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Minimax hypothesis testing for curve registration

Olivier Collier

IMAGINE, LIGM, Université Paris Est, Ecole des Ponts ParisTech, FRANCE and ENSAE, CREST

Abstract: This paper is concerned with the problem of goodness-of-fit for curve regis-

tration, and more precisely for the shifted curve model, whose application field reaches

from computer vision and road traffic prediction to medicine. We give bounds for the

asymptotic minimax separation rate, when the functions in the alternative lie in Sobolev

balls and the separation from the null hypothesis is measured by the l2-norm. We use

the generalized likelihood ratio to build a nonadaptive procedure depending on a tuning

parameter, which we choose in an optimal way according to the smoothness of the ambi-

ent space. Then, a Bonferroni procedure is applied to give an adaptive test over a range

of Sobolev balls. Both achieve the asymptotic minimax separation rates, up to possible

logarithmic factors.

Keywords: adaptive testing, composite null hypothesis, generalized maximum likeli-

hood, minimax hypothesis testing.

Introduction

Curve registration

Our concern is the statistical problem of curve registration, which appears naturally in a large
number of applications, when the available data consist of a set of noisy, distorted signals that
possess a common structure or pattern. This pattern constitutes the essential information
that we want to dig out from the observations. However, the deformations of the signals are
generally nonlinear and relatively complex, which complicates the statistical task. Fortunately
it is relevant in some cases to assume that the signals only differ from each other by a horizontal
shift: we call this modelling the shifted curve model. For instance, it was sucessfully adopted for
the interpretation of the ElectroCardioGramms: each deflection is considered as a repetition of
the same signal starting at a random time. Reference Isserles, Ritov, and Trigano [25] proposed
an estimator of the common pattern. Interestingly, the assumptions on the deformations are
in practice violated due to the baseline wandering, a periodic vertical perturbation of the
potential, but the estimation of the structural pattern performs well yet.

By contrast, SIFT descriptors (cf. Lowe [28]) in computer vision are an example where the
specification of the deformations is essential: selected keypoints of an image are assigned with
descriptors including a histogram of the local gradient. If the image is rotated, the histogram
of each keypoint is simply shifted by the angle of the rotation. To match the keypoints of the
two images, it is then sufficient to test the adequation of their histograms with the shifted
curve model. So, testing the model is sometimes the main concern, and even when estimation
matters, the adequation of the model may have to be tested, as the estimation techniques
depend on the structure of the deformations.
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O. Collier/Minimax hypothesis testing for curve registration 2

We refer to the papers Bigot and Gadat [5], Bigot, Gadat, and Loubes [6], Bigot, Gamboa,
and Vimond [7], Castillo and Loubes [9], Dalalyan, Golubev, and Tsybakov [12] and Gamboa,
Loubes, and Maza [16] for results on the estimation of different features of the curve regis-
tration model. The present work builds on Collier and Dalalyan [10], where a comprehensive
overview can be found.

Shifted curve model

This paper deals with the shifted curve model, which can be stated in a Gaussian sequence
form:

{

Yj = cj + σξj

Y #

j = c#j + σξ#j
, j = 1, 2, . . . , (1)

where

• {ξj , ξ#j ; j = 1, 2, . . .} is a family of independent complex random variables, whose real and
imaginary parts are independent standard Gaussian variables,

• c = (c1, c2, . . .), c
# = (c#1, c

#

2, . . .) are sequences in l2 that represent the Fourier coefficients
of two signals f and g in L2[0, 2π],

• σ is assumed to be known.

If we introduce the pseudo-distance d such that

d2(c, c#) , inf
τ

+∞
∑

j=1

|cj − e−ijτc#j |2, (2)

testing that f was shifted from g amounts to testing H0 against H1 with
{

H0 : d(c, c
#) = 0,

H1 : d(c, c
#) ≥ Cρσ,

(3)

where C is a positive constant and ρσ is a sequence of positive real numbers. For reasons that
we shall explain later, we assume that c and c# belong under the alternative to a Sobolev ball

Fs,L ,

{

u = (u1, u2, . . .) : ‖u(s)‖22 ,

∞
∑

j=1

j2s|uj |2 ≤ L2
}

, (4)

with s > 0. With this notation, we denote Θ0 and Θ1 the parameter sets corresponding to the
hypotheses H0 and H1, Y and Y # the sequences (Y1, Y2, . . .) and (Y #

1 , Y
#

2 , . . .), and we call
P

c,c# the probability engendered by (Y ,Y #) when the parameters are c and c#.

A detailed discussion of the model is deferred to Section 4.

Minimax testing

A randomized test in our model is a random variable taking values in [0, 1] and measurable with
respect to the σ-algebra engendered by (Y ,Y #). In practice, the user simulates an independent
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random variable with a Bernoulli distribution of parameter the value of the test, which was
computed from the data (Y ,Y #). The null hypothesis is accepted, respectively rejected, when
the result of the simulation is 0 or 1. We say that a test is nonrandomized when it only takes
the values 0 or 1.

To measure the performance of a test ψ, we choose the minimax point of view, in which
the errors of first and second kind are defined by

{

α(ψ,Θ0) = supΘ0
E

c,c#
(

ψ
)

,

β(ψ,Θ1) = supΘ1
E

c,c#
(

1− ψ
)

.
(5)

Note that in the nonrandomized case, α(ψ,Θ0) = supΘ0
P

c,c#
(

ψ = 1
)

and β(ψ,Θ1) =
supΘ1

P
c,c#

(

ψ = 0
)

.

We say that consistent testing in the asymptotic minimax sense is possible if for all α, β > 0,
there exists a test ψσ such that







lim
σ→0

α(ψσ ,Θ0) ≤ α,

lim
σ→0

β(ψσ ,Θ1) ≤ β.
(6)

The distance between the null and the alternative hypotheses, Cρσ, determines the existence
of such tests. Indeed, if Cρσ is too small, no testing procedure is asymptotically better than a
blind guess, for which α(ψ,Θ0)+β(ψ,Θ1) = 1. We call ρ∗σ the asymptotic minimax separation
rate if there are two positive constants C∗ and C∗ such that consistent testing is impossible
for ρσ = ρ∗σ and C < C∗, and possible for ρσ = ρ∗σ and C > C∗. The best constants C∗ and C∗

satisfying these conditions are called exact separation constants. Conventionnally, one applies
the informal minimal writing length rule to avoid nonuniqueness of the minimax separation
rate and of these constants. Moreover, a test which is consistent when ρσ = ρ∗σ and for some
C > 0 is called asymptotically minimax rate optimal.

