N
N

N

HAL

open science

Factor oracle: a new structure for pattern matching

Cyril Allauzen, Maxime Crochemore, Mathieu Raffinot

» To cite this version:

Cyril Allauzen, Maxime Crochemore, Mathieu Raffinot. Factor oracle: a new structure for pattern
matching. 26th Seminar on Current Trends in Theory and Practice of Informatics (SOFSEM’99),

Nov 1999, Milovy, Czech Republic, Czech Republic. pp.291-306, 10.1007/3-540-47849-3_ 18 .

00619846

HAL Id: hal-00619846
https://hal.science/hal-00619846
Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00619846
https://hal.archives-ouvertes.fr

Factor oracle: a new structure for pattern
matching

Cyril Allauzen Maxime Crochemore* Mathieu Raffinot

Institut Gaspard-Monge, Université de Marne-la-Vallée,
77454 Marne-la-Vallée Cedex 2, France.
http://www-igm.univ-mlv.fr/LabInfo/
{allauzen,mac,raffinot}@monge.univ-mlv.fr

Abstract We introduce a new automaton on a word p, sequence of let-
ters taken in an alphabet ', that we call factor oracle. This automaton is
acyclic, recognizes at least the factors of p, has m + 1 states and a linear
number of transitions. We give an on-line construction to build it. We
use this new structure in string matching algorithms that we conjecture
optimal according to the experimental results. These algorithms are as
efficient as the ones that already exist using less memory and being more
easy to implement.

Keywords: indexing, finite automaton, pattern matching, algorithm de-
sign.

1 Introduction

A word p is a finite sequence p = py1ps...pm of letters taken in an alphabet 3.
We keep the notation p along this paper to denote the word on which we are
working.

Efficient pattern matching on fixed texts are based on indexes built on top of
the text. Many indexing techniques exist for this purpose. The simplest methods
use precomputed tables of g-grams while more achieved methods use more elab-
orated data structures. These classical structures are: suffix arrays, suffix trees,
suffix automata or DAWGSs!, and factor automata (see [11]). When regarded
as automata, they accept the set of factors (substrings) of the text. All these
structures lead to very time-efficient pattern matching algorithms but require a
fairly large amount of memory space. It 1s considered, for example, that the im-
plementation of suffix arrays can be achieved using five bytes per text character
and that other structures need about twelve bytes per text character.

Several strategies have been developed to reduce the memory space required
to implement structures for indexes.

* Work by this author is supported in part by Programme “Génomes” of C.N.R.S.
! DAWGS, Directed Acyclic Word Graphs, are just suffix automata in which all states
are terminal states

One of the oldest method is to merge the compression techniques applied
both by the suffix tree and the suffix automaton. It leads to the notion of com-
pact suffix automaton (or compact DAWG) [5]. The direct construction of this
structure is given in [12,13].

A second method to reduce the size of indexes has been considered in the text
compression method in [10]. It consists in representing the complement language
of the factors (substrings) of the text. More precisely, only minimal factors not
occurring in the text need to be considered [9,8]. Which allow to store them in
a tree and to save space.

We present in this paper a third method. We want to build an automaton (a)
that is acyclic (b) that recognizes at least the factors of p (c) that has the fewer
states as possible and (d) that has a linear number of transitions. We already
notice that such an automaton has necessarily at least m + 1 states.

The suffix or factor automaton [4, 7] satifies (a)-(b)-(d) but not (c¢) whereas
the sub-sequence automaton [3] satisfies (a)-(b)-(c) but not (d), which makes
the problem non trivial.

We propose an intermediate structure that we call the factor oracle : an
automaton with m + 1 states that satisfies these four requirements.

We use this new structure to design new string matching algorithms. These
algorithms have a very good average behaviour that we conjecture as optimal.
The main advantages of these new algorithms are (1) that they are easy to imple-
ment for an optimal behaviour and (2) the memory saving that the factor oracle
allows with respect to the suffix automaton. The structure has been extended in
[2] to implement the index of a finite set of texts.

The paper is structured as follows: Section 2 discusses the construction of the
factor oracle, Section 3 describes a string matching based on the factor oracle
and shows experimental results, and finally we conclude in Section 4. Proofs of
the results presented in the paper may be found in [1]. We now define notions
and definitions that we need along this paper.

