Cyril Allauzen
email: fallauzen@monge.univ-mlv.fr

Maxime Crochemore

? Mathieu

Ra Not

Factor oracle: a new structure for pattern matching

Keywords: indexing, nite automaton, pattern matching, algorithm design

We introduce a new automaton on a word p, sequence of letters taken in an alphabet , that we call factor oracle. This automaton is acyclic, recognizes at least the factors of p, has m + 1 states and a linear number of transitions. We give an on-line construction to build it. We use this new structure in string matching algorithms that we conjecture optimal according to the experimental results. These algorithms are as e cient as the ones that already exist using less memory and being more easy to implement.

Introduction

A word p is a nite sequence p = p 1 p 2 : : :p m of letters taken in an alphabet . We keep the notation p along this paper to denote the word on which we are working.

E cient pattern matching on xed texts are based on indexes built on top of the text. Many indexing techniques exist for this purpose. The simplest methods use precomputed tables of q-grams while more achieved methods use more elaborated data structures. These classical structures are: su x arrays, su x trees, su x automata or DAWGs 1 , and factor automata (see 11]). When regarded as automata, they accept the set of factors (substrings) of the text. All these structures lead to very time-e cient pattern matching algorithms but require a fairly large amount of memory space. It is considered, for example, that the implementation of su x arrays can be achieved using ve bytes per text character and that other structures need about twelve bytes per text character.

Several strategies have been developed to reduce the memory space required to implement structures for indexes.

One of the oldest method is to merge the compression techniques applied both by the su x tree and the su x automaton. It leads to the notion of compact su x automaton (or compact DAWG) 5]. The direct construction of this structure is given in [START_REF] Crochemore | Direct construction of compact directed acyclic word graphs[END_REF][START_REF] Crochemore | On compact directed acyclic word graphs[END_REF].

A second method to reduce the size of indexes has been considered in the text compression method in 10]. It consists in representing the complement language of the factors (substrings) of the text. More precisely, only minimal factors not occurring in the text need to be considered [START_REF] Crochemore | Minimal forbidden words and factor automata[END_REF][START_REF] Crochemore | Automata and forbidden words[END_REF]. Which allow to store them in a tree and to save space.

We present in this paper a third method. We want to build an automaton (a) that is acyclic (b) that recognizes at least the factors of p (c) that has the fewer states as possible and (d) that has a linear number of transitions. We already notice that such an automaton has necessarily at least m + 1 states.

The su x or factor automaton 4 We propose an intermediate structure that we call the factor oracle : an automaton with m + 1 states that satis es these four requirements.

We use this new structure to design new string matching algorithms. These algorithms have a very good average behaviour that we conjecture as optimal. The main advantages of these new algorithms are (1) that they are easy to implement for an optimal behaviour and (2) the memory saving that the factor oracle allows with respect to the su x automaton. The structure has been extended in 2] to implement the index of a nite set of texts.

The paper is structured as follows: Section 2 discusses the construction of the factor oracle, Section 3 describes a string matching based on the factor oracle and shows experimental results, and nally we conclude in Section 4. Proofs of the results presented in the paper may be found in 1]. We now de ne notions and de nitions that we need along this paper.

A word x 2 is a factor of p if and only if p can be written p = uxv with u; v 2 . We denote Fact(p) the set of all the factors of word p. A factor x of p is a pre x (resp. a su x) of p if p = xu (resp. p = ux) with u 2 . The set of all the pre xes of p is denoted by Pref(p) and the one of all the su xes Su (p). We say that x is a proper factor (resp. proper pre x, proper su x) of p if x is a factor (resp. pre x, su x) of p distinct from p and from the empty word . We denote pref p (i) the pre x of length i of p for 0 i jpj. We denote for u 2 Fact(p), poccur(u; p) = minfjzj ; z = wu et p = wuvg, the ending position of the rst occurrence of u in p.

