su�x path of p, every state that has no transitionby � in Oracle(p)+� must have one in Oracle(p�). More formally, the followinglemma sets this fact.

Lemma 9 Let kl < m be a state on the su�x path CSp = fk0 = m; k1; : : : ; kt =0g of state m in Oracle(p = p1p2 : : : pm) + �. If kl does not have a transition by� in Oracle(p), then there is a transition by � from kl to m+ 1 in Oracle(p�).Lemma 10 Let kl < m be a state on the su�x path CSp = fk0 = m; k1; : : : ; kt =0g in Oracle(p = p1p2 : : : pm) + �. If kl has a transition by � in Oracle(p) + �,then all the states ki; 0 � i � t also have a transition by � in Oracle(p) + �.The idea of the on-line construction algorithm is the following. Accordingto the three lemmas 8, 9, 10, to transform Oracle(p) + � in Oracle(p�) we onlyhave to go down the su�x path CSp = fk0 = m; k1; : : : ; kt = 0g of state m andwhile the current state kl does not have an exiting transition by �, a transitionby � to m + 1 should be added (lemma 9). If kl already has one, the processends because, according to lemma 10, all the states kj after kl on the su�x pathalready have a transition by �.If we only wanted to add a single letter, the preceding algorithm would beenough. But, as we want to be able to build the automaton by adding the lettersof p the one after the other, we have to be able to update the supply functionSp� of the new automaton Oracle(p�). As (according to the de�nition of Sp),the supply function of states 0 � i � m does not change from Oracle(p) toOracle(p�), the only thing to do is to compute Sp�(m + 1). This is done withthe following lemma.Lemma 11 If there is a state kd which is the greatest element of CSp = fk0 =m; k1; : : : ; kt = 0g in Oracle(p) such that there is a transition by � from kd to astate s in Oracle(p), then Sp�(m+ 1) = s in Oracle(p�). Else Sp� = 0.From these lemmaswe can now deduce an algorithm add letter to transformOracle(p) in Oracle(p�). It is given �gure 4.Lemma 12 The algorithm add-letter really builds Oracle(p = p1p2 : : : pm�)from Oracle(p = p1p2 : : : pm) and update the supply function of the new statem+ 1 of Oracle(p�).The complete on-line algorithm to build Oracle(p = p1p2 : : : pm) just consitsin adding the letters pi one by one from left to right. It is given �gure 5.Theorem 1 The algorithm Oracle-on-line(p = p1p2 : : : pm) builds Oracle(p).Theorem 2 The complexity of Oracle-on-line(p = p1p2 : : : pm) is O(m) in timeand in space.Note The constants involved in the asymptotic bound of the complexity of theon-line construction algorithm depend on the implementation and may involvethe size of the alphabet �. If we implement the transitions in a way that theyare accessible in O(1) (use of tables), then the complexity is O(m) in timeand O(j�j:m) in space. If we implement the transitions in a way that they areaccessible in O(logj�j) (use of search trees), then the complexity is O(logj�j:m)in time and O(m) in space.

Fonction add letter(Oracle(p = p1p2 : : : pm), �)1. Create a new state m+ 12. Create a new transition from m to m+ 1 labeled by �3. k Sp(m)4. While k > �1 and there is no transition from k by � Do5. Create a new transition from k to m+ 1 by �6. k Sp(k)7. End While8. If (k = �1) Then s 09. Else s where leads the transition from k by �.10. Sp�(m+ 1) s11. Return Oracle(p = p1p2 : : : pm�)Figure4. Add a letter � to Oracle(p = p1p2 : : : pm) to get Oracle(p�)
Oracle-on-line(p= p1p2 : : : pm)1. Create Oracle(�) with:2. one single state 03. S�(0) �14. For i 1 �a m Do5. Oracle(p = p1p2 : : : pi) add letter(Oracle(p = p1p2 : : : pi�1),pi)6. End ForFigure5. On-line construction algorithm of Oracle(p = p1p2 : : : pm).