A word @ € X* i1s a factor of p if and only if p can be written p = uzv with
u,v € X*. We denote Fact(p) the set of all the factors of word p. A factor z of p
is a prefir (resp. a suffir) of p if p = xu (resp. p = ux) with u € X*. The set of
all the prefixes of p is denoted by Pref(p) and the one of all the suffixes Suff(p).
We say that x is a proper factor (resp. proper prefir, proper suffir) of p if x is a
factor (resp. prefix, suffix) of p distinct from p and from the empty word e.

We denote pref, (i) the prefix of length i of p for 0 <i < [p|.

We denote for u € Fact(p), poccur(u, p) = min{|z| , z = wu et p = wuv},
the ending position of the first occurrence of u in p.

Finally, we define for u € Fact(p) the set endpos,,(u) = {i | p = wupit1...pm}.
If two factors u and v of p are such that endpos,(u) = endpos,(v), we denote
u ~p v. It is very easy to verify that ~, is an equivalence relation; it is in fact
the syntaxic equivalence of the language Suff(p).

2 Factor oracle

2.1 Construction algorithm

Build Oracle(p = pip2 ... pm)
For ¢ from 0 to m
Create a new state 1
For ¢ from 0 to m — 1
Build a new transition from ¢ to ¢ + 1 by piy1
For ¢ from 0 to m — 1
Let u be a mimimal length word in state ¢
Forall 0 € X, 0 # pit1
If uo € Fact(p;_juj41 - - - Pm)
Build a new transition from ¢ to i + poccur(ua, p;_|y|+1 - - . pm) by

© 0o ot W=

Figurel. High-level construction algorithm of the Oracle

Definition 1 The factor oracle of a word p = pips . ..pm 15 the automaton build
by the algorithm Build_Oracle (figure 1) on the word p, where all the states are
terminal. It is denoted by Oracle(p).

The factor oracle of the word p = abbbaab is given as an example figure 2.
On this example, it can be noticed that the word aba 1s recognized whereas it is
not a factor of p.

a
e
024 DL (-3 b @252 627

b a

Figure2. Factor oracle of abbbaab. The word aba is recognizes whereas it is not a

factor.

Note: all the transitions that reach state i of Oracle(p) are labeled by p;.

Lemma 1 Let u € X* be a minimal length word among the words recognized in
state 1 of Oracle(p). Then, u € Fact(p) and i = poccur(u,p).

Corollary 1 Let u € X* be a minimal length word among the words recognized
in state © of Oracle(p), u is unique.

We denote min(¢) the minimal length word of state i.

Corollary 2 Leti and j be two states of Oracle(p) such as j < i. Let u = min(i)
and v = min(j), u can not be a suffiz of v.

Lemma 2 Let i be a state of Oracle(p) and uw = min(i). u is a suffiz of any
word ¢ € X* which is the label of a path leading from state 0 to state i.

Lemma 3 Let w € Fact(p). w is recognized by Oracle(p) in a state j < poccur(w, p).

Note: In lemma 3, j is really less or equal than poccur(w,p), and not always
equal. The example given figure 3 represents the automaton Oracle(abbcabe),
and the state reached after the reading of the word abe is strictly less than
poccur(abe, abbeabe).

Figure3. Example of a factor (abc) that is not recognized at the end of his first
occurrence but before.

Corollary 3 Let w € Fact(p). Every word v € Suff(w) is recognized by Oracle(p)
in a state j < poccur(w).

Lemma 4 Let i be a state of Oracle(p) and u = min(i). Any path ending by u
leads to a state j > 1.

Lemma 5 Let w € X* be a word recognized by Oracle(p) in i, then any suffix
of w 1s recognized in a state 7 < 1.

The number of states of Oracle(p) with p = pips...pm is m + 1. We now
consider the number of transitions.

Lemma 6 The number To,(p) of transitions in Oracle(p = p1pa .. .pm) satisfies
m < Tor(p) < 2m—1.

2.2 On-line algorithm

This section presents an on-line construction of the automaton Oracle(p), that
means a way of building the automaton by reading the letters of p one by one
from left to right.

We denote repet,, (i) the longest suffix of pref, (i) that appears at least twice
in pref, (7).

We define a function S, defined on the states of the automaton, called supply
function, that maps each state i > 0 of Oracle(p) to state j in which the reading
of repet,, (i) ends. We arbitrarily set S,(0) = —1.

Notes:

— Sp(7) is well defined for every state i of Oracle(p) (Corollary 3).
— For any state i of Oracle(p), i > S;(4) (lemma 3).