There is a vast literature on the subject of minimax testing: minimax separation rates
were investigated in many models, including the Gaussian white noise model, the regression
model, the Gaussian sequence model and the probability density model, for the greater part
in signal detection, i.e., testing the hypothesis "f ≡ 0" against the alternative "‖f‖ ≥ Cρσ".
We present a selective overview of the papers that are the most relevant in the context of this
work.

Starting from Ingster [22] and Ermakov [13], where the minimax separation rate and the
exact separation constants were obtained when the functions in the alternative lie in ellipsoids
and the separation from 0 is measured by the l2-norm, various cases were considered: lp-bodies
as well as Sobolev, Hölder and Besov classes. We refer to Ingster and Suslina [24] and Ingster
[23] for a survey. The cases when the functions in the alternative set lie in Sobolev or Hölder
classes and the separation from 0 is measured by the sup-norm or by their values at a fixed
point were studied in Lepski and Tsybakov [27]. Finally, the case of the Lp-norm with p < 2
in Besov classes was considered in Lepski and Spokoiny [26].

Now, all the previously cited results are asymptotic, in the sense that the noise level σ (in the
white noise model) tends to 0. But from a practical point of view, it may be interesting to look
at the problem from a nonasymptotic point of view. In the regression and Gaussian sequence
models, Baraud [1] derived nonasymptotic minimax separation rates when the functions in
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the alternative lie in lp-bodies (0 < p ≤ 2) and the separation from 0 is measured by the l2-
norm. References Baraud, Huet, and Laurent [2, 3] proposed procedures for testing linear or
convex hypotheses in the regression model, and Fromont and Lévy-Leduc [15] inspected the
improvement implied by a further hypothesis on the periodicity of the signal in the periodic
Sobolev balls.

Composite null hypothesis testing

Up to here, we have reviewed results dealing mainly with a simple null hypothesis, namely
in the case of signal detection: "f ≡ 0". In contrast, the testing problem in the shifted curve
model deals with a composite null hypothesis. Here, we give a brief overview of the papers
presenting hypothesis testing problems with composite null hypotheses.

The series of papers Baraud [1], Baraud, Huet, and Laurent [2, 3] tackled with nonpara-
metric null hypothesis, but their assumptions are not applicable in our set-up, since our null
hypothesis as defined in (3) is neither linear nor convex. On the other hand, the test of a
parametric model against a nonparametric one was studied in a substantial number of papers
(cf. Horowitz and Spokoiny [21] and references therein), but only in Horowitz and Spokoiny
[21] from a minimax point of view. The minimax separation rate that they obtained is the
same as with a simple null hypothesis. This is due to the strong assumptions made on the
behaviour of the estimator of the parameter characterizing the model under H0.

On a related note, Gayraud and Pouet [17, 18] treated a more general composite null
hypothesis in the regression model, that is mainly characterized by its entropy. In fact, the set
of functions in the null hypothesis can grow with the sample size, and so be nonparametric.
Their rate is the same as in the case of a simple hypothesis.

Adaptive testing

A limitation of the minimax approach is that the optimal tests depend on the smoothness class.
This is not convenient from a practical point of view, because the choice of the smoothness
seems to be unnatural and arbitrary. To obtain handier procedures, we need an adaptive
definition for hypothesis testing.

Prior to testing, some sets of smothness parameters s, L must be chosen, over which adapta-
tion is performed. Typically, these sets are taken as compact intervals [s1, s2], [L1, L2]. To each
couple of smoothness parameters (s, L), we associate the smoothness set Fs,L, and we write

Θs,L
0 and Θs,L

1 the corresponding null and alternative hypotheses. Note that, in our problem,

Θs,L
0 ≡ Θ0 is independent of the smoothness parameters, and that Θs,L

1 depends on (s, L),
not only because c and c# are in Fs,L, but also since ρσ is allowed to be a function of s: as a

matter of fact, Θs,L
1 depends on the choice of the radius Cρσ(s). The easiest way to achieve

adaptation is to use the test corresponding to the most constraining smoothness (s1, L2), but
this entails a significant loss of efficiency if the tested parameters are in fact smoother.

Thus, we prefer a more economical approach and we will say that consistent adaptive testing
is possible uniformly over s ∈ [s1, s2] and L ∈ [L1, L2], if for all α, β > 0, there is a test ψσ
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depending only on s1, s2, L1 and L2 such that







lim
σ→0

α(ψσ ,Θ0) ≤ α,

lim
σ→0

sup
s,L

β(ψσ ,Θ
s,L
1 ) ≤ β.

(7)

However, adaptive testing is not always possible without loss of efficiency, i.e., taking ρσ(s) =
ρ∗σ(s) for each s. That is why it was suggested to replace σ by σdσ in the expression of ρ∗σ(s),
where dσ is a sequence of positive real numbers, which can be seen as a necessary payment
regarding the intensity of the noise to achieve adaptivity.

Now, we say that ρ∗σdσ(s), s ∈ [s1, s2] is the adaptive asymptotic minimax separation rate if
there are two positive constants C∗ and C∗ such that adaptive consistent testing is impossible
for ρσ(s) = ρ∗σdσ(s) and C < C∗, and possible for ρσ(s) = ρ∗σdσ (s) and C > C∗.

Reference Spokoiny [32] proved that the optimal asymptotic factor is dσ = (log log σ−1)1/4,
for signal detection in Besov balls. Gayraud and Pouet [18] extended this result for Hölder
classes in the regression model.

Reference Fan, Zhang, and Zhang [14] provided a generic tool to construct minimax and
adaptive minimax tests: the generalized maximum likelihood, that we also use in the present
work to build our procedures both in the nonadaptive and adaptive contexts.

Our contribution

The problem considered in the present work is qualitatively different from the aforementioned
works on the minimax separation rate, since our null hypothesis is not only composite but
also semiparametric. Furthermore, it seems that the finite-dimensional parameter cannot be
uniformly consistently estimated, which contrasts with the situation of Horowitz and Spokoiny
[21].

Nethertheless, we propose a testing procedure which is consistent when the separation rate
is of order (σ2

√

log σ−1)2s/4s+1. This rate is then proven to be minimax, up to a possible
logarithmic factor. Indeed, no testing procedure is consistent for a separation rate smaller
than σ4s/4s+1, which is the rate of signal detection in the Gaussian sequence model when the
signal to be detected belongs to a Sobolev ball and the separation from 0 is measured by the
l2-norm.

Further, an adaptive test is proposed to circumvent the limitations of the nonadaptive
approach. This test is minimax rate optimal, up to a possible logarithmic factor, uniformly
over a family of Sobolev balls.

