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Periodic Finite-Type Shift Spaces
Marie-Pierre B́eal, Member, IEEE, Maxime Crochemore,Member, IEEE,

Bruce E. Moision,Member, IEEE, and Paul H. Siegel,Fellow, IEEE

Abstract— We study the class of periodic finite-type (PFT) shift
spaces, which can be used to model time-varying constrained
codes used in digital magnetic recording systems. A PFT shift is
determined by a finite list of periodically forbidden words. We
show that the class of PFT shifts properly contains all finite-type
(FT) shifts, and the class of almost finite-type (AFT) shifts prop-
erly contains all PFT shifts. We establish several basic properties
of PFT shift spaces of a given periodT, and provide a charac-
terization of such a shift in terms of properties of its Shannon
cover (i.e., its unique minimal, deterministic, irreducible graph
presentation). We present an algorithm that, given the Shannon
cover G of an irreducible sofic shift X, decides whether or not
X is PFT in time that is quadratic in the number of states of
G. From any periodic irreducible presentation of a given period,
we define a periodic forbidden list, unique up to conjugacy for
that period, that satisfies certain minimality properties. We show
that an irreducible sofic shift is PFT if and only if the list corre-
sponding to its Shannon coverG and its period is finite. Finally,
we discuss methods for computing the capacity of a PFT shift
from a periodic forbidden list, either by construction of a corre-
sponding graph or in a combinatorial manner directly from the
list itself.

Index Terms— Shift spaces, sofic system, constrained code,
finite-type, capacity of constrained system, periodic constraint.

I. I NTRODUCTION

D IGITAL data storage systems based upon magnetic and
optical recording typically use constrained modulation

codes designed to efficiently avoid sequences that are prob-
lematic to data recording and retrieval [1].

The family of (d, k)-constrained run-length limited (RLL)
codes over the binary alphabet{0, 1} is a well known exam-
ple. The code sequences satisfy the constraint that the number
of 0s between consecutive 1s in a sequence is at leastd and
no more thank. Their purpose is to aid in timing recovery and
to limit intersymbol interference. The(d, k)-RLL constraint is
characterized by a finite list of forbidden words. For example,
the (1, 3)-RLL sequences are precisely those in which neither
of the words{11, 0000} appears. Such constraints are called
finite-type (FT).

Another widely used family of codes are thec-charge con-
strained codes over the bipolar alphabet{±1}. Here, the code
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sequences limit the running-digital-sums of subsequencesto a
range ofc > 2 consecutive integer values. These codes, of-
ten calleddc-free, ensure that the average power spectral den-
sity of code sequences vanishes at zero frequency. In contrast
to the (d, k)-RLL constraint, thec-charge constraint cannot
be characterized by a finite list of forbidden words. However,
these constraints can be specified by a countably infinite setof
forbidden words. They are representative of constraints called
almost finite-type (AFT).

During the past decade, advances in digital recording have
led to the introduction of constrained codes that are described
by time-varying constraints. An important example is the fam-
ily of Time-varying Maximum Transition Run codes with pa-
rameters( j, j + 1), denoted TMTR(j, j + 1). These codes con-
strain the run-lengths of 1s to be at mostj starting at odd
time indices andj + 1 beginning at even time indices [2],
[3], [4], [5]. These codes were developed for systems employ-
ing higher-order partial-response equalization and maximum-
likelihood sequence detection. For selected partial-response
target channels, they aredistance-enhancingcodes; that is,
they eliminate bit patterns occurring in the dominant error
events of the target-matched sequence detector [6], [7], [8]. Re-
cently, generalized TMTR codes, which limit maximum run-
lengths of 1s beginning at more than two phases, have also
been studied [9].

Time-varying constraints also arise in the context of con-
strained codes with unconstrained positions, introduced in [10]
and further studied in [11], [12], [13]. These codes permit
the insertion of parity bits generated by a systematic error-
correcting code into specified bit locations in a constrained
code sequence, thereby efficiently combining the modulation
and error correction functions of the two codes.

In general, these time-varying constraints are not FT, but
they all have the property that they can be specified by a finite
list of periodically forbidden words. The study of such time-
varying constrained systems was initiated in [14], [15], where
they were calledperiodic finite-type (PFT). The purpose of
this paper is to present a detailed analysis of their properties.

Section II reviews necessary concepts, terminology, and no-
tation for use in the rest of the paper.

In Section III, we formulate the definition of PFT constraints
in terms of shift spaces, and address their characteristicswithin
the framework of symbolic dynamics. We study basic prop-
erties of PFT shifts that are characterized by a finite periodic
list of forbidden words for a given periodT. We refer to such
shifts as PFT(T) shifts, and we say that a shift is PFT if, for
some periodT > 0, it is PFT(T). We show that PFT shifts
are sofic, and we demonstrate that the family of PFT shifts
properly contains the family of FT shifts and is properly con-
tained within the family of AFT shifts [16]. We also explore
the periodsT for which a PFT shift can be PFT(T).

Section IV gives several characterizations of an irreducible
PFT shift in terms of its graph presentations. In particular,
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we give a necessary and sufficient condition for an irreducible
sofic shift to be a PFT(T) shift, based upon properties of its
Shannon cover (i.e., its unique minimal, deterministic, irre-
ducible graph presentation) [17]. This leads to an algorithm
that, when presented with the Shannon coverG of an irre-
ducible sofic shift, decides in time quadratic in the number of
states ofG if the shift is PFT.

In Section V, we study periodic forbidden lists that offer a
concise description of a PFT shift. From an irreducible pre-
sentation with periodT, we derive a periodic forbidden list
that satisfies a minimality property for the chosen periodT.
We prove that the list, up to a permutation of the time indices,
is unique and independent of the choice of the presentation
with periodT. The notion of minimality, as well as the defini-
tion of the list, are directly inspired by the construction of the
set of first offenders of a FT shift [18], [16], so we refer to
the periodic forbidden list as the set ofperiodic first offenders
for the period. We then consider the periodic first offenders
corresponding to the Shannon cover and the period of its un-
derlying graph. We prove that an irreducible sofic shift is PFT
if and only if this list is finite.