We denote ky = m, k; = Sp(k;_1) for i > 1. The sequence of the k; is finite,
strictly decreasing and ends in state 0. We denote

CSp = {k’o = m,k’l,...,k’t = 0}
the suffix path of p in Oracle(p).

Lemma 7 Let k > 0 be a state of Oracle(p) such that s = Sy(k) is strictly
positive. We denote wy, = repet, (k) and w, = repet,(s). Then w, is a suffiz of
We .

Corollary 4 Let C'S, = {ko, k1 ..., ks = 0} be the suffiz path of p in Oracle(p)
and let w; = repet,(ki_q1) for 1 <1<t and wo = p. Then, for 0 <l <t, wy is a
suffix of all the w;, 0 < i<l <t.

We now consider for a word p = p1ps...pm and a letter o € X' the construc-
tion of Oracle(pea) from Oracle(p).

We denote Oracle(p) + o the automaton Oracle(p) on which a transition by
o from state m to state m+ 1 is added. We already notice that a transition that
exists in Oracle(p) + o also exists in Oracle(po), so that the difference between
the two automata may only rely on transitions by o to state m 4+ 1 that have to
be added to Oracle(p) 4+ ¢ in order to get Oracle(po).

We are investigating states from which there may be transitions by ¢ to state
m+ 1.

Lemma 8 Let k be a state of Oracle(p) + o such that there is a transition from
k by o tom+1 in Oracle(po). Then k has to be one of the states on the suffix
path CS, = {ko = m, k1,... ks = 0} in Oracle(p) + 0.

Among the states on the suffix path of p, every state that has no transition
by ¢ in Oracle(p) + o must have one in Oracle(pc). More formally, the following
lemma sets this fact.

Lemma 9 Let k; < m be a state on the suffiz path C'S, = {ko = m, k1,... k=
0} of state m in Oracle(p = p1p2...pm) + 0. If ki does not have a transition by
o in Oracle(p), then there is a transition by o from ki to m+ 1 in Oracle(po).

Lemma 10 Let k; < m be a state on the suffix path CSy, = {ko = m, k1, ... ke =
0} in Oracle(p = p1pa .. .pm) + 0. If ki has a transition by o in Oracle(p) + o,
then all the states ki, 0 < i <t also have a transition by ¢ in Oracle(p) + .

The idea of the on-line construction algorithm is the following. According
to the three lemmas 8, 9, 10, to transform Oracle(p) + o in Oracle(po) we only
have to go down the suffix path C'S, = {ko = m, k1, ..., ks = 0} of state m and
while the current state k; does not have an exiting transition by ¢, a transition
by o to m + 1 should be added (lemma 9). If &; already has one, the process
ends because, according to lemma 10, all the states k; after &; on the suffix path
already have a transition by o.

If we only wanted to add a single letter, the preceding algorithm would be
enough. But, as we want to be able to build the automaton by adding the letters
of p the one after the other, we have to be able to update the supply function
Spo of the new automaton Oracle(po). As (according to the definition of S),
the supply function of states 0 < ¢ < m does not change from Oracle(p) to
Oracle(po), the only thing to do is to compute S0 (m + 1). This is done with
the following lemma.

Lemma 11 If there is a state kq which is the greatest element of C'Sp, = {ko =
myk1,..., ks =0} in Oracle(p) such that there is a transition by o from kq to a
state s in Oracle(p), then Syo(m + 1) = s in Oracle(po). Else Sy = 0.

From these lemmas we can now deduce an algorithm add letter to transform
Oracle(p) in Oracle(po). Tt is given figure 4.

Lemma 12 The algorithm add-letter really builds Oracle(p = pipa...pmo)
from Oracle(p = pip2 .. .pm) and update the supply function of the new state
m+ 1 of Oracle(po).

The complete on-line algorithm to build Oracle(p = p1p2 . .. pm) just consits
in adding the letters p; one by one from left to right. It is given figure 5.

Theorem 1 The algorithm Oracle-on-line(p = p1pa ... pm) builds Oracle(p).

Theorem 2 The complerity of Oracle-on-line(p = p1ps .. .pm) is O(m) in time
and in space.

Note The constants involved in the asymptotic bound of the complexity of the
on-line construction algorithm depend on the implementation and may involve
the size of the alphabet X. If we implement the transitions in a way that they
are accessible in O(1) (use of tables), then the complexity is O(m) in time
and O(|X|.m) in space. If we implement the transitions in a way that they are
accessible in O(log|X]) (use of search trees), then the complexity is O(log|X|.m)
in time and O(m) in space.