Finally, there is a gap between our lower and upper bounds for the asymptotic minimax
separation rate. It could be argued that the lower bound is suboptimal, and that the mini-
max separation rate for the shifted curve model does contain our logarithmic factor. Indeed,
the problem of testing the goodness-of-fit of the shifted curve model can be regarded as an
adaptation to the unknown shift parameter. As a matter of fact, if adaptation to the unknown
smoothness typically entails a loglog-factor, other types of adaptation can bring simple loga-
rithmic ones: it is proved in Lepski and Tsybakov [27] that the asymptotic minimax separation
rate for signal detection when the signal to be detected belongs to a Sobolev or Hölder ball and
the separation from 0 is measured by the sup-norm is (σ2

√

log σ−1)s/2s+1, while it is σ2s/2s+1
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when the separation from 0 is measured by the value of the signal at a fixed point. The log-
arithmic factor can be interpreted as a payment for the adaptation of the problem of testing
at one point when this point is unknown. Furthermore, note that the same logarithmic factor
appears in Fromont and Lévy-Leduc [15], where upper bounds on the minimax separation rate
are established in the problem of periodic signal detection with unknown period.

Organization of the paper

The rest of this paper is organized as follows: a nonadaptive procedure is proposed in Section 1,
and adjusted in Section 2 to obtain an adaptive test. We also state their minimax performances,
which Section 3 indicates to be at least nearly optimal in the minimax sense. The theorems
are proved in Sections 5 to 7, and the lemmas used in their proofs are presented in Section 8.
The model is discussed in Section 4.

1. Nonadaptive testing procedure

Here, we build a test which will be proven later to be minimax, up to a possible logarithmic
factor. Indeed, the procedure achieves the rate ρσ = (σ2

√

log σ−1)2s/4s+1.

Our proposal, which carries on the work presented in Collier and Dalalyan [10], is based on
standardized versions λσ(N) of estimators of d(c, c#):























λσ(N) = 1
4σ2

√
N
minτ

[

∑N
j=1

∣

∣Yj − e−ijτY #

j

∣

∣

2

]

−
√
N,

ψσ(N, q) = 1{
λσ(N)>q

}.

(8)

Put into words, the test ψσ(N, q) rejects the null hypothesis when the statistic λσ(N) exceeds
the threshold q and accepts it otherwise. The following theorem establishes the minimax
properties of this testing procedure for a proper choice of the tuning parameters.

Theorem 1. Set






Θ0 =
{

(c, c#) ∈ l2 × l2 | d(c, c#) = 0
}

,

Θ1 =
{

(c, c#) ∈ Fs,L ×Fs,L | d(c, c#) ≥ Cρσ

}

,
(9)

with s and L are positive real numbers, ρσ =
(

σ2
√

log σ−1
)

2s
4s+1

and C2 > 4L2c−2s
s,L +

√

256 cs,L
4s+1 ,

cs,L = (4sL2
√
4s + 1)2/4s+1. Consider the test ψσ = ψσ(N, q) defined in (8) with N =

Nσ(s, L) =
[

cs,L ρ
−1/s
σ

]

and q = qα, the quantile of order 1 − α of the standard Gaussian
distribution. Then

lim
σ→0

α(ψσ ,Θ0) ≤ α , (10)

lim
σ→0

β(ψσ ,Θ1) = 0 . (11)

Remark. In the rest of this section and in the proof, we skip the dependence of Nσ(s, L) in s
and L when no confusion is possible.
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The proof of this result is given in Section 5. Let us now develop a brief heuristic describing
how one could have guessed the optimal value of ρσ.

Heuristic for the performance of the nonadaptive procedure

Our proof will show that, under H0, λσ(Nσ) is bounded from above in probability. Thus,
we decide to reject the null hypothesis when λσ(Nσ) is larger than a constant to be chosen
properly.

On the other hand, we inspect the behaviour of the statistic under the alternative hypothesis
and give a condition on ρσ under which the test statistic is orders of magnitude larger than a
constant, so that the procedure can have the desired power.

We derive the lower bound

λσ(Nσ) ≥
1

4
√
Nσσ2

min
τ

Nσ
∑

j=1

|cj − e−ijτc#j |2 −
∣

∣

∣

Nσ
∑

j=1

|ξj |2 + |ξ#j |2 − 4

4
√
Nσ

∣

∣

∣
(12)

− 1

2
√
Nσ

max
τ

∣

∣

∣

Nσ
∑

j=1

Re
(

eijτξjξ
#

j

)

∣

∣

∣
+ negligible terms.

The proof will establish that the second term is bounded in probability, while the third,
that we call perturbative, is of order

√
logNσ. The first term, up to a 4

√
Nσσ

2 factor, is an
approximation of the square of the pseudo-distance d(c, c#). Since c and c# lie in Fs,L, the
remainder of the sum can be bounded from above, up to a constant factor, by N−2s

σ . In a
nutshell, we get the heuristical lower bound

λσ(Nσ) ≥ Cste ·
(d2(c, c#)− Cste ·N−2s

σ√
Nσσ2

−OP (
√

logNσ)
)

.

Consequently, the alternative is detected as soon as

ρ2σ ≫ max
(

σ2
√

Nσ, N
−2s
σ , σ2

√

Nσ logNσ

)

∼
(

σ2
√

log σ−1
)

4s
4s+1

.

Heuristic for the optimal constant

The previous optimization shows that the test achieves its best rate when Nσ is of the order of
ρ∗σ

−1/s. Now, denoting Nσ =
[

cρ∗σ
−1/s

]

, a similar heuristic can give an optimized constant C in
the definition of Θ1. Indeed, Lemma 6 gives the more precise lower bound (C2 − 4L2c−2s)ρ∗σ

2

for the sum in the first term, and we will prove the exact order of magnitude of the third to

be
√

256 c
4s+1 logNσ. Thus

λσ(Nσ) ≥
(

C2 − 4L2c−2s −
√

256 c

4s + 1

)

√

logNσ.

and this leads to a minimization problem determining the choice of c
(

cf. Theorem 1
)

.
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2. Adaptive testing procedure

The procedure given in the previous section possesses asymptotic minimax optimality prop-
erties thanks to an appropriate choice of the tuning parameter Nσ, but the practician needs
to determine values of s and L to implement the test. As it seems arbitrary and nonintuitive
to make assumptions on the smoothness of the signals, it is necessary in practice to use an
adaptive procedure, i.e., a procedure that does not require any precise knowledge of s and L.