We define the size of a periodic forbidden list to be the sum
of the lengths of its words. We prove that the minimum size
over all periodic forbidden lists for all periods is attained by a
periodic forbidden list for a period dividing the period of the
graph underlying the Shannon cover.

Finally, in Section VI we discuss methods for computing the
capacity of a PFT shift from a periodic forbidden list descrip-
tion of the shift. The conventional method for computing the
capacity of a sofic shift is based upon determining the largest
real eigenvalue of the adjacency matrix of a lossless presenta-
tion of the system. We review a number of techniques, several
of which are formulated in terms of the theory of finite au-
tomata, for constructing such a presentation from a finite list
of periodically forbidden words.

We then present a quite different method which relies upon
the Principle of Inclusion and Exclusion[19], [20] from enu-
merative combinatorics. It extends to PFT shifts the technique
presented by Pimentel and Uchôa-Filho in [21] for computing
the capacity of FT shifts from a finite list of forbidden words.
It appears to be quite effective when the size of the periodic
forbidden blocks is large compared to the number of blocks
in the list, as is the case for some TMTR constraints.

Section VII concludes the paper.

II. BACKGROUND AND TERMINOLOGY

In this section we review terminology and background re-
sults to be used in the remainder of the paper. The notation in
Sections II-A and II-B follows that found in the text by Lind
and Marcus [16], and a thorough presentation may be found
there. Section II-C contains terminology on finite automatarel-
evant to the construction procedures in Section VI-A. A more
detailed exposition on automata may be found in [22].

A. Shift Spaces

Let ΣZ denote the set of bi-infinite sequences

x = . . . x−3x−2x−1x0x1x2 . . .

whose symbols are drawn from a finite alphabetΣ,

ΣZ def
= {x|xi ∈Σ, ∀i ∈Z}.

A word or block w∈Σn, for some integern, is a finite string
of consecutive symbols. We say thatw is asubword,subblock,
or factor of the sequencex, or equivalently thatx contains
w, if w = xixi+1 . . . xi+n−1 for some indexi. We denote this
fact byw ≺i x. To conveniently specify the position of a word
within a sequence, we write

x[i, j]
def
= xixi+1 · · · x j,

where i 6 j. We sometimes writex[i] to denotexi. When
the context is clear, we will use similar concepts and notation
when x denotes a word.

Let Σ∗ be the collection of words overΣ, including the
empty word, and letΣ+ denote the subset of non-empty words
in Σ∗. The lengthof a word,|w|, is the number of symbols in
w, and we refer to a block of lengthn as ann-block Theshift
mapσ takes a sequencex to the sequencey = σ(x) with ith
coordinateyi = xi+1. The inverse of the shift map takes a
sequencey to x = σ−1(y) with ith coordinatexi = yi−1.

When speaking of a finite collection of wordsF , we say
thatF is anti-factorial or non-redundantif no word u∈F is
a factor of any wordw∈F with u 6= w.

Let F be a collection of words overΣ andX
Σ
F denote the

subset ofΣZ consisting of all bi-infinite sequences that do not
contain a word fromF . In this contextF is referred to as a
forbidden list. A shift spaceis a setX = X

Σ
F . This terminology

reflects the fact thatX is invariant under the operation of the
shift map, i.e.,σ(X) = X. A shift space is ashift of finite
type if there exists a finite setF such thatX = X

Σ
F .

Let Bn(X) denote the set of all length-n words that occur
in X. The languageof X is the collection

B(X)
def
=

∞
⋃

n=0

Bn(X),

whereB0(X) = {ǫ}, the empty word. The language of a shift
space determines the space [16, Proposition 1.3.4]. That is, a
bi-infinite sequencex belongs to the shift spaceX if and only
if all of its sub-blocks belong toB(X). ConsideringBN(X) as
an alphabet, theNth higher power codeγN : X → (BN(X))Z

is the mapping

(γN(x))[i] = x[iN,iN+N−1],

which takes a sequence fromX and breaks it into a sequence of

non-overlappingN-blocks. The image ofX underγN , XN def
=

γN(X), is the Nth higher power shiftof X.
Let X be a shift space overΣ, and letΨ : Bm+a+1(X) →

Γ be a mapping from allowed(m + a + 1)-blocks in X to
symbols in an alphabetΓ . Thesliding block codewith memory
m and anticipation a induced byΨ is the mappingψ : X →
ΓZ defined by

y = ψ(x),

where, forx∈ X,

yi = Ψ(x[i−m,i+a]).
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A sliding block codeψ : X → Y is a conjugacyfrom X
to Y if it is invertible. The shiftsX and Y are conjugateif
Y = ψ(X) andψ is a conjugacy.

B. Sofic Shifts

A labeled graphG = (G,L) consists of a graphG =
(V , E) with a finite set of statesV = V(G), a finite set of
directed edgesE = E(G) connecting the states, and alabeling
L : E → Σ that assigns a label to each edge. Each edgee is
directed, with initial state,i(e) and terminal statet(e). A path
in the graph is a finite sequence of edgesπ = e1e2 · · · eN such
thatt(e j) = i(e j+1). The initial state of a pathπ = e1e2 · · · eN

is defined asi(π) = i(e1), and the terminal state is defined as
t(π) = t(eN). A path is acycle if i(π) = t(π). The label of
π is the wordL(π) = L(e1)L(e2) . . .L(eN).

Whereas a path is finite, awalk on G is a bi-infinite se-
quence of edgesξ = · · · e−1e0e1 · · · such that t(e j) =
i(e j+1). The label of a walk is the sequence

L∞(ξ)
def
= · · · L(e−1)L(e0)L(e1) · · · .

A graph G is irreducible if for any pair of statesI, J ∈V
there exists a path withi(π) = I and t(π) = J. An irre-
ducible componentof a graphG is a maximal (with respect
to inclusion of vertices) irreducible subgraph ofG.

A vertex I ∈V is strandedif either no edges start atI or
no edges terminate atI. A graph isessentialif no vertex is
stranded.