Finally,we de ne for u 2 Fact(p) the set endpos p (u) = fi j p = wup i+1 : : :p m g.

If two factors u and v of p are such that endpos p (u) = endpos p (v), we denote u p v. It is very easy to verify that p is an equivalence relation; it is in fact the syntaxic equivalence of the language Su (p).

Construction algorithm

Build Oracle(p = p1p2 : : : pm) 1.

For i from 0 to m 2.

Create a new state i 3.

For i from 0 to m 1 4.

Build a new transition from i to i + 1 by pi+1 5.

For i from 0 to m 1 6.

Let u be a minimal length word in state i 7.

For all 2 ; 6 = pi+1 8.

If u 2 Fact(p i juj+1 : : : pm) 9.

Build a new transition from i to i + poccur(u ; p i juj+1 : : : pm) by The factor oracle of the word p = abbbaab is given as an example gure 2.

On this example, it can be noticed that the word aba is recognized whereas it is not a factor of p. Note: all the transitions that reach state i of Oracle(p) are labeled by p i . Lemma 1 Let u 2 be a minimal length word among the words recognized in state i of Oracle(p). Then, u 2 Fact(p) and i = poccur(u; p). Corollary 1 Let u 2 be a minimal length word among the words recognized in state i of Oracle(p), u is unique.

We denote min(i) the minimal length word of state i.

Corollary 2 Let i and j be two states of Oracle(p) such as j < i. Let u = min(i) and v = min(j), u can not be a su x of v.

Lemma 2 Let i be a state of Oracle(p) and u = min(i). u is a su x of any word c 2 which is the label of a path leading from state 0 to state i. Lemma 3 Let w 2 Fact(p). w is recognized by Oracle(p) in a state j poccur(w; p). Note: In lemma 3, j is really less or equal than poccur(w; p), and not always equal. The example given gure 3 represents the automaton Oracle(abbcabc), and the state reached after the reading of the word abc is strictly less than poccur(abc; abbcabc). Lemma 4 Let i be a state of Oracle(p) and u = min(i). Any path ending by u leads to a state j i.

Lemma 5 Let w 2 be a word recognized by Oracle(p) in i, then any su x of w is recognized in a state j i.

The number of states of Oracle(p) with p = p 1 p 2 : : :p m is m + 1. We now consider the number of transitions. Lemma 6 The number T Or (p) of transitions in Oracle(p = p 1 p 2 : : :p m) satis es m T Or (p) 2m 1.

On-line algorithm

This section presents an on-line construction of the automaton Oracle(p), that means a way of building the automaton by reading the letters of p one by one from left to right. We denote repet p (i) the longest su x of pref p (i) that appears at least twice in pref p (i).

We de ne a function S p de ned on the states of the automaton, called supply function, that maps each state i > 0 of Oracle(p) to state j in which the reading of repet p (i) ends. We arbitrarily set S p (0) = 1. Notes: { S p (i) is well de ned for every state i of Oracle(p) (Corollary 3). { For any state i of Oracle(p), i > S p (i) (lemma 3).

We denote k 0 = m, k i = S p (k i 1) for i 1. The sequence of the k i is nite, strictly decreasing and ends in state 0. We denote CS p = fk 0 = m; k 1 ; : : :; k t = 0g the su x path of p in Oracle(p). Lemma 7 Let k > 0 be a state of Oracle(p) such that s = S p (k) is strictly positive. We denote w k = repet p (k) and w s = repet p (s). Then w s is a su x of w k .

Corollary 4 Let CS p = fk 0 ; k 1 : : :; k t = 0g be the su x path of p in Oracle(p) and let w i = repet p (k i 1) for 1 i t and w 0 = p. Then, for 0 < l t, w l is a su x of all the w i , 0 i < l t.

We now consider for a word p = p 1 p 2 : : :p m and a letter 2 the construction of Oracle(p) from Oracle(p).