In this section, we give an adaptive procedure over s ∈ [s1, s2] and L ∈ [L1, L2], and prove
that it achieves the same rate as the nonadaptive one, i.e., (σ2

√

log σ−1)2s/4s+1. Note that
the test only depends on s1 and s2, and not on L1 or L2.

Here is the idea of its construction. The nonadaptive testing procedure proposed above
depends on s only via the tuning parameter Nσ(s). Using a Bonferroni procedure like in
Gayraud and Pouet [18] or Horowitz and Spokoiny [21], we consider the maximum of these
tests for several values of Nσ(s). However, the set N (s1, s2) of these parameters has to be
chosen properly. Indeed, it is not necessary to consider a maximum over every possible Nσ(s),
we only need to consider a smaller set of parameters of logarithmic size (which will be justified
by Lemma 6). For every s2 > s1 > 0, define























Σ(s1, s2) =
{

s1 +
j

logσ−1 | j ≥ 0, s1 +
j

log σ−1 ≤ s2

}

,

N (s1, s2) =
{

Nσ(s) | s ∈ Σ(s1, s2)
}

.

(13)

Theorem 2. Set






Θ0 =
{

(c, c#) ∈ l2 × l2 | d(c, c#) = 0
}

,

Θs,L
1 =

{

(c, c#) ∈ Fs,L ×Fs,L | d(c, c#) ≥ Cρσ(s)
}

,
(14)

with C > 0, ρσ(s) = rσρ
∗
σ(s), ρ

∗
σ(s) =

(

σ2
√

log σ−1
)

2s
4s+1 , rσ → +∞.

Consider the test ψ̃σ = maxN ψσ
(

N,
√

2 log log σ−1
)

where the maximum is taken over all

N in N (s1, s2) as defined in (13) with ∀ s ∈ [s1, s2], Nσ(s) =
[

ρ∗σ(s)
−1/s

]

. Then, for all finite
intervals [s1, s2] and [L1, L2] included in R

+
∗ ,

lim
σ→0

α
(

ψ̃σ,Θ0

)

= 0, (15)

lim
σ→0

sup
[L1,L2]

sup
[s1,s2]

β
(

ψ̃σ,Θ
s,L
1

)

= 0, (16)

Heuristic for the performance of the adaptive procedure

Here we explain why our adaptive procedure achieves the same rate as the nonadaptive one.
The heuristic of the previous section roughly holds, with this difference that maxN λσ(N) is of
loglog-order under the null hypothesis. But this term is negligible in view of the perturbative
term, so that the performances of the test do not deteriorate in the adaptive problem.
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O. Collier/Minimax hypothesis testing for curve registration 9

3. Lower bound for the minimax rate

After stating the performance of our tests, we proove in this section that they are at least
nearly rate optimal. Indeed, we are able to establish a lower bound for our model, by proving
that the detection of a signal lying in a Sobolev ball when the separation from 0 is measured
by the l2-norm

(

cf. (17) for a precise definition
)

is simpler than ours, in the sense that every
lower bound result for this model is adaptable for our purpose.

Let us first introduce the classical signal detection problem, for which the minimax separa-
tion rate, and even the exact separation constants, are known:































Yj = cj + σξj , j = 1, 2, . . . ,

Θclas

0 = {0},

Θclas

1 =
{

c ∈ Fs,L
∣

∣ ‖c‖2 ≥ Cρσ

}

.

(17)

For this model, we define the errors of first and second kind of a test ψclass by

{

αclass(ψclass,Θclass
0 ) = supΘclass

0
Ec

(

ψ
)

,

βclass(ψclass,Θclass
1 ) = supΘclass

1
Ec

(

1− ψ
)

,
(18)

where we denote Pc the probability engendered by Y = (Y1, Y2, . . .) when (c1, c2, . . .) = c.

Theorem 3. Given the two models exposed in (1) and (17), we have

inf
ψα

β(ψα,Θ1) ≥ inf
ψclass
α

βclass(ψclass

α ,Θclass

1 ) , (19)

where the infima are taken over all tests of level α respectively for our model and for the
classical one.

Thus, our model can benefit from every lower bound result on model (17). We choose
to exploit the nonasymptotic results presented in Baraud [1], Proposition 3. The following
theorem shows that the asymptotic minimax separation rate for our problem is not smaller
than σ4s/4s+1.

Corollary. Let α and β be in ]0, 1]. Define η = 2(1 − α − β), L = log(1 + η2) and ρ2 =
supd≥1

[
√
2Ldσ2 ∧ L2d−2s

]

. Then

ρσ ≤ ρ ⇒ inf
ψα
β
(

ψα,Θ1

)

≥ β, (20)

where the infimum is taken over all tests of level α for the shifted curve model.

Remark. We can approximate ρ by computing

sup
x∈R+

[
√
2Lxσ2 ∧ L2x−2s

]

= L
1

4s+1
(

σ2
√
2L

)
2s

2s+1 .

Remark. Our proof shows that every lower bound result for adaptive testing could be used for
our purpose as well.
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O. Collier/Minimax hypothesis testing for curve registration 10

4. Discussion

Model

The choice of our model was inspired by practical considerations, and we consider applying it
to a problem in computer vision. Accordingly, it is necessary to justify the realism of model
(1).

Variance

First of all, we assumed that the common variance is known, which is not satisfied in practice.
Nethertheless, a consistent estimator for the Gaussian sequence model can be computed. Then,
we can plug the estimator of the common variance in the expressions of the test statistics, as
done in Gayraud and Pouet [17] for example.

Symmetry of the model

In our modelisation, the two parts corresponding in the Gaussian white noise model to two
different functions are treated symmetrically: the same model, with the same variance and
the same noise, applies to both. But, in applications, the signals that we want to match with
each other are thought to have the same nature. On the other hand, as we can compute
an estimator of the variance in the Gaussian sequence model, we are free to normalize the
equations of model (1) to get the same variance for both parts.

Gaussian sequence model

Our choice of the Gaussian sequence model is not restrictive, since this model is equivalent
in Le Cam’s sense to many other models, including Gaussian white noise, density estimation
(cf. Nussbaum [29]), nonparametric regression (cf. Brown and Low [8], in the case of random
design in Reiß [31], in the case of nonGaussian noise in Grama and Nussbaum [19] and Grama
and Nussbaum [20]), ergodic diffusion (cf. Dalalyan and Reiß [11]). On the other hand, the
Gaussian noise is accepted in computer vision as a good approximation of the Poisson noise,
that is more natural in this context.