Fonction addletter(Oracle(p = pip2...pm), o)

Create a new state m + 1

Create a new transition from m to m + 1 labeled by o

k+— Sp(m)

While & > —1 and there is no transition from k by ¢ Do
Create a new transition from k to m + 1 by o
k + Sp(k)

End While

If (k=—1) Then s+ 0

Else s «+ where leads the transition from k by o.

Spe(m+ 1) s

Return Oracle(p = pip2...pmo0)

© 0o ot W=

—_ =
=]

Figure4. Add a letter o to Oracle(p = p1p2 ... pm) to get Oracle(po)

Oracle-on-line(p=pipz...pm)
Create Oracle(e) with:
one single state 0
Se(0) « —1
For 1+ 1am Do
Oracle(p = pip2 ... pi) « add_letter(Oracle(p = p1p2 ... pi—1),pi)
End For

O Tt D

Figure5. On-line construction algorithm of Oracle(p = pipz ... pm).

V” § ‘ ¥ ¥ §

YCa ~ - C ° @ D ° @

@ @—>@ b
(a) (b) (c)

1
b
c) Add b (d) Add b

a

Add a

m
; B - . B v y
Z)alb;b;b® a%bww@
b a

(e) Add b (f) Add a

(h) Add b

Figure6. On-line construction of Oracle(abbaba). The dot-lined arrows represent the
supply function.

Ezemple The on-line construction of Oracle(abbbaab) is given figure 6.

3 String matching

The factor oracle of p can be used in the same way as the suffix automaton in
string matching in order to find the occurrences of a word p = pips...pm In a
text T'=t1t5...t; both on an alphabet .

The suffix automaton is used in [14,11] to get an optimal algorithm in the
average called BDM (for Backward Dawg matching). Its average complexity is in
O(nlog y (m)/m) under a Bernouilli model of probability where all the letters
are equiprobable.

The BDM algorithm move a window of size m on the text. For each new
position of this window, the suffix automaton of p” (the mirror image of p) is
used to search for a factor of p from the right to the left of the window.

The basic idea of the BDM is that if this backward search failed on a letter
o after the reading of a word u then ou is not a factor of p and moving the
beginning of the window just after ¢ is secure. This idea is then refined in the
BDM using some properties of the suffix automaton.

Window

Window shift

Window

Figure?7. Shift of the search window after the fail of the search by Oracle(p). The word
ou 1s not a factor of p.

However this idea 1s enough in order to get an efficient string matching algo-
rithm. The most amazing is that the strict recognition of the factors (that the
factor and suffix automata allow) is not necessary. For the algorithm to work,
it is enough to know that wo is not a factor of p. The oracle can be used to
replace the suffix automaton as it is illustrated by figure 7. We call this new
algorithm BOM for Backward Oracle Matching. The pseudo-code of BOM is

given figure 3. Its proof is given lemma 13. We make the conjecture (according
to the experimental results) that BOM is still optimal in the average.

BOM(p = P1P2 ... Pms T = t1t2 N tn)

1. Pre-processing

2. Construction of the oracle of p”

3. Search

4. pos <0

5. While (pos <=n — m) do

6. state < initial state of Oracle(p”)

7. j&m

8. While state exists do

9. state < image state by T[pos + j] in Oracle(p”)
10. jej—1

11. EndWhile

12. If j=0do

13. mark an occurrence at pos+ 1
14. je1

15. EndIf

16. pos + pos +3

17. EndWhile

Figure8. Pseudo-code of BOM algorithm.

Lemma 13 The BOM algorithm marks all the occurrences of p in T and only
them.

The worst-case complexity of BOM is O(nm). However, in the average, we
make the following conjecture based on experimental results (see 3.2) :

Conjecture 1 Under a model of independance and equiprobability of letters, the
BOM algorithm has an average complexity of O(nlogx (m)/m).

3.1 A linear algorithm in the worst case

Even if the preceding algorithms are very efficient in practice, they have a worst-
case complexity in O(mn). There are several techniques to make the BDM al-
gorithm (using suffix automaton) linear in the worst case, and one of them can
also be used to make our algorithms linear in the worst case. It uses the Knuth-
Morris-Pratt (KMP) algorithm to make a forward reading of some characters in
the text.

To explain the combined use of KMP and (factor or suffix) oracle, we consider
the current position before the search with the oracle : a prefix v of the pattern

has already be read with KMP at the beginning of the search window and we
start the backward search using the oracle from the right end of that current
window. The end position of v in the current window is called critical position
and 1s denoted by Critpos. The current position is schematized at figure 9.