0(a) 10
a(b)Add a b

0 1 2
a b(c) Add b b

0 1 2 3
a b b(d) Add b

b

0 1 2 3 4
a b b b(e) Add b b

0 1 2 3 4 5
aa b b b

a

a(f) Add a
b

0 1 2 3 4 5 6
aa b b b a

a

a

a(g) Add a
b

0 1 2 3 4 5 6 7
aa b b b a b

a

a

a(h) Add bFigure6. On-line construction of Oracle(abbaba). The dot-lined arrows represent thesupply function.

Exemple The on-line construction of Oracle(abbbaab) is given �gure 6.3 String matchingThe factor oracle of p can be used in the same way as the su�x automaton instring matching in order to �nd the occurrences of a word p = p1p2 : : : pm in atext T = t1t2 : : : tn both on an alphabet �.The su�x automaton is used in [14, 11] to get an optimal algorithm in theaverage called BDM (for Backward Dawg matching). Its average complexity is inO(n logj�j(m)=m) under a Bernouilli model of probability where all the lettersare equiprobable.The BDM algorithm move a window of size m on the text. For each newposition of this window, the su�x automaton of pr (the mirror image of p) isused to search for a factor of p from the right to the left of the window.The basic idea of the BDM is that if this backward search failed on a letter� after the reading of a word u then �u is not a factor of p and moving thebeginning of the window just after � is secure. This idea is then re�ned in theBDM using some properties of the su�x automaton.
New searchWindow Search in Oracle� uSearch fails in �.� WindowWindow shiftFigure7. Shift of the search window after the fail of the search by Oracle(p). The word�u is not a factor of p.However this idea is enough in order to get an e�cient string matching algo-rithm. The most amazing is that the strict recognition of the factors (that thefactor and su�x automata allow) is not necessary. For the algorithm to work,it is enough to know that u� is not a factor of p. The oracle can be used toreplace the su�x automaton as it is illustrated by �gure 7. We call this newalgorithm BOM for Backward Oracle Matching. The pseudo-code of BOM is

given �gure 3. Its proof is given lemma 13. We make the conjecture (accordingto the experimental results) that BOM is still optimal in the average.BOM(p = p1p2 : : : pm, T = t1t2 : : : tn)1. Pre-processing2. Construction of the oracle of pr3. Search4. pos 05. While (pos <= n�m) do6. state initial state of Oracle(pr)7. j m8. While state exists do9. state image state by T [pos+ j] in Oracle(pr)10. j j � 111. EndWhile12. If j = 0 do13. mark an occurrence at pos+ 114. j 115. EndIf16. pos pos +j17. EndWhileFigure8. Pseudo-code of BOM algorithm.Lemma 13 The BOM algorithm marks all the occurrences of p in T and onlythem.The worst-case complexity of BOM is O(nm). However, in the average, wemake the following conjecture based on experimental results (see 3.2) :Conjecture 1 Under a model of independance and equiprobability of letters, theBOM algorithm has an average complexity of O(n logj�j(m)=m).3.1 A linear algorithm in the worst caseEven if the preceding algorithms are very e�cient in practice, they have a worst-case complexity in O(mn). There are several techniques to make the BDM al-gorithm (using su�x automaton) linear in the worst case, and one of them canalso be used to make our algorithms linear in the worst case. It uses the Knuth-Morris-Pratt (KMP) algorithm to make a forward reading of some characters inthe text.To explain the combined use of KMP and (factor or su�x) oracle, we considerthe current position before the search with the oracle : a pre�x v of the pattern