We denote Oracle(p) + the automaton Oracle(p) on which a transition by from state m to state m +1 is added. We already notice that a transition that exists in Oracle(p) + also exists in Oracle(p), so that the di erence between the two automata may only rely on transitions by to state m + 1 that have to be added to Oracle(p) + in order to get Oracle(p).

We are investigating states from which there may be transitions by to state m + 1.

Lemma 8 Let k be a state of Oracle(p) + such that there is a transition from k by to m + 1 in Oracle(p). Then k has to be one of the states on the su x path CS p = fk 0 = m; k 1 ; : : :; k t = 0g in Oracle(p) + .

Among the states on the su x path of p, every state that has no transition by in Oracle(p) + must have one in Oracle(p). More formally, the following lemma sets this fact. Lemma 9 Let k l < m be a state on the su x path CS p = fk 0 = m; k 1 ; : : :; k t = 0g of state m in Oracle(p = p 1 p 2 : : :p m) + . If k l does not have a transition by in Oracle(p), then there is a transition by from k l to m + 1 in Oracle(p).

Lemma 10 Let k l < m be a state on the su x path CS p = fk 0 = m; k 1 ; : : :; k t = 0g in Oracle(p = p 1 p 2 : : :p m) + . If k l has a transition by in Oracle(p) + , then all the states k i ; 0 i t also have a transition by in Oracle(p) + .

The idea of the on-line construction algorithm is the following. According to the three lemmas 8, 9, 10, to transform Oracle(p) + in Oracle(p) we only have to go down the su x path CS p = fk 0 = m; k 1 ; : : :; k t = 0g of state m and while the current state k l does not have an exiting transition by , a transition by to m + 1 should be added (lemma 9). If k l already has one, the process ends because, according to lemma 10, all the states k j after k l on the su x path already have a transition by .

If we only wanted to add a single letter, the preceding algorithm would be enough. But, as we want to be able to build the automaton by adding the letters of p the one after the other, we have to be able to update the supply function S p of the new automaton Oracle(p). As (according to the de nition of S p), the supply function of states 0 i m does not change from Oracle(p) to Oracle(p), the only thing to do is to compute S p (m + 1). This is done with the following lemma. Lemma 11 If there is a state k d which is the greatest element of CS p = fk 0 = m; k 1 ; : : :; k t = 0g in Oracle(p) such that there is a transition by from k d to a state s in Oracle(p), then S p (m + 1) = s in Oracle(p). Else S p = 0. Create Oracle() with: 2.

one single state 0 3.

S (0) 1 4.

For i 1 a m Do 5.

Oracle(p = p1p2 : : : pi) add letter(Oracle(p = p1p2 : : : pi 1),pi) 6.

End For

Figure5. On-line construction algorithm of Oracle(p = p1p2 : : : pm). Exemple The on-line construction of Oracle(abbbaab) is given gure 6.

String matching

The factor oracle of p can be used in the same way as the su x automaton in string matching in order to nd the occurrences of a word p = p 1 p 2 : : :p m in a text T = t 1 t 2 : : :t n both on an alphabet . The su x automaton is used in [START_REF] Czumaj | Speeding up two string-matching algorithms[END_REF][START_REF] Crochemore | Text algorithms[END_REF] to get an optimal algorithm in the average called BDM (for Backward Dawg matching). Its average complexity is in O(n log j j (m)=m) under a Bernouilli model of probability where all the letters are equiprobable.

The BDM algorithm move a window of size m on the text. For each new position of this window, the su x automaton of p r (the mirror image of p) is used to search for a factor of p from the right to the left of the window.