Weighted estimator

In Collier and Dalalyan [10], another estimator of d2(c, c#) is used, stemming from a penaliza-
tion of the log-likelihood ratio. This could be adapted in our context by considering the test
statistic

λwσ =
1

4σ2
√
Nσ

min
τ

[

+∞
∑

j=1

wj
∣

∣Yj − e−ijτY #

j

∣

∣

2

]

− ‖w‖2, (21)

where w = (w1, w2, . . .) is a sequence of real numbers in [0, 1] depending on σ. Under some con-
ditions on w, our study would undergo only few modifications, and only the optimal constants
would be changed. For simplicity sake, we chose not to consider the weighted estimator.
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O. Collier/Minimax hypothesis testing for curve registration 11

Nonasymptotic approach

The statement of our results concerning the performance of both the nonadaptive and adaptive
testing procedure are asymptotic: the first and second kind errors are asymptotically bounded
by some prescribed levels, and no precision is given about the convergence speed. For the
practician, nonasymptotic results are preferable, since real studies consider finite samples of
observations. Nethertheless, the proofs of Theorems 1 and 2 use only nonasymptotic upper
bounds, and nonasymptotic statements can be derived.

5. Proof of Theorem 1

5.1. First kind error

Here, we prove that the asymptotic first kind error of the test ψσ does not exceed the prescribed
level α. To this end, denote τ∗ a real number such that, under H0, ∀j ≥ 1, c#j = eijτ

∗

cj. We
skip the dependence of τ∗ on c and c#. Using the inequality

min
τ

Nσ
∑

j=1

∣

∣Yj − e−ijτY #

j

∣

∣

2 ≤
Nσ
∑

j=1

∣

∣Yj − e−ijτ∗Y #

j

∣

∣

2
= σ2

Nσ
∑

j=1

∣

∣ξj − e−ijτ∗ξ#j
∣

∣

2
,

we get

α(ψσ ,Θ0) = sup
Θ0

P
c,c#

( 1

4σ2
√
Nσ

min
τ

Nσ
∑

j=1

∣

∣Yj − e−ijτY #

j

∣

∣

2 −
√

Nσ > qα

)

≤ P

( 1

4
√
Nσ

Nσ
∑

j=1

(

η2j + η̃2j − 4
)

> qα

)

, where ηj , η̃j
iid∼ N (0, 2).

Finally, using Berry-Esseen’s inequality (cf. Theorem 5), we get

α(ψσ ,Θ0) ≤ α+
1√

2πNσ
,

and this gives the desired asymptotic level.

5.2. Second kind error

It remains to study the second kind error of the test, and to show that it tends to 0. Our proof
is based on the heuristic given earlier in Section 1: we decompose λσ(Nσ) into several terms,
and make use of their respective orders of magnitude. The decomposition gives

λσ(Nσ) ≥ min
τ

{

Nσ
∑

j=1

|cj − e−ijτc#j |2 + 2σ
Nσ
∑

j=1

Re
(

(cj − e−ijτc#j )(ξj − e−ijτξ#j )
)

}

(22)

− σ2
√

Nσ

∣

∣

∣

Nσ
∑

j=1

|ξj|2 + |ξ#j |2 − 4
√
Nσ

∣

∣

∣
− 2σ2 max

τ

∣

∣

∣

Nσ
∑

j=1

Re
(

eijτξjξ#j
)

∣

∣

∣
.
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O. Collier/Minimax hypothesis testing for curve registration 12

For simplicity sake, we introduce some notation:











































Dσ(c, c
#) = minτ

{

∑Nσ

j=1 |cj − e−ijτc#j |2 + 2σ
∑Nσ

j=1Re
(

(cj − e−ijτc#j )(ξj − e−ijτξ#j )
)

}

,

Aσ =
∣

∣

∣

∑Nσ

j=1

|ξj |2+|ξ#j |2−4√
Nσ

∣

∣

∣
,

Bσ = maxτ

∣

∣

∣

∑Nσ

j=1Re
(

eijτξjξ#j
)

∣

∣

∣
,

which, combined with (22), leads to:

β(ψσ ,Θ1) ≤ sup
Θ1

P
c,c#

(

Dσ(c, c
#)− σ2

√

NσAσ − 2σ2Bσ ≤ 4qασ
2
√

Nσ

)

.

In addition to cs,L, introduced in the definition of Nσ, we will need the constant c′ and ǫ,
defined as







c′ =
√

256 cs,L
4s+1 ,

ǫ = 1
2

(

C2 − 4L2c−2s
s,L −

√

256 cs,L
4s+1

)

.

Separating the different terms to study them independently, we write

β(ψσ,Θ1) ≤ sup
Θ1

P
c,c#

(

Dσ(c, c
#) ≤ (c′ + ǫ+

4qα
√
cs,L

√

log σ−1
)ρ2σ

)

+P

(

σ2
√

NσAσ > ǫρ2σ

)

+P

(

2σ2Bσ > c′ρ2σ

)

.

• Let us first study supΘ1
P

c,c#

(

Dσ(c, c
#) ≤ (c′ + ǫ+

4qα
√
cs,L√

log σ−1
)ρ2σ

)

, which contains the dom-

inant term when ρσ is too large.

Denoting δ =
√

C2 − 4L2c−2s
s,L , Lemma 1 allows to apply Lemma 2 with x0 = δρσ and

M = (c′ + ǫ+
4qα

√
cs,L√

log σ−1
)ρ2σ. The choice of the parameters yields for σ small enough

(δ

4
− c′ + ǫ

4δ
−

4qα
√
cs,L

δ
√

log σ−1

)

ρσ > 0 ,

so that the second part of Lemma 2 holds:

sup
Θ1

P
c,c#

(

Dσ(c, c
#) ≤ (c′ + ǫ+

4qα
√
cs,L

√

log σ−1
)ρ2σ

)

≤ 2

(

1 + δ−1Lρ−1
σ max{1, N1−s

σ }
)[

exp
{

−
(

δ2 − c′ − ǫ−
4qα

√
cs,L

√

log σ−1

)2 ρ2σ
32δ2σ2

}

+ exp
{

− ρ2σδ
2

8σ2

}

]

→ 0.

imsart-generic ver. 2011/05/20 file: 1OChal.tex date: September 6, 2011



O. Collier/Minimax hypothesis testing for curve registration 13

• Let us now turn to P

(

σ2
√
NσAσ > ǫρ2σ

)

. Prior to using Berry-Esseen’s inequality (cf.

Theorem 5), we derive ǫρ2σ
4σ2

√
Nσ

≥ ǫ
4
√
c

√

log σ−1, so that

P

(

σ2
√

NσAσ > ǫρ2σ

)

≤
√

2

πNσ
+

√

32c

πǫ2
σ

ǫ2

32c

√

log σ−1
→ 0.