A graph haslocal anticipation a if a is the smallest non-
negative integer such that, for eachI ∈V , all paths of length
a + 1 that start ati and have the same label start with the same
edge. Similarly, a graph haslocal memorym if m is the small-
est nonnegative integer such that, for eachI ∈V , all paths of
length m + 1 that end ati and have the same label end with
the same edge. A graph isdeterministicif it has local antici-
pation0, i.e., if edges with the same initial state have distinct
labels.

A graph is(m, a)-definiteif, given any wordw = w[−m,a],
the set of pathsπ = e−m . . . e0 . . . ea that generatew all agree
in the edgee0. If a graph is(m, a)-definite for some integersm
anda, it is said to bedefinite. An irreducible graph is definite
if and only if no two distinct cycles generate the same word.
An (m, 0)-definite graph is said to befinite-memory.

A sofic shiftXG is the set of bi-infinite sequences obtained
by reading the labels of walks onG,

XG
def
= {x |L∞(ξ) = x for someξ a walk onG}.

We say thatG is a presentationor coverof XG , or G presents
XG . A sofic shift is irreducible if it has an irreducible presen-
tation. The set of finite words generated by paths inG, denoted
S(G), is called aconstrained system, and similar terminology
is used in that context.

Let G be a deterministic graph. For any wordu∈B(XG),
we denote byτ(u) the set of terminal states of all paths with
label u. The cardinality ofτ(u) is called therank of u, which
we refer to asr(u). If r(u) = 1, then u is called asynchro-
nizing word, and it is said tofocusto the single state inτ(u).

An irreducible sofic shift isalmost-finite-type (AFT)if it
has a presentation with finite local anticipation and finite local
memory. Since every sofic shift has a deterministic presenta-
tion [16, Theorem 3.3.2], a sofic shift is AFT if and only if it
has an irreducible, deterministic presentation with finitelocal
memory.

Sofic shifts are shift spaces [16, Theorem 3.1.4]. Hence, for
every XG there exists a forbidden list,F , of words overΣ
such thatXG = X

Σ
F .

There is a unique, up to labeled graph isomorphism, deter-
ministic graph presenting an irreducible sofic shift with the
minimal number of states [16, Theorem 3.3.18]. This graph is
referred to as theShannon coverof the shift. It is also called
the Fischer cover. One can obtain the Shannon cover from
any presentation via determinizing and state-minimizing algo-
rithms, e.g., [16, pp. 92], [22, pp. 68]. A Shannon cover always
has at least one synchronizing word [17]. An irreducible sofic
shift is FT (resp. AFT) if and only if the Shannon cover is
definite (resp. has finite local memory) [17].

The follower setFG(I) of stateI in V is the collection of
labels of paths starting atI,

FG(I)
def
= {L(π)|L(π)∈B(XG) and i(π) = I}.

Note that for a graph,G,
⋃

I ∈ V(G)

FG(I) = B(XG).

The follower set of a collection of states is simply the union
of their respective follower sets. TheNth higher power graph
GN = (GN ,LN) of G is the labeled graph with underlying
graphGN and the naturally induced labelingLN . Specifically,
the vertex set isV(GN) = V(G), and there is one edgeeπ
in E(GN) from I to J with label LN(eπ ) = L(π) for each
pathπ of length N from I to J in G. The Nth higher power
graph presents theNth higher power shift,XGN = (XG)N.

For I, J ∈V , let AI J denote the number of edges fromI to
J in G. The adjacency matrixof G is the |V| × |V| matrix
AG = [AI J ].

Given a nonnegative matrixA, theperiod of state I, per(I),
is the greatest common divisor of those integersn > 1 for
which (An)I I > 0, if such integers exist. Otherwise, we define
per(I) = ∞. Theperiodper(A) of A is defined as the greatest
common divisor of the finite periods per(I), or as∞ if none
of the state periods per(I) is finite. Theperiod of a graph,
per(G), is the period of its adjacency matrix. It is the same
as the greatest common divisor of the lengths of cycles inG.
The periods of the states in an irreducible graph are equal.
For a labeled graphG = (G,L), the period ofG is defined
as per(G).

Let G be a labeled graph. Ifp is a positive integer, acoloring
of G in p colors, or ap-coloring for short, is a functionc from
V(G) to {0, 1, . . . , p− 1} such that, whenever there is an edge
from a stateI to a stateJ, c(J) = c(I) + 1 mod p. Note that
an irreducible presentation has a coloring inp colors if and
only if its period is a multiple ofp.

We say that a graphG is T-partite if the vertices ofG
may be divided intoT disjoint subsetsD0, D1, . . . , DT−1 such
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that any edge that begins inDi terminates inD(i+1) mod T.
If per(G) = T then G is T-partite, and the sets
D0, D1, . . . , DT−1 are referred to as theperiod classesof the
graph.

The T-cascadeof a graphG is the T-partite graph with
vertex set given byT copiesV0,V1, . . . ,VT−1 of the vertex set
V(G) and exactly one edgee from I ∈Vi to J ∈V(i+1) mod T

for each edgee from I to J in G. For a sofic shiftG = (G,L),
the T-cascade ofG is the shift presented by theT-cascade of
G with the natural labeling induced byL.

If G = (G,L) is irreducible with per(G) = p, then
GT = (GT ,LT) decomposes intoq = gcd(p, T) irreducible
components. Moreover, it is easy to verify that each compo-
nent has periodp/q.

C. Finite Automata

A languageoverΣ is a subsetL ⊆ Σ∗. A finite automaton
M is defined by a quadrupleM = (G ,Σ, I0, F), whereΣ
is the input alphabet, G = (V, E,L) is a finite-state labeled
graph,I0 ∈V is the initial state, andF ⊆ V is the set offinal
states. Elements ofF are acceptingstates of the automaton;
any other state is anon-acceptingstate.

An automaton isdeterministicif G is deterministic. A word
w is acceptedby automatonM = (G ,Σ, I0, F) if there exists
a pathπ on G with i(π) = I0, t(π)∈ F, andL(π) = w.
The language accepted by the automaton, L(M), is the set of
words accepted by the automaton. Aregular language (or set)
is a language accepted by a finite automaton. In a deterministic
automaton, there exists a unique path from the initial stateto
an accepting state that generates eachw∈ L(M).