The basic idea of the BDM is that if this backward search failed on a letter after the reading of a word u then u is not a factor of p and moving the beginning of the window just after is secure. This idea is then re ned in the BDM using some properties of the su x automaton. However this idea is enough in order to get an e cient string matching algorithm. The most amazing is that the strict recognition of the factors (that the factor and su x automata allow) is not necessary. For the algorithm to work, it is enough to know that u is not a factor of p. The oracle can be used to replace the su x automaton as it is illustrated by gure 7. We call this new algorithm BOM for Backward Oracle Matching. The pseudo-code of BOM is given gure 3. Its proof is given lemma 13. We make the conjecture (according to the experimental results) that BOM is still optimal in the average. BOM(p = p1p2 : : : pm, T = t1t2 : : : tn)

EndWhile

Figure8. Pseudo-code of BOM algorithm. Lemma 13 The BOM algorithm marks all the occurrences of p in T and only them.

The worst-case complexity of BOM is O(nm). However, in the average, we make the following conjecture based on experimental results (see 3.2) :

Conjecture 1 Under a model of independance and equiprobability of letters, the BOM algorithm has an average complexity of O(n log j j (m)=m).

A linear algorithm in the worst case

Even if the preceding algorithms are very e cient in practice, they have a worstcase complexity in O(mn). There are several techniques to make the BDM algorithm (using su x automaton) linear in the worst case, and one of them can also be used to make our algorithms linear in the worst case. It uses the Knuth-Morris-Pratt (KMP) algorithm to make a forward reading of some characters in the text.

To explain the combined use of KMP and (factor or su x) oracle, we consider the current position before the search with the oracle : a pre x v of the pattern has already be read with KMP at the beginning of the search window and we start the backward search using the oracle from the right end of that current window. The end position of v in the current window is called critical position and is denoted by Critpos. The current position is schematized at gure 9.

Critpos Window v

Search with oracle Pre x of the pattern

Critical position

Figure9. Current position in the linear algorithm using both KMP and (factor or su x) oracle.

We use the search with the oracle from right to left from the right end of the window. We consider two cases whether the critical position is reached or not.

1. The critical position is not reached. The failure of the recognition of a factor occurs on character as in the general approach (gure 7). We shift the window to the left until its beginning goes past character . We restart a KMP search on this new window rereading the characters already read by the oracle. This search stops in a new current position (with a new corresponding critical position) when the recognized pre x is small enough (less than m with 0 < < 1). The value of is discussed with the experimental results (see section 3.2), typically = 1=2. This situation is schematized gure 10. 2. The critical position is reached. We resume the KMP search from the critical position, from the state we were before stopping, rereading at least the characters read by the oracle. We then go on reading the text until the longest recognized pre x is small enough (less than). This situation is schematized gure 11. This algorithm can be used with a backward search done with the factor oracle. We call this new algorithm Turbo-BOM. Concerning the complexity in the worst case, we have the following result.

Theorem 3 The algorithm Turbo-BOM is (i) linear considering the number of inspections of characters in the text. The number of these inspections is less than 2n.

(ii) linear considering the number of comparisons of characters. The number of these comparisons is less than 2n when the transitions of the oracle are available in O [START_REF] Allauzen | Factor oracle, Su x oracle[END_REF] and less than 2n+n log when the transitions are available in log .

Experimental results

In this section, we present the experimental results obtained. More precisely, we compare the following algorithms.

{ Sunday: the Sunday algorithm 15] is often considered as the fastest in practice, { BM: the Boyer-Moore algorithm 6], { BDM: the classical Backward Dawg Matching with a su x automaton 11], { Su : the Backward Dawg Matching with a su x automaton but without testing terminal states, this is equivalent to the basic approach with the factor automaton2 , { BOM: the Backward Oracle Matching with the factor oracle, { BSOM: the Backward Oracle Matching with the su x oracle. This later structure is not described in this version of the paper, but can be found in 1].

{ Turbo-BOM: the linear algorithm using BOM and KMP with = 1=2.