• Finally, it remains to control P

(

2σ2Bσ > c′ρ2σ

)

. We apply Lemma 3:

P

(

2σ2Bσ > c′ρ2σ

)

≤ 2c(log σ−1)
−1

4s+1σ
c′2

64c
− 4

4s+1 + e−Nσ/2

≤ 2c(log σ−1)
−1

4s+1 + e−Nσ/2 → 0.

6. Proof of Theorem 2

6.1. First kind error

Here, we prove that the first kind error of the test ψ̃σ converges to 0. To this end, denote τ∗

a real number such that, under H0, ∀j ≥ 1, c#j = eijτ
∗

cj . We skip the dependence of τ∗ on c

and c#. Using the inequality

min
τ

Nσ
∑

j=1

∣

∣Yj − e−ijτY #

j

∣

∣

2 ≤
Nσ
∑

j=1

∣

∣Yj − e−ijτ∗Y #

j

∣

∣

2
= σ2

Nσ
∑

j=1

∣

∣ξj − e−ijτ∗ξ#j
∣

∣

2
,

we get

α
(

ψ̃σ ,Θ0

)

≤
∑

N∈N
P

(

1

4
√
N

N
∑

j=1

(η2j + η̃2j − 4) >
√

2 log log σ−1

)

, where ηj , η̃j
iid∼ N (0, 2).

Thus, using Berry-Esseen’s inequality (cf. Theorem 5),

α
(

ψ̃σ,Θ0

)

≤
∑

N∈N (s1,s2)

{ 1√
2πN

+
exp(− log log σ−1)
√

4π log log σ−1

}

≤ 1√
2π

CardN (s1, s2)
√

Nσ(s2)
+

1√
4π

CardN (s1, s2)

log σ−1
√

log log σ−1
.

As CardN (s1, s2) = 1 +
[

(s2 − s1) log σ
−1

]

is of logarithmic order, this implies that

α
(

ψ̃σ,Θ0

)

→ 0.

6.2. Second kind error

Finally, we study the second kind error and prove that it converges to 0.
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O. Collier/Minimax hypothesis testing for curve registration 14

For s ∈ [s1, s2], define S = max
{

t ∈ Σ | t ≤ s
}

, where we omit the dependence of S in s
for simplicity sake. Note that 0 ≤ s − S ≤ 1

log σ−1 . S is an approximation of s which will be
sufficient for our purpose according to Lemma 6.

We introduce the notation










































Ds
σ(c, c

#) = minτ

{

∑Nσ(s)
j=1 |cj − e−ijτc#j |2 + 2σ

∑Nσ(s)
j=1 Re

(

(cj − e−ijτc#j )(ξj − e−ijτξ#j )
)

}

,

Asσ =
∣

∣

∣

∑Nσ(s)
j=1

|ξj |2+|ξ#j |2−4√
Nσ(s)

∣

∣

∣
,

Bs
σ = maxτ

∣

∣

∣

∑Nσ(s)
j=1 Re

(

eijτξjξ#j
)

∣

∣

∣
.

and computations similar to those of the previous section yield

sup
[L1,L2]

sup
[s1,s2]

β(ψ̃σ ,Θ
s,L
1 ) ≤ sup

s,L
sup
Θs,L

1

P
c,c#

(

DS
σ (c, c

#) ≤ σ2
√

32Nσ(S) log log σ−1 +
C

2
ρ2σ(S)

)

+
∑

s∈Σ
P

(

σ2
√

Nσ(s)A
s
σ >

C

4
ρ2σ(s)

)

+
∑

s∈Σ
P

(

2σ2Bs
σ >

C

4
ρ2σ(s)

)

.

• Let us study sups,L supΘs,L
1

P
c,c#

(

DS
σ (c, c

#) ≤ σ2
√

32Nσ(S) log log σ−1 + C
2 ρ

2
σ(S)

)

.

Lemma 6 implies
(

Nσ(S) + 1
)−2s ≤ ρ∗σ(S)

2 ≤ e
8

(4s1+1)2 ρ∗σ(s)
2,

so that, denoting δ2 = C2r2σ − 4L2e
8

(4s1+1)2 , Lemma 1 allows to apply Lemma 2 with x0 =
δρ∗σ(s) and M = σ2

√

32Nσ(S) log log σ−1 + C
2 ρ

2
σ(s). On the other hand, the convergence of

rσ to +∞ and the choice of δ entail that for σ small enough

∀ s ∈ [s1, s2],
(δ

4
− Cr2σ

8δ

)

ρ∗σ(s)−
σ2

√

2Nσ(S) log log σ−1

δρ∗σ(s)
> 0.

Hence, applying the second part of Lemma 5, we get an inequality where the right-hand
side converges to 0 as σ tends to 0:

sup
s

sup
Θs,L

1

P
c,c#

(

DS
σ (c, c

#) ≤ σ2
√

32Nσ(S) log log σ−1 +
C

2
ρ2σ(S)

)

≤ 2

(

1 + δ−1Lρσ(s2)
−1 max{1, Nσ(s1)

1−s}
)

×
[

exp
{

−
(

(δ2 − C

2
)ρ2σ(s1)−

√

32Nσ(s1) log log σ−1
)2
/32δ2σ2

}

+ exp
{

− ρ2σ(s2)δ
2

8σ2

}

]

.

• Consider the second term. Berry-Esseen’s theorem (cf. Theorem 5) implies the following
inequality, where the right-hand side converges to 0 as σ tends to 0:

∑

s∈Σ
P

(

σ2
√

Nσ(s)A
s
σ >

C

4
ρ2σ(s)

)

≤ CardN (s1, s2) ·
[

√

2

πNσ(s2)
+

√

128

πCr2σ

σ
Cr2σ
128

√

log σ−1

]

.
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O. Collier/Minimax hypothesis testing for curve registration 15

• Let us turn to the third term. We apply Lemma 3 and get an inequality where once again
the right-hand side converges to 0 as σ tends to 0:

∑

s∈Σ
P

(

2σ2Bs
σ >

C

4
ρ2σ(s)

)

≤ CardN (s1, s2) ·
[

2(log σ−1)
−1

4s2+1σ
C2r4σ
1024

− 4
4s1+1 + e−Nσ/2

]

.

7. Proof of Theorem 3

Consider a randomized test ψ in the shifted curve model. We will define a corresponding test
in the classical model with smaller first and second kind errors, and it is sufficent to establish
the result.