There is a natural correspondence between languages of
sofic shifts and regular languages. The language of a sofic
shift is a regular language [16], [18, A.12]. However, not all
regular languages are languages of sofic shifts. In particular,
if M = (G ,Σ, I0, F), then L(M) does not necessarily equal
B(XG). Simple counter-examples may be constructed from
graphs with initial or final states that are stranded.

The graph construction algorithm in Section VI-A makes
use of the constructive proof that the class of regular languages
is closed under complementation; see, e.g., [22, Theorem 3.2].
Hence, if L is accepted by a finite automaton, then there is a
finite automaton that accepts its complement.

III. PERIODIC-FINITE-TYPE (PFT) SHIFT SPACES

In this section we formally introduce the class of periodic
finite-type (PFT) shift spaces and study their relationshipto
FT shifts and AFT shifts.

A. Periodic Forbidden Words

In Section II-A, we defined a shift space in terms of a for-
bidden listF . Here, we will define a sequence space in terms
of a set of periodically forbidden words. A subtlety is required
in the definition to ensure shift invariance.

The notion of periodically forbidden words [14] generalizes
the notion of minimal forbidden words (or minimal forbidden
factors) of a bi-infinite word (see for instance [23], [24], [25]).

Let Σ be a finite alphabet. LetT be a positive integer (the
period), and letF = (F0,F1, . . . ,FT−1) be a list ofT pos-
sibly empty sets of finite-length words. The list is said to be
regular (resp.finite) if all its sets are regular (resp. finite) sets.

Let X0 be the set of bi-infinite wordsx over Σ such that,
for each integeri, one has

u ≺i x ⇒ u /∈ Fi mod T .

Hence, at positioni, the wordx avoids the words inFi mod T,
for all positionsi. A word f ∈Fi is said to havephaseequal
to i, and we sometimes denote such a word together with its
phase by( f , i). The set of all bi-infinite sequences obtained
by all integer shifts of words inX0 defines a subshiftX. The
list F is called aperiodic forbidden listof the shiftX for the
periodT. Note that the definition ofX depends on the choice
of the alphabetΣ.

More formally, we have the following definition.

Definition 1. Given a periodT and a periodic forbidden list
F = (F0,F1, . . . ,FT−1), The shiftX = X

Σ
{F ,T} is defined

as the set of all bi-infinite sequencesx over the alphabetΣ such
that there exists some integerk ∈ [0, T − 1] with the property
that thek-shifted sequenceσk(x) satisfies

u ≺i σ
k(x) ⇒ u /∈ Fi mod T

for every integeri. Note thatk may depend uponx.

Shift invariance ofX = X
Σ
{F ,T} is an immediate conse-

quence of the definition. Sometimes we will use the simpler
notationX{F ,T} or XF to denote the shiftX when the context
prevents any confusion.

Proposition 1.A shift is a sofic shift if and only if it has a reg-
ular periodic forbidden list for any period.

Proof. Let X be a sofic shift over a finite alphabetΣ. Hence
B(X) is a regular language. For any positive integerT, the list
F defined byFi = Σ∗ − Σ∗B(X)Σ∗, for any 0 6 i 6 T − 1,
is a regular periodic forbidden list ofX for the periodT.

Conversely, suppposeX = X{F ,T} for a periodT where
Fi is a regular language for any0 6 i 6 T − 1. Let G
be a finite-state automaton accepting the regular language
W = Σ∗ −∪T−1

i=0 (ΣT)∗ΣiFiΣ
∗. The finite-state labeled graph

obtained from this automaton by removing the non-final states
of G and by keeping its essential part (i.e. the states belonging
to a bi-infinite path) is a presentation of the shiftX.

It follows from the definition that the list

F ′ = (FT−1,F0, . . . ,FT−2)

formed by adding one, moduloT, to the phase of each( f , i)
pair in F , satisfiesX{F ,T} = X{F ′ ,T}. We refer to the peri-
odic forbidden lists obtained by repeated application of this
procedure as theconjugatesof the listF .

B. PFT Shifts

A shift spaceX is periodic finite-type (PFT)for a positive
integer periodT if it can be described asX = X

Σ
{F ,T}, where

F is afinite periodic forbidden listF = (F0,F1, . . . ,FT−1).
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We say that such a shiftX is PFT(T). Note that a shift is finite-
type if and only if it is PFT(1).

Example 1 Consider the PFT sofic shiftX over the alphabet
{0, 1} presented by the graph shown in Fig. 1. ForT = 2, the
shift X has the periodic forbidden listF = (F0,F1), with
F0 = {1},F1 = ∅.

0 1

0

0

1

Fig. 1. The periodic finite type shiftXF for the period2 over {0, 1} with
F0 = {1},F1 = ∅.

It is easy to see that, for a PFT(T) shift XF over the alphabet
Σ, one can construct a periodic forbidden listF ′ in which all
words have the same phase, the same length, or both. A com-
mon phase is obtained by taking each wordf ∈Fi, prepending
each of the|Σ|i prefixes of lengthi to f , and associating phase
0 with each of the resulting words. The sets corresponding to
the other phases are defined to be empty sets. A common
word length is achieved by replacing eachf in Fi with the
words obtained by appending each of the|Σ|l−| f | suffixes to
f , where l > max f ∈ F | f |, so that each word has lengthl.
Finally, a list that satisfies both properties may be constructed
by applying the first transformation followed by the second.

C. PFT Sofic Shifts

The following theorem, an analog to [16, Theorem 3.1.5]
for shifts of finite type, establishes that PFT shift spaces are
sofic shifts by explicitly constructing a presentation.

Theorem 2.Every periodic-finite-type shift space is sofic.

Proof. Let XF be a PFT(T) shift space. Assume, without
loss of generality, thatFi = ∅ for i = 1, . . . , T − 1, and that
each wordw∈F0 has length|w| = l.

For l > 1, let U (l) be the graph with vertex setV(U (l)) =
Σl, the set of alll-blocks of letters fromΣ. For each pair of
vertices I = a1a2 . . . al and J = b1b2 . . . bl in V(U (l)) with
a2a3 . . . al = b1b2 . . . bl−1, draw an edge fromI to J with
label bl.