Our string matching experiments are done on random texts of size 10 Mb with an accuracy of +/-2% with a con dence of 95% (which may require thousands of iterations) for alphabets of size 2, 4, 16 and 32. The machine used is a PC with a Pentium II processor at 350MHz running Linux 2.0.32 operating system. For all the algorithms, the transitions of the automata are implemented as tables which allow O(1) branchs. But it is not realistic (especially for the su x automaton) when the alphabet becomes rather big (for instance for 16 bits character coding). Moreover, the Sunday algorithm becomes unusable as it is when the alphabet is big because it mainly uses character table.

Experimental results in string matching are always surprising because codes are small and the time taken by a comparison is not much greater than the time taken by an indice incrementation. It is for instance the reason why Sunday algorithm (when it is usable) is the fastest algorithm for small patterns. The window shift are very small but very few operations are necessary to get this shift. It is also the reason why BDM is slower than Su whereas the window shifts in BSOM and BDM are greater.

The 4 sub gures of gure 12 shows that BOM is as fast as Su (except on a binary alphabet) which is much more complicated and requires much more memory.

It is obviously useless (in the case of searchs in texts of characters) to mark and test terminal states in both su x automaton and factor oracle. Turbo-BOM algorithm is the slowest but it is the only one that can be used in real time and in that case its behavior is rather good. It has to be noticed that we arbitrarily set the value of to 1=2. However, according to the tests we have proceeded for di erent values of , it turns out that = 1=2 is the more often the best value and that the variations of search times with other values of (as far as they stay between (2 log j j m)=m and (m 2 log j j m)=m) are not very signi cant and anyway do not deserve by themselves an accurate study. [START_REF] Blumer | The smallest automaton recognizing the subwords of a text[END_REF]

Conclusions

The new structure we presented, the factor oracle, allow new string matching algorithms. These algorithms are very e cient in practice, as e cient as the ones which already exists, but are far more simple to implement and require less memory. According to the experimental results, we conjecture that they are optimal on the average (under a model of equiprobability of letters) but it remains to be shown.

About the structure of factor oracle itself, many questions stay open. Among others, it would be interesting to have a characterization of the language recognized by the oracle.

It would also be interesting to have a study of the average number of external transitions in the oracle. It would give an idea of the average memory space required by the string matching algorithms. Finally, we notice that the factor oracle is not minimal considering the number of transitions among the automata of m + 1 states which recognize at least the factors. An example is given gure 13. This reduced automaton may also be used in string matching provided that its construction can be done in linear time. This construction remains an open problem.

 , 7] sati es (a)-(b)-(d) but not (c) whereas the sub-sequence automaton 3] satis es (a)-(b)-(c) but not (d), which makes the problem non trivial.

Figure1.

 Figure1. High-level construction algorithm of the Oracle

Figure2.

 Figure2. Factor oracle of abbbaab. The word aba is recognizes whereas it is not a factor.

Figure3.

 Figure3. Example of a factor (abc) that is not recognized at the end of his rst occurrence but before.

From

 Figure4. Add a letter to Oracle(p = p1p2 : : : pm) to get Oracle(p)

Figure6.

 Figure6. On-line construction of Oracle(abbaba). The dot-lined arrows represent the supply function.

Figure7.

 Figure7. Shift of the search window after the fail of the search by Oracle(p). The word u is not a factor of p.

 Figure10. First case : the critical position is not reached.

Figure12.

 Figure12. Experimental results in time of the string matching algorithms on random texts of size 10 Mb on alphabets of size 2, 4, 16 and 32. The X-axis represents the length of the pattern and the Y-axis the search time in 1/100th seconds per Mbytes

Figure13.

 Figure13. The factor oracle is not minimal considering the number of transitions among the automata of m + 1 states which recognize at least the factors.

The su x automaton without taking in account the terminal states (i.e. considering every state as terminal) and the factor automaton recognize the same language. The di erence is that the factor automaton is minimal, so its size is smaller or equal than the size of the su x automaton. But the di erence of size is not signi cant in practice, anyway not enough signi cant to justify the implementation of a factor automaton which will complicate and slow the preprocessing phase of the string matching algorithm.

\G enomes" of C.N.R.S.