Window
I e =
v
L1 IEEEEEEEEEEEEEEEEEEEE
-
Prefix of the pattern Search with oracle

Critical position
Critpos

Figure9. Current position in the linear algorithm using both KMP and (factor or
suffix) oracle.

We use the search with the oracle from right to left from the right end of the
window. We consider two cases whether the critical position is reached or not.

1. The critical position is not reached. The failure of the recognition of a factor
occurs on character ¢ as in the general approach (figure 7). We shift the
window to the left until its beginning goes past character ¢. We restart a
KMP search on this new window rereading the characters already read by the
oracle. This search stops in a new current position (with a new corresponding
critical position) when the recognized prefix is small enough (less than am
with 0 < & < 1). The value of « is discussed with the experimental results
(see section 3.2), typically o = 1/2. This situation is schematized figure 10.

2. The critical position is reached. We resume the KMP search from the critical
position, from the state we were before stopping, rereading at least the char-
acters read by the oracle. We then go on reading the text until the longest
recognized prefix is small enough (less than «). This situation is schematized
figure 11.

This algorithm can be used with a backward search done with the factor
oracle. We call this new algorithm Turbo-BOM. Concerning the complexity in
the worst case, we have the following result.

Theorem 3 The algorithm Turbo-BOM 1s

(i) linear considering the number of inspections of characters in the text. The
number of these inspections is less than 2n.

(ii) linear considering the number of comparisons of characters. The number
of these comparisons is less than 2n when the transitions of the oracle are
available in O(1) and less than 2n+nlog X when the transitions are available
n log X

Window

Critpos

Failure of the search of factors in o.

Window shift Search by KMP algorithm

Window
C’F |
! - !
End of the search by KMP v. Critpos
Back to the current position | Window

Figurel0. First case : the critical position is not reached.

Window

Critpos -
The critical position is reached

(LT T (T T [| [[[[[

Re-reading by KMP

Window
F |
' - '
End of the search with KMP v Critpos
Back to the current position | Window

Figurell. Second case : the critical position is reached

3.2 Experimental results

In this section, we present the experimental results obtained. More precisely, we
compare the following algorithms.

— Sunday: the Sunday algorithm [15] is often considered as the fastest in
practice,

— BM: the Boyer-Moore algorithm [6],

— BDM: the classical Backward Dawg Matching with a suffix automaton [11],

— Suff: the Backward Dawg Matching with a suffix automaton but without
testing terminal states, this is equivalent to the basic approach with the
factor automaton?,

— BOM: the Backward Oracle Matching with the factor oracle,

— BSOM: the Backward Oracle Matching with the suffix oracle. This later
structure is not described in this version of the paper, but can be found in
[1].

— Turbo-BOM: the linear algorithm using BOM and KMP with o = 1/2.

Our string matching experiments are done on random texts of size 10 Mb with
an accuracy of +/- 2% with a confidence of 95% (which may require thousands of
iterations) for alphabets of size 2, 4, 16 and 32. The machine used is a PC with a
Pentium II processor at 350MHz running Linux 2.0.32 operating system. For all
the algorithms, the transitions of the automata are implemented as tables which
allow O(1) branchs. But it is not realistic (especially for the suffix automaton)
when the alphabet becomes rather big (for instance for 16 bits character coding).
Moreover, the Sunday algorithm becomes unusable as it 1s when the alphabet is
big because 1t mainly uses character table.

Experimental results in string matching are always surprising because codes
are small and the time taken by a comparison is not much greater than the time
taken by an indice incrementation. It is for instance the reason why Sunday
algorithm (when it is usable) is the fastest algorithm for small patterns. The
window shift are very small but very few operations are necessary to get this
shift. It 1s also the reason why BDM is slower than Suff whereas the window
shifts in BSOM and BDM are greater.

The 4 subfigures of figure 12 shows that BOM is as fast as Suff (except on
a binary alphabet) which is much more complicated and requires much more
memory.

It is obviously useless (in the case of searchs in texts of characters) to mark
and test terminal states in both suffix automaton and factor oracle.

% The suffix automaton without taking in account the terminal states (i.e. considering
every state as terminal) and the factor automaton recognize the same language. The
difference is that the factor automaton is minimal, so its size is smaller or equal
than the size of the suffix automaton. But the difference of size is not significant
in practice, anyway not enough significant to justify the implementation of a factor
automaton which will complicate and slow the preprocessing phase of the string
matching algorithm.