Let U (l, T) be the T-cascade ofU (l) with vertex sets
V0,V1, . . . VT−1. Let U (l, T,F ) be the graph formed from
U (l, T) by deleting the edges starting and ending at each ver-
tex I = a1a2 . . . al ∈Vl mod T such thatI = w wherew∈F0,
as well as the vertex itself.

Let G be the largest essential subgraph ofU (l, T,F ).
We will show that XF = XG . Choose x =
L∞(· · · e−1e0e1 · · · )∈XG . Suppose thati(e0)∈Vk ∩ V(G).

Let y = σk(x). Then y[m,m+l−1] 6= w for eachw∈F and
m∈Z with m mod T = 0. Thereforey∈XF and we conclude
that XG ⊆ XF .

To show the reverse inclusion, choosex∈XF , and letk be
an integer such thaty = σk(x) satisfiesy[m,m+l−1] 6= w
for each w∈F and m∈Z with m mod T = 0. Since
U (l, T) presentsΣZ, y is the label of a walk onU (l, T).
Let ξ = (. . . e−1e0e1 . . .) be the walk onU (l, T) such
that L∞(ξ) = y and i(e0)∈V0. Suppose an edge inξ is
deleted when constructingG (so thaty /∈ XG ). This occurs
only if y[m,m+l−1] = w for some w∈F and m∈Z with
m mod T = 0, contradicting the properties ofy. Therefore
x∈XG andXF ⊆ XG .

The constructive proof of Theorem 2 provides a method to
obtain a graph presenting a PFT shift. The drawback of using
the method in practice is the size of the initial representation,
which grows exponentially with the length of the longest el-
ement inF . In Section VI, we discuss alternative algorithms
for generating graph presentations of a PFT shift.

The construction in Theorem 2 actually implies a stronger
result, namely, that any PFT shift is AFT.

Theorem 3.Irreducible PFT shifts are AFT.

Proof. Let X{F ,T} be a PFT(T) shift over the alphabetΣ.
It is easy to see that the graphG constructed in Theorem 2 is
deterministic. Therefore, to prove thatX{F ,T} is AFT, it suf-
fices to show thatG has finite local memory. In fact, since
G ⊆ U (l, T), and the operation of passing to a subgraph
preserves the property of finite local memory, it suffices to
verify that U (l, T) has this property. Without loss of gener-
ality, consider a vertexI ∈V0, with I = (a1a2 . . . al). Let
π = e0e1 . . . el and π ′ = e′0e′1 . . . e′l be two paths of length
l + 1 that terminate inI and generate the wordb0b1 . . . bl.
Let J = i(el) and J′ = i(e′l). From the definition ofU (l, T),
it follows that J ∈VT−1 and J′ ∈VT−1, and, moreover, bothJ
and J′ correspond to the stateb0b1 . . . bl−1 = b0a1a2 . . . al−1.
The edge from this state to stateI with label al is unique,
implying that el = e′l. ThusU (l, T) has finite local memory.

The sliding block coding theorem [16, Theorem 5.5.6] holds
for AFT systems [26]. Therefore there exist sliding-block-
decodable finite-state codes into irreducible PFT shifts atra-
tional rates less than or equal to the Shannon capacity of the
shift. (In Section VI, we address the computation of the ca-
pacity of PFT shifts.)

D. Proper PFT Shifts

We further distinguish a PFT shift asproper if it is not FT.
For any proper PFT shift, there exists a word that is allowed in
some, but not all, phases. Hence proper PFT shifts are PFT(p)
only for p > 1. The PFT(2) shift of Example 1 is proper.
Here are two further examples of proper PFT constraints that
have found practical application in magnetic recording sys-
tems. Historically, these constraints provided the motivation
for the definition and study of PFT shifts.

Example 2 The well-known biphase shift is a PFT(2) shift
over the binary alphabet withF0 = {00, 11} and F1 = ∅.
Fig. 2 illustratesU (l, T,F ), as described in the proof of The-
orem 2, where the cyclic nature of the cascade is represented
by re-drawingV1. Deleted edges and states are drawn with
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dashed lines. The Shannon cover is illustrated in Fig. 3. It is
easily shown and well known that the biphase shift is not FT
(see, for example, [16, Theorem 3.4.17], [17, p. 1657]) and
hence is proper PFT.

V1 V0 V1

11

10

01

00

10

01

11

10

01

00

11

00

0

1
0

1

0

1
0

1

1

0

1

0

1

0

1

0

Fig. 2. U (l, T,F ) presenting the biphase shift.

0 1 2

1 1

00

Fig. 3. Shannon cover of the biphase constraint.

Example 3 The time-varying maximum-transition-run
(TMTR) shift [2], [3], [4] is a binary PFT(2) shift with
F0 = {111} and F1 = ∅. The Shannon cover is shown in
Fig. 4. It is easy to verify the TMTR shift is not FT ; for ex-
ample, note that the Shannon cover contains the cover for the
biphase shift, Fig. 3, as a subgraph. Therefore it cannot be
definite, implying that the TMTR shift is a proper PFT shift.

E. Periods of PFT Shifts

We now explore the periodsT with which a PFT shift can
be associated.

Lemma 4. If X is an irreducible PFT(T) shift, then X is
PFT(nT) for any positive integern.

Proof. If X = XF with F = (F0,F1, . . . ,FT−1), then
we have trivially alsoX = XE with E = (Ei)06i6nT−1 and
Ei = Fi mod T.

0 1 2 3

0
1 1 1

0

00

Fig. 4. Shannon cover of the TMTR shift.

Proposition 5. If X is an irreducible PFT(T) shift which has an
irreducible presentation of periodq, thenX is PFT(gcd(T, q)).

Proof. Let X = XF with F = (F0,F1, . . . ,FT−1). Let
d = gcd(T, q) and k = T/d. Let Y = XE with E =
(E0, E1, . . . , Ed−1) andEi = ∪k−1

j=0Fi+ jd. It is straightforward
to see thatY ⊆ X.