has already be read with KMP at the beginning of the search window and westart the backward search using the oracle from the right end of that currentwindow. The end position of v in the current window is called critical positionand is denoted by Critpos. The current position is schematized at �gure 9.CritposWindowv Search with oraclePre�x of the patternCritical positionFigure9. Current position in the linear algorithm using both KMP and (factor orsu�x) oracle.We use the search with the oracle from right to left from the right end of thewindow. We consider two cases whether the critical position is reached or not.1. The critical position is not reached. The failure of the recognition of a factoroccurs on character � as in the general approach (�gure 7). We shift thewindow to the left until its beginning goes past character �. We restart aKMP search on this new window rereading the characters already read by theoracle. This search stops in a new current position (with a new correspondingcritical position) when the recognized pre�x is small enough (less than �mwith 0 < � < 1). The value of � is discussed with the experimental results(see section 3.2), typically � = 1=2. This situation is schematized �gure 10.2. The critical position is reached. We resume the KMP search from the criticalposition, from the state we were before stopping, rereading at least the char-acters read by the oracle. We then go on reading the text until the longestrecognized pre�x is small enough (less than �). This situation is schematized�gure 11.This algorithm can be used with a backward search done with the factororacle. We call this new algorithm Turbo-BOM. Concerning the complexity inthe worst case, we have the following result.Theorem 3 The algorithm Turbo-BOM is(i) linear considering the number of inspections of characters in the text. Thenumber of these inspections is less than 2n.(ii) linear considering the number of comparisons of characters. The numberof these comparisons is less than 2n when the transitions of the oracle areavailable in O(1) and less than 2n+n log� when the transitions are availablein log�.

� uFailure of the search of factors in �.Window shiftWindowv Search by KMP algorithmWindow�� v0 Window
Critpos Critpos0End of the search by KMPBack to the current positionFigure10. First case : the critical position is not reached.

The critical position is reacheduWindowv
v0 Window

Critpos Critpos0End of the search with KMPBack to the current positionWindowRe-reading by KMPFigure11. Second case : the critical position is reached

3.2 Experimental resultsIn this section, we present the experimental results obtained. More precisely, wecompare the following algorithms.{ Sunday: the Sunday algorithm [15] is often considered as the fastest inpractice,{ BM: the Boyer-Moore algorithm [6],{ BDM: the classical Backward Dawg Matching with a su�x automaton [11],{ Su�: the Backward Dawg Matching with a su�x automaton but withouttesting terminal states, this is equivalent to the basic approach with thefactor automaton2,{ BOM: the Backward Oracle Matching with the factor oracle,{ BSOM: the Backward Oracle Matching with the su�x oracle. This laterstructure is not described in this version of the paper, but can be found in[1].{ Turbo-BOM: the linear algorithm using BOM and KMP with � = 1=2.Our string matching experiments are done on random texts of size 10 Mb withan accuracy of +/- 2% with a con�dence of 95% (which may require thousands ofiterations) for alphabets of size 2, 4, 16 and 32. The machine used is a PC with aPentium II processor at 350MHz running Linux 2.0.32 operating system. For allthe algorithms, the transitions of the automata are implemented as tables whichallow O(1) branchs. But it is not realistic (especially for the su�x automaton)when the alphabet becomes rather big (for instance for 16 bits character coding).Moreover, the Sunday algorithm becomes unusable as it is when the alphabet isbig because it mainly uses character table.Experimental results in string matching are always surprising because codesare small and the time taken by a comparison is not much greater than the timetaken by an indice incrementation. It is for instance the reason why Sundayalgorithm (when it is usable) is the fastest algorithm for small patterns. Thewindow shift are very small but very few operations are necessary to get thisshift. It is also the reason why BDM is slower than Su� whereas the windowshifts in BSOM and BDM are greater.The 4 sub�gures of �gure 12 shows that BOM is as fast as Su� (except ona binary alphabet) which is much more complicated and requires much morememory.It is obviously useless (in the case of searchs in texts of characters) to markand test terminal states in both su�x automaton and factor oracle.2 The su�x automaton without taking in account the terminal states (i.e. consideringevery state as terminal) and the factor automaton recognize the same language. Thedi�erence is that the factor automaton is minimal, so its size is smaller or equalthan the size of the su�x automaton. But the di�erence of size is not signi�cantin practice, anyway not enough signi�cant to justify the implementation of a factorautomaton which will complicate and slow the preprocessing phase of the stringmatching algorithm.