100 | E

BM ~ Sunday S BDM ----- BSOM
----- BOM S TurboBOM ~ ————- suff

Figurel2. Experimental results in time of the string matching algorithms on random
texts of size 10 Mb on alphabets of size 2, 4, 16 and 32. The X-axis represents the
length of the pattern and the Y-axis the search time in 1/100th seconds per Mbytes

Turbo-BOM algorithm is the slowest but it is the only one that can be used
in real time and in that case its behavior is rather good. It has to be noticed
that we arbitrarily set the value of « to 1/2. However, according to the tests we
have proceeded for different values of «, it turns out that o« = 1/2 is the more
often the best value and that the variations of search times with other values of
a (as far as they stay between (2log 5 m)/m and (m — 2log 5 m)/m) are not
very significant and anyway do not deserve by themselves an accurate study.

4 Conclusions

The new structure we presented, the factor oracle, allow new string matching
algorithms. These algorithms are very efficient in practice, as efficient as the
ones which already exists, but are far more simple to implement and require
less memory. According to the experimental results, we conjecture that they
are optimal on the average (under a model of equiprobability of letters) but it
remains to be shown.

About the structure of factor oracle itself, many questions stay open. Among
others, it would be interesting to have a characterization of the language recog-
nized by the oracle.

It would also be interesting to have a study of the average number of external
transitions in the oracle. It would give an idea of the average memory space
required by the string matching algorithms.

a
ﬁﬁﬁ\
a a
P U@L RN B 5)L

6 a 7 a 8 a 9 b 10
a b

(a) Factor oracle

(b) Reduced automaton

Figurel3. The factor oracle is not minimal considering the number of transitions
among the automata of m + 1 states which recognize at least the factors.

Finally, we notice that the factor oracle is not minimal considering the num-
ber of transitions among the automata of m 4 1 states which recognize at least

the factors. An example is given figure 13. This reduced automaton may also
be used in string matching provided that its construction can be done in linear
time. This construction remains an open problem.

References

1.

10.

11.

12.

13.

14.

15.

C. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle, Suffix oracle. Tech-
nical Report 99-08, Institut Gaspard-Monge, Université de Marne-la-Vallée, 1999.
http://www-igm.univ-mlv.fr/ raffinot /ftp/ IGM99-08-english.ps.gz.

C. Allauzen and M. Raffinot. Oracle des facteurs d’un ensemble de mots. Rapport
technique 99-11, Institut Gaspard Monge, Université de Marne-la-Vallée, 1999.
http://www-igm.univ-mlv.fr/ raffinot /ftp/IGM99-11.ps.gz.

. R. A. Baeza-Yates. Searching subsequences. Theor. Comput. Sci., 78(2):363-376,

1991.

A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M. T. Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci.,
40(1):31-55, 1985,

. A. Blumer, A. Ehrenfeucht, and D. Haussler. Average size of suffix trees and

DAWGS. Discret. Appl. Math., 24:37-45, 1989.

R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,
20(10):762-772, 1977.

M. Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63-86,
1986.

M. Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden words.
Information Processing Letters, 67(3):111-117, 1998.

. M. Crochemore, F. Mignosi, and A. Restivo. Minimal forbidden words and factor

automata. In L. Brim, J. Gruska, and J. Zlatuska, editors, Mathematical Founda-
tions of Computer Science 1998, number 1450 in LNCS, pages 665-673. Springer-
Verlag, 1998. extended abstract of [8].

M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression using
antidictonaries. Rapport I.G.M. 98-10, Université de Marne-la-Vallée, 1998.

M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.
M. Crochemore and R. Vérin. Direct construction of compact directed acyclic word
graphs. In A Apostolico and J. Hein, editors, Combinatorial Pattern Matching,
number 1264 in LNCS, pages 116-129. Springer-Verlag, 1997.

M. Crochemore and R. Vérin. On compact directed acyclic word graphs. In J. My-
cielski, G. Rozenberg, and A. Salomaa, editors, Structures in Logic and Computer
Science, number 1261 in LNCS, pages 192-211. Springer-Verlag, 1997.

A. Czumaj, M. Crochemore, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski,
and W. Rytter. Speeding up two string-matching algorithms. Algorithmica, 12:247—
267, 1994.

D. Sunday. A very fast substring search algorithm. CACM, 33(8):132-142, August
1990.