Let us assume that there is a bi-infinite sequencex in X−Y.
It is no loss of generality to take asx a periodic sequence.
Since x /∈ Y, for each integer0 6 l 6 d − 1, there are in-
tegers0 6 i 6 d − 1, 0 6 j 6 k − 1, a positive integer
n, and a finite factoru of x at positionl + nd + i such that
u∈Fi+ jd. Moreover, sincex is periodic, one may assume
without loss of generality that the distance between two po-
sitions l + nd + i is greater than the maximal length of the
words in the listF . Let π be a path labeled byx in the ir-
reducible presentation ofX of period q. Let I be the state in
π at positionl + nd + i. Since the presentation is irreducible
and of periodq, there is a positive integerN such that for
any nonnegative integerr there is a cycle aroundI of length
NTq + rq. Sincegcd(T, q) = d, there are integersa, b such
that aT = −bq + d. One can moreover chooseb > 0. Let
M be a positive integer such thatb( j − n) + MT > 0. We
chooser = b( j − n) + MT. Hence there is a cycle around
I of size Z = NTq + b( j − n)q + MTq. Its length is thus
equal to jd − nd mod T. The bi-infinite sequence labeling
a path obtained fromx by inserting this cycle at position
l + nd + i belongs toX. At the position l + nd + i + Z,
equal tol + i + jd mod T, this sequence contains a factor in
Fi+ jd mod T. By inserting such cycles simultaneously intox
at all positionsl + nd + i, we get a sequence such that every
shift of this sequence byl positions has a factor at a posi-
tion equal toi + jd mod T which belongs toFi+ jd. Hence
x /∈ X, which is a contradiction.

Let G be a presentation of a PFT(T) shift XF . The following
proposition gives a condition that can be used to determine if
XF is not a proper PFT shift, namely, the period ofG and
the periodT associated with the forbidden list must share a
nontrivial common factor.

Proposition 6. If G is an irreducible presentation of a proper
PFT(T) shift XF over an alphabetΣ, then gcd(per(G), T) 6= 1.

Proof. Suppose that gcd(per(G), T) = 1. Since XF is
proper, there exists a wordw∈F and a stateI ∈V(G) such
that w∈ FG(I). From the irreducibility ofG, we can choose a
word v such that the path presentingwv is a cycle. Choose a
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cycleπ with i(π) = I such thatT and l = |π | have no com-
mon divisors greater than1. Let u = L(π). One can choose
positive integersq0, q1, . . . , qT−1 such that

x = · · ·wvuq0 wvuq1 · · ·wvuqT−1 · · ·
is the label of a walk onG and w appears inx at all phases
0, . . . , T − 1. This implies x /∈ XF , a contradiction. Hence
gcd(per(G), T) 6= 1

The following corollary is an immediate consequence.

Corollary 7. Let X be an irreducible PFT(T) shift for some
period T. Let G be an irreducible presentation ofX. If
gcd(per(G), T)=1, thenX is FT.

Note that the PFT shifts in Examples 2 and 3 above – the
biphase and TMTR shifts - are not FT. The period associated
with each of their respective forbidden lists isT = 2, and
the graph period of each of their respective Shannon covers is
also 2. Hence, gcd(per(G), 2) = 2 6= 1, in accordance with
Proposition 6.

Example 4 The graphG in Fig. 5 is the Shannon cover of
a shift that we will refer to as theabcd shift. The abcd shift
is clearly FT, and therefore not proper PFT. Since any FT
shift may be described as a PFT(T) shift for arbitrary period
T by assigning all phases0, 1, . . . , T − 1 to each word in a
finite forbidden list, we may chooseF = (F0,F1) such that
XG = XF is PFT(2). Since per(G) = 2, gcd(per(G), T) = 2.
This demonstrates that the converse of Proposition 6 is not
true.

0 1 2

a b

cd

Fig. 5. Graph presenting theabcd shift.

Example 5 Fig. 6 illustrates a graph that presents valid(d, k)
sequences. Aside from the trivial case whered = k, we find
per(G) = 1; hence(d, k) shifts are not proper PFT.

0 1 d − 1 d d + 1 k· · · · · ·0 0 0 0 0 0 0

1 1 1

Fig. 6. Graph presenting the(d, k) shifts.

The following example shows that not all AFT shifts are
PFT shifts.

Example 6 Fig. 7 is the Shannon cover of theeven shift, so
called because its bi-infinite sequences contain only even num-
bers of consecutive0’s. It is easily verified that the even shift
is AFT but not FT. By inspection, we see that per(G) = 1.
Therefore, by Corollary 7, the even shift is not PFT(T) for
any T > 1.

0 1

0

0

1

Fig. 7. Shannon cover of the even shift.

Example 6 shows that the PFT shift spaces are a proper
subset of the AFT shift spaces.

Manada and Kashyap [27] have examined the relationship
between the periodT inherent in the definition of a PFT shift
X = X{F ,T} and properties of the shift. They also study the
relationship of thisdescriptiveperiod to the periods of periodic
sequences inX and to the periods of its graphical presenta-
tions.

IV. CHARACTERIZATION AND DECIDABILITY

In this section, we further characterize PFT shifts in terms
of properties of their presentations. The characterizations im-
ply the decidability of the PFT property, and they suggest a
testing algorithm that is quadratic in the number of states of
the Shannon cover.

A. Graphical Characterization

The following proposition proves the decidability of the PFT
property for an irreducible sofic shift.

Proposition 8. Let X be an irreducible sofic shift,G its Shan-
non cover of periodq, andT a positive integer. Then the fol-
lowing assertions are equivalent.

1) X is PFT(T).
2) The irreducible components ofGgcd(T,q) are definite

graphs.