0 10050
0

10

5

0 10050

1

2

3

4

5

6

0 10050

1

2

3

1.5

2.5

3.5

0 10050

1

2

3

1.5

2.5

BM

BOM

Sunday

Turbo-BOM Suff

BDM BSOMFigure12. Experimental results in time of the string matching algorithms on randomtexts of size 10 Mb on alphabets of size 2, 4, 16 and 32. The X-axis represents thelength of the pattern and the Y-axis the search time in 1/100th seconds per Mbytes

Turbo-BOM algorithm is the slowest but it is the only one that can be usedin real time and in that case its behavior is rather good. It has to be noticedthat we arbitrarily set the value of � to 1=2. However, according to the tests wehave proceeded for di�erent values of �, it turns out that � = 1=2 is the moreoften the best value and that the variations of search times with other values of� (as far as they stay between (2 logj�jm)=m and (m � 2 logj�jm)=m) are notvery signi�cant and anyway do not deserve by themselves an accurate study.4 ConclusionsThe new structure we presented, the factor oracle, allow new string matchingalgorithms. These algorithms are very e�cient in practice, as e�cient as theones which already exists, but are far more simple to implement and requireless memory. According to the experimental results, we conjecture that theyare optimal on the average (under a model of equiprobability of letters) but itremains to be shown.About the structure of factor oracle itself, many questions stay open. Amongothers, it would be interesting to have a characterization of the language recog-nized by the oracle.It would also be interesting to have a study of the average number of externaltransitions in the oracle. It would give an idea of the average memory spacerequired by the string matching algorithms.
b a b

a

3 4b b

a

a

0 5
a b

7
a b

9
a

8
a

21
a b

6 10(a) Factor oracle
a

b
3 4b

a

0 5
b

7
a b

9
a

8
a

21
a b

6 10

b

a a

a(b) Reduced automatonFigure13. The factor oracle is not minimal considering the number of transitionsamong the automata of m+ 1 states which recognize at least the factors.Finally, we notice that the factor oracle is not minimal considering the num-ber of transitions among the automata of m + 1 states which recognize at least

the factors. An example is given �gure 13. This reduced automaton may alsobe used in string matching provided that its construction can be done in lineartime. This construction remains an open problem.References1. C. Allauzen, M. Crochemore, and M. Ra�not. Factor oracle, Su�x oracle. Tech-nical Report 99-08, Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, 1999.http://www-igm.univ-mlv.fr/~ra�not/ftp/IGM99-08-english.ps.gz.2. C. Allauzen and M. Ra�not. Oracle des facteurs d'un ensemble de mots. Rapporttechnique 99-11, Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee, 1999.http://www-igm.univ-mlv.fr/~ra�not/ftp/IGM99-11.ps.gz.3. R. A. Baeza-Yates. Searching subsequences. Theor. Comput. Sci., 78(2):363{376,1991.4. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M. T. Chen, and J. Seiferas.The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci.,40(1):31{55, 1985.5. A. Blumer, A. Ehrenfeucht, and D. Haussler. Average size of su�x trees andDAWGS. Discret. Appl. Math., 24:37{45, 1989.6. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,20(10):762{772, 1977.7. M. Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63{86,1986.8. M. Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden words.Information Processing Letters, 67(3):111{117, 1998.9. M. Crochemore, F. Mignosi, and A. Restivo. Minimal forbidden words and factorautomata. In L. Brim, J. Gruska, and J. Zlatu�ska, editors, Mathematical Founda-tions of Computer Science 1998, number 1450 in LNCS, pages 665{673. Springer-Verlag, 1998. extended abstract of [8].10. M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression usingantidictonaries. Rapport I.G.M. 98-10, Universit�e de Marne-la-Vall�ee, 1998.11. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.12. M. Crochemore and R. V�erin. Direct construction of compact directed acyclic wordgraphs. In A Apostolico and J. Hein, editors, Combinatorial Pattern Matching,number 1264 in LNCS, pages 116{129. Springer-Verlag, 1997.13. M. Crochemore and R. V�erin. On compact directed acyclic word graphs. In J. My-cielski, G. Rozenberg, and A. Salomaa, editors, Structures in Logic and ComputerScience, number 1261 in LNCS, pages 192{211. Springer-Verlag, 1997.14. A. Czumaj, M. Crochemore, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski,and W. Rytter. Speeding up two string-matching algorithms. Algorithmica, 12:247{267, 1994.15. D. Sunday. A very fast substring search algorithm. CACM, 33(8):132{142, August1990.