First note that there is a measurable function f with respect to the σ-algebra engendered
by the sequences Y and Y # and with values in [0, 1] such that ψ = f(Y ,Y #). Denoting
ǫ a sequence of i.i.d random variables N (0, σ2) independent from Y , we define ψclass =
Eǫ

(

f(Y , ǫ)|Y
)

, where Eǫ is the integration with respect to the probability engendered by ǫ.
ψclass is σ(Y )-measurable and thus constitutes a test for the classical model.

This testing procedure can be interpreted as a test in the shifted curve model when c# = 0.
Indeed, d(c, c#) = ‖c‖2 when c# = 0, so that Θclass

0 × 0 ⊆ Θ0 and Θclass
1 × 0 ⊆ Θ1. By

Tonelli-Fubini’s theorem, ψclass satisfies

αclass(ψclass,Θclass

0 ) = sup
Θclass

0

Ec

(

ψclass
)

= sup
Θclass

0

Ec,0

(

f(Y ,Y #)
)

≤ α(ψ,Θ0).

A similar inequality holds concerning the second kind error.

8. Lemmas

Lemma 1. Let c = (c1, c2, . . .) and c̃ = (c̃1, c̃2, . . .) in Fs,L, with s > 0, be such that d(c, c̃) ≥
Cρ, and let N + 1 ≥ cρ−1/s. Then

min
τ

N
∑

j=1

|cj − e−ijτ c̃j |2 ≥ (C2 − 4L2c−2s)ρ2.

Proof of Lemma 1. Since both c and c̃ belong to the Sobolev ball, it holds that

∑

j>N

|cj − e−ijτ c̃j |2 ≤
∑

j>N

(

2|cj |2 + 2|c̃j |2
)

≤ 2(N + 1)−2s
∑

j>N

j2s
(

|cj |2 + |c̃j |2
)

≤ 4L2(N + 1)−2s.
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O. Collier/Minimax hypothesis testing for curve registration 16

Consequently, taking into account that
∑∞

j=1 |cj − e−ijτ c̃j |2 ≥ d2(c, c̃) ≥ C2ρ2, we get

N
∑

j=1

|cj − e−ijτ c̃j |2 =
∞
∑

j=1

|cj − e−ijτ c̃j |2 −
∑

j>N

|cj − e−ijτ c̃j|2

≥ C2ρ2 − 4L2(N + 1)−2s,

and the result follows in view of N + 1 ≥ cρ−1/s.

Lemma 2. Let N be some positive integer, let ξj, ξ̃j , j = 1, . . . , N be independent complex
valued random variables such that their real and imaginary parts are independent standard
Gaussian variables, and let c = (c1, . . . , cN ), c̃ = (c̃1, . . . , c̃N ) be complex vectors. Denote
ξ = (ξ1, . . . , ξN ), ξ̃ = (ξ̃1, . . . , ξ̃N ) and



















Dσ,N (c, c̃) = minτ

{

∑N
j=1 |cj − e−ijτ c̃j |2 + 2σ

∑N
j=1Re

(

(cj − e−ijτ c̃j)(ξj − e−ijτ ξ̃j)
)

}

,

dN,τ (c, c̃) =
√

∑N
j=1

∣

∣cj − e−ijτ c̃j
∣

∣

2
,

uN (ξ, c, c̃) = supτ

∣

∣

∣

∑N
j=1

Re
[

ξj(cj−e−ijτ c̃j)
]

dN,τ (c,c̃)

∣

∣

∣
.

Assume that x0 ≤ minτ dN,τ (c, c̃), then

∀M ∈ R, P

(

Dσ(c, c̃) ≤M

)

≤ 2P

(

σuN (ξ, c, c̃) ≥
x0
4

− M

4x0

)

+ 2P

(

x0
2
< σuN (ξ, c, c̃)

)

.

Assume further that c and c̃ are in Fs,L and that x0
4 − M

4x0
> 0, then combining the last result

with Lemma 5,

P

(

Dσ(c, c̃) ≤M

)

≤ 2
(

1+x−1
0 L max{1, N1−s}

)(

exp
{

−(x20−M)2/32x20σ
2
}

+exp
{

−x20/8σ2
}

)

.

Proof of Lemma 2.

N
∑

j=1

∣

∣cj − e−ijτ c̃j
∣

∣

2
+ 2σ

N
∑

j=1

Re
(

(cj − e−ijτ c̃j)(ξj − e−ijτ ξ̃j)
)

≥ d2N,τ (c, c̃)− 2σdN,τ (c, c̃) sup
τ

∣

∣

∣

N
∑

j=1

Re
[

ξj(cj − e−ijτ c̃j)
]

dN,τ (c, c̃)

∣

∣

∣

− 2σdN,τ (c, c̃) sup
τ

∣

∣

∣

N
∑

j=1

Re
[

ξ̃j(eijτcj − c̃j)
]

dN,τ (c, c̃)

∣

∣

∣
.

With the notation uN (ξ, c, c̃) = supτ

∣

∣

∣

∑N
j=1

Re
[

ξj(cj−e−ijτ c̃j)
]

dN,τ (c,c̃)

∣

∣

∣
, we obtain

Dσ(c, c̃) ≥ min
x≥x0

(x2 − ax),
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with a = 2σuN (ξ, c, c̃) + 2σuN (ξ̃, c̃, c). Now, using the fact that minx≥x0(x
2 − ax) is reached

at the point x0 if x0 ≥ a
2 , we get

P

(

Dσ(c, c̃) ≤M

)

≤ P

(

x20 − 2x0σuN (ξ, c, c̃)− 2x0σuN (ξ̃, c̃, c) ≤M

)

+P

(

x0 < σuN (ξ, c, c̃) + σuN (ξ̃, c̃, c))

)

≤ 2P

(

σuN (ξ, c, c̃) ≥
x0
4

− M

4x0

)

+ 2P

(

x0
2
< σuN (ξ, c, c̃)

)

,

since uN (ξ, c, c̃) and uN (ξ̃, c̃, c) have the same distribution.

Lemma 3. Let ξj, ξ̃j be independent complex valued random variables such that their real and
imaginary parts are independent standard Gaussian variables, let c, s and σ be some positive
real numbers. Denote















ρσ = (σ2
√

log σ−1)
2s

4s+1 ,

Nσ = [cρ
−1/s
σ ],

B = maxτ

∣

∣

∣

∑Nσ

j=1Re
(

eijτξj ξ̃j
)

∣

∣

∣
.