Proof. Let us assume thatX is PFT(T). Let q be the period
of the Shannon cover ofX andd = gcd(T, q). By Lemma 5,
X is PFT(d). We prove that the irreducible components of
Gd are definite. LetC be one of these components. Let us
suppose thatC is not definite over the alphabetΣd. HenceC
has two distinct cycles with the same label, one around a state
I, another around a stateJ distinct from I. Hence there is inG
a cycle aroundI (resp.J) labeled by a wordu of lengthnd for
some positive integern. Since I and J belong to a common
irreducible component ofGd, there is a path labeled byz from
I to J in G of length md for some positive integerm. Let v
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be a left-infinite sequence ending with a synchronizing word
that focuses toI in G. SinceG is the Shannon cover ofX, the
statesI and J have different follower sets. Letf J be a right-
infinite sequence generated by some path inG starting atJ that
is not the label of a path starting atI. For any nonnegative
integerN, the bi-infinite wordx = vuN zuN f J belongs toX.
Since X is PFT(d), this implies that, for a large enoughN,
x′ = vuN f J belongs toX, which is a contradiction of the fact
that f J is not generated by a path starting atI.

Conversely, let us assume that each irreducible component
C of Gd is a definite graph. SinceG has periodq, one can or-
der the irreducible components ofGd into (C0, C1, . . . , Cd−1),
such that there is at least one edge from some state inCi to
some state inCi+1 mod d in G. Each componentCi presents
a shift of finite typeXFi

over the alphabetB = Σd, where
Fi is a finite subset ofB∗. Let Ei be the set of words
in Fi with symbols in the alphabetΣ. Let Y = XE with
E = (E0, E1, . . . , Ed−1). By constructionX = Y. It follows
that X is PFT(d) and also, by Lemma 4, PFT(T).

Corollary 9. Let X be an irreducible sofic shift andp be the pe-
riod of the Shannon coverG of X. Then the following assertions
are equivalent.

1) X is PFT.
2) X is PFT(p).
3) The irreducible components ofG p are definite graphs.

Proof. (2) ⇔ (3) comes from Proposition 8. We prove
(1) ⇒ (2). If X is PFT(T) for some positive integerT, we
get from Lemma 5 thatX is PFT(gcd(p, T)). It is then also
PFT(p) by Lemma 4. Finally(2) ⇒ (1) follows from the
definition of a PFT shift.

Corollary 10. Let G be irreducible with periodT. If an irre-
ducible componentH of GT is FT withX

ΣT

H = X
ΣT

F ′ , thenXG =
X{F ,T} whereF0 = F ′ andFi = ∅, for i = 1, . . . , T − 1.

Example 7 The Shannon cover of theinterleaved-biphase
shift is illustrated in Fig. 8. The period of the graph is4, and
one can show the irreducible components ofG4 are finite-type.
In particular, ifH denotes the irreducible component consist-
ing of the central state in Fig. 8, thenXH = XF ′ , where

F ′ = {0000, 0001, 0010, 0100, 0101, 0111,

1000, 1010, 1011, 1101, 1110, 1111}.

Hence the interleaved-biphase shift is PFT(4), withF0 =
F ′ andF1 = F2 = F3 = ∅.

B. Decidability of PFT Property

We now derive from the previous propositions a quadratic-
time algorithm to check whether an irreducible sofic shift pre-
sented by its Shannon cover is PFT.

Proposition 11. Let X be an irreducible sofic shift presented
by its n-state Shannon cover. It is decidable in timeO(n2 ×
log |Σ|) whetherX is PFT.

Proof. Let G be the irreducible Shannon cover ofX. One
first computes the periodp of G. This operation can be per-
formed with one depth-first search of the graph ofG in time
O(n log n × |Σ|) (see [28], [29]).

1 0
0 1 0

0 1
1 0 1

1 0

Fig. 8. Shannon cover of interleaved-biphase shift.

SinceG has periodp, one can define a coloring functionc
from V(G) to {0, 1, . . . , p − 1} such that, whenever there is
an edge from a stateI to a stateJ, c(J) = c(I) + 1 mod p.
The color of each state can be computed through a depth-first-
search of the graph ofG in time O(n).

One then computes thefiber product graph H = G ∗ G
whose set of states is the set of pairs(I, J), where I, J are
states ofG [17]. There is an edge labeled bya from (I, J) to
(I′, J′) if and only if there are two edges labeled bya from I
to I′ and from J to J′. The graphH is deterministic overΣ
and has at mostn2 states. ThenX is PFT if and only if there is
no cycle inH going through a state(I, J) with I 6= J and I, J
having the same color. Indeed, the existence of such a cycle
is equivalent to the existence of two identically labeled cycles
in G p, one starting atI, the other one atJ with I 6= J and
I, J in the same irreducible component ofG p. The existence
of such cycles can be determined in time that is linear in the
size n2 of H, for instance by inspection of the irreducible
components ofH. The final worst case time-complexity is
thereforeO(n2 × log |Σ|).

10 2

1 1

00

Fig. 9. A 2-coloring of the Shannon cover of the biphase shift.

Example 8 Let us consider again the biphase shift of Exam-
ple 2. The Shannon cover, shown in Fig. 9, has period2. For
any 2-coloring, the states0 and2 have the same color while1
has a different color, as illustrated. The coverH is represented
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in Fig. 10. (States (0,2) and (2,0) are not shown, as there are
no edges inH starting or ending in these states.) Since the
cycles go only through pairs of states with different colorsor
through pairs with the same color but also with equal states,
we conclude that the biphase shift is PFT.

0, 0 1, 1 2, 2

1 1

00

0, 1 1, 2

1

0

1, 0 2, 1

1

0

Fig. 10. GraphH for checking if the biphase constraint is PFT. Names of
shaded states are shown in bold font. Stranded states are notshown.

V. PERIODIC FIRST OFFENDERS

In this section, we define a notion of minimal periodic for-
bidden list of a PFT shift for a given period.

Let F = (F0,F1, . . . ,FT−1) be a periodic forbidden list
of a shift X for some positive periodT. We say thatF is
periodic anti-factorial if and only if for any 0 6 i 6 T − 1
and anyj > 0,

w∈Fi and u ≺ j w with u 6= w =⇒ u /∈ Fi+ j mod T .

The notion of periodic anti-factorial list was introduced in [13].
It generalizes the notion of anti-factorial language (see [24]).
In particular, the setsFi of a periodic anti-factorial list are
prefix-free and suffix-free codes.

Example 9 The list

F0 = {00, 11}
F1 = {00, 11, 010},

with T = 2 is periodic anti-factorial, while the list

F0 = {00, 11, 010}
F1 = {00, 10},

with T = 2 is not periodic anti-factorial. Indeed, in the latter
list, 010∈F0, 10∈F1, and10 ≺1 010.

For any regular periodic forbidden listF of a shift X, there
is a regular and periodic anti-factorial forbidden listF ′ of X
such thatF ′

i ⊆ Fi for any 0 6 i 6 T − 1. Indeed, one can

choose

F ′
i = Fi −FiΣ

+ − (ΣT)+FiΣ
∗

−
T−1
⋃

j=1

(ΣT)∗Σ jFi+ j mod TΣ
∗.

Periodic anti-factorial lists do not seem to satisfy any useful
kind of minimality property among periodic forbidden lists
of a PFT shift. We consider, instead, periodic forbidden lists
based upon sets of periodic forbidden words calledperiodic
first offendersthat were introduced in [14], [15]. Their defini-
tion is intended to mimic that of thefirst offendersof a shift
X [18] and to refine the notion of periodic anti-factorial list.
A key difference, however, is that their definition is not intrin-
sic; rather, it refers specifically to a presentation of the sofic
shift.

We first recall the key properties of the set of first offend-
ers. A wordw is a first offenderfor a shift X if w /∈ B(X)
but every proper subword ofw is in B(X). The collection of
first offenders,O, describes the space,X = XO, and satis-
fies the following minimality properties [18], [16, Exercises
1.3.8,2.1.10]:

(1) if F ⊆ O andXF = X, thenF = O,

(2) if F is finite andXF = X, then ∑
w ∈O

|w| 6 ∑
w ∈ F

|w|.

Clearly, the words inO form an anti-factorial list.
We now introduce an analogous construction for the peri-

odic scenario. LetG be an irreducible presentation of periodp
of an irreducible sofic shiftX. The statesV of G are colored
in p colors by a coloring functionc : V → {0, 1, . . . , p − 1}.
One hasc(J) = c(I) + 1 mod p whenever there is an edge
from I to J. We denote byVi the set of states of colori, for
0 6 i 6 p − 1. We also say that these states arein phasei.
We denote byF (G , c) the list F = (Fi)06i6p−1 where the
setsFi are the sets of finite wordsw = w[0,|w|−1] such that

1) w /∈ FG(Vi),
2) for any 0 6 j < |w| − 1, w[0, j] ∈ FG(Vi),
3) for any 0 < j 6 |w| − 1, w[ j,|w|−1] ∈ FG(Vi+ j mod p).

Note that the second condition can be replaced by
w[0,|w|−2] ∈ FG(Vi), and the third one can be replaced by
w[1,|w|−1] ∈ FG(Vi+1 mod p). Hence, for0 6 i 6 p − 1, the
setsFi can also be defined by

Fi = (Σ∗ − FG(Vi)) ∩ (FG(Vi)Σ) ∩ (ΣFG(Vi+1 mod p)).

Note also that, whenc in changed into another col-
oring of the graph in p colors, the list F (G , c) =
(F0,F1, . . . ,Fp−1) is changed into one of its conjugates
(F j,F j+1, . . . ,Fp−1,F0, . . .F j−1).

Proposition 12.LetG be an irreducible presentation with a col-
oring of its statesc in p colors. The listF (G , c) is a regular and
anti-factorial periodic forbidden list of the sofic shift presented
by G.

Proof. Let F = F (G , c). It follows from the defi-
nitions that X ⊂ XF . Conversely, letx∈XF . We will
show that every subword ofx is in B(X). Up to a
power of the shift of the sequencex, for any integers
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i, j, we have x[i, j] /∈ Fi mod p. We prove by recurrence
on j that x[i, j] ∈ FG(Vi) and x[i+1, j] ∈ FG(Vi+1) for any
j > i. Since x[i] /∈ Fi and x[i+1] /∈ Fi+1, we have
x[i] ∈ FG(Vi) andx[i+1] ∈ FG(Vi+1). By definition ofFi, from
x[i,i+1] /∈ Fi, we get x[i,i+1] ∈ FG(Vi). Let us now as-
sume thatx[i, j] ∈ FG(Vi) and x[i+1, j] ∈ FG(Vi+1). By def-
inition of Fi, we get x[i, j+1] ∈ FG(Vi). This implies also
x[i+1, j+1] ∈ FG(Vi+1). Thus, any subword ofx belongs to
B(X). This shows thatx∈ X. It is clear thatF (G , c) is anti-
factorial.

We denote bysize(F ) the size of a periodic forbidden list
F for a periodp. It is defined by

size(F ) = ∑
06i6p−1

∑
w ∈ Fi

|w|.

Proposition 13.Let X be an irreducible sofic shift andG be an
irreducible presentation ofX with a p-coloringc. LetF be any
regular periodic forbidden list ofX for the periodp. If F is
finite,F (G , c) is finite andsize(F (G , c)) 6 size(F ).

Let G ′ be another irreducible presentation ofX with a p-
coloring c′ of its states. Up to a conjugacy,F (G , c) and
F (G ′, c′) are equal.

Proof. We first prove that, up to a conjugacy ofF , we
have FG(Vi) ∩ Fi = ∅. Let us assume that this is false.
For any j such that0 6 j 6 p − 1, there exists an in-
teger i j, with 0 6 i j 6 p − 1, such that there is a word
w j ∈ FG(Vi j

) ∩ F(i j+ j mod p). That is, the wordw j is the
label of a pathπ j starting at some state inFG(Vi j

) with
w j ∈F(i j+ j mod p). SinceG is irreducible, one can choose a
walk with labelx that Moreover, sinceG has ap-coloring and
w j ∈ FG(Vi j

), one
can choose the path such thatw j ≺i j

u for all integers j.
SinceX = XF , there is an integerk such that, for any integer
l, w ≺l x ⇒ w /∈ F(k+l mod p). By taking l = ik, we get
that wk 6≺ik x, which is a contradiction.

Next, we changeF into another listE such that each proper
prefix of a word inEi belongs toFG(Vi). For this, one replaces
each word inFi by its shortest prefix which is not inFG(Vi).
Thus