Then, for σ small enough,

P

(

2σ2Bσ > c′ρ2σ

)

≤ 2c(log σ−1)
−1

4s+1σ
c′2

64c
− 4

4s+1 + e−Nσ/2.

Proof of Lemma 3. Applying Lemma 2, we state that, for σ small enough,

P

(

Bσ > 4x
√

Nσ log(σ−1)
)

≤ 2c(log σ−1)
−1

4s+1σx
2− 4

4s+1 + e−Nσ/2,

from which follows that

P

(

Bσ > 4xρ−1/2s
σ

√

c log(σ−1)
)

≤ 2c(log σ−1)
−1

4s+1σx
2− 4

4s+1 + e−Nσ/2.

We conclude, observing that 4xρ
−1/2s
σ

√

c log(σ−1) = 8xρ2σ
√
c

2σ2
.

Lemma 4. Let N be some positive integer and let ξj, ξ̃j, j = 1, . . . , N , be independent
complex valued random variables such that their real and imaginary parts are independent
standard Gaussian variables. Let u = (u1, . . . , uN ) be a vector of real numbers. Denote S(t) =
∑N

j=1 uj Re
(

eijtξj ξ̃j
)

for every t in [0, 2π] and ‖S‖∞ = supt∈[0,2π] |S(t)|. Then

∀x, y > 0, P

(

‖S‖∞ >
√
2x

(

‖u‖2 + y‖u‖∞
)

)

≤ (N + 1)e−x
2/2 + e−y

2/2.

Proof of Lemma 4. We refer to Collier and Dalalyan [10], Lemma 3, for a proof of this lemma.
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Lemma 5. Let c = (c1, c2, . . .) and c̃ = (c̃1, c̃2, . . .) in Fs,L with s > 0 and let N be an integer.

Denoting ηj , η̃j
iid∼ N (0, 1), we define S(t) =

∑N
j=1

ηj Re(cj−e−ijt c̃j)+η̃j Im(cj−e−ijtc̃j)
√

∑N
j=1

∣

∣cj−e−ijtc̃j

∣

∣

2
for every t

in [0, 2π]. Then

P

(

‖S‖∞ ≥ x

)

≤
( L ·max{1, N1−s

σ }
√

minτ
∑N

j=1 |cj − e−ijτ c̃j |2
+ 1

)

e−
x2

2 .

First recall Berman’s formula, that we will need in the proof.

Theorem 4 (Berman [4]). Let N be a positive integer, a < b some real numbers and gj ,

j = 1, . . . , N be continuously differentiable functions on [a, b] satisfying
∑N

j=1 gj(t)
2 = 1 for

all t ∈ R and j ∈ [1, N ], and ηj , j = 1, . . . , N , some independent standard Gaussian variables.
Then

P

(

sup
[a,b]

N
∑

j=1

gj(t)ηj ≥ x

)

≤ I

2π
e−

x2

2 +

∫ ∞

x

e−
t2

2√
2π

dt with I =

∫ b

a

[ n
∑

j=1

g′j(t)
2

]1/2

dt.

Proof of Lemma 5. Denote











fj(t) =
Re(cj−e−ijtc̃j)

√

∑Nσ
k=1 |ck−e−iktc̃k|2

,

gj(t) =
Im(cj−e−ijt c̃j)

√

∑Nσ
k=1 |ck−e−iktc̃k|2

.

We compute the derivatives of these functions:

f ′j(t) =
− Im(je−ijtc̃j)

√

∑Nσ

k=1 |ck − e−iktc̃k|2
+

Re(cj − e−ijtc̃j)
(

∑Nσ

k=1 |ck − e−iktc̃k|2
)

3
2

Nσ
∑

k=1

Im(kck c̃ke
−ikt)

and g′j(t) =
Re(je−ijtc̃j)

√

∑Nσ

k=1 |ck − e−iktc̃k|2
+

Im(cj − e−ijtc̃j)
(

∑Nσ

k=1 |ck − e−iktc̃k|2
)

3
2

Nσ
∑

k=1

Im(kck c̃ke
−ikt),

whence

Nσ
∑

j=1

(

f ′j(t)
2 + g′j(t)

2
)

=

∑Nσ

j=1 j
2|c̃j |2

∑Nσ

k=1 |ck − e−iktc̃k|2
−

(∑Nσ

k=1 Im(kck c̃ke
−ikt)

∑Nσ

k=1 |ck − e−iktc̃k|2

)2

≤ L2max{1, N2−2s
σ }

mint
∑Nσ

k=1 |ck − e−iktc̃k|2

The conclusion follows from Berman’s formula.

Lemma 6. Let σ be a positive real number and s, S in [s1, s2] ⊆ R
+
∗ be such that 0 ≤ s−S ≤

1
log σ−1 . Denote ρ∗σ(s) =

(

σ2
√

log σ−1
)

2s
4s+1

, then, for σ small enough,

ρ∗σ(S)
ρ∗σ(s)

≤ e
4

(4s1+1)2 .
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Proof of Lemma 6. By the definition of ρ∗σ(s), we have

ρ∗σ(S)
ρ∗σ(s)

=
(

σ2
√

log(σ−1)
)

2(S−s)
(4s+1)(4S+1)

,

which, when σ is so small that σ2
√

log σ−1 ≤ 1, leads, with the hypothesis on s and S,

ρ∗σ(S)
ρ∗σ(s)

≤
(

σ2
√

log(σ−1)
)

−2
(4s1+1)2 log σ−1

.

Then, we compute

(

σ2
√

log(σ−1)
)

−2
(4s1+1)2 log σ−1

= exp
{ −2

(4s1 + 1)2 log σ−1
(2 log σ +

1

2
log log σ−1)

}

= exp
{ 4

(4s1 + 1)2
(1− log log σ−1

4 log σ−1
)
}

≤ e
4

(4s1+1)2 ,

and this concludes the proof.

Finally, we recall here Berry-Esseen’s inequality, in a simpler version than Theorem 5.4 of
Petrov [30].

Theorem 5 (Berry-Esseen’s inequality). Let N be a positive integer and X1, . . . ,XN
iid∼ X be

such that E(X) = 0,Var(X) = γ2,E|X|3 = m3 < +∞. Denote FN (x) = P

(

1√
Nγ

∑N
j=1Xj <

x
)

and Φ the distribution function of the standard Gaussian variable. Then

sup
x

|FN (x)− Φ(x)| ≤ Am3

γ3
1√
N
,

for an absolute constant number A. Moreover, in the case when X has a centered Gaussian
distribution, and using the majoration A ≤ 1

2 ,

sup
x

|FN (x)− Φ(x)| ≤ 1√
2πN

.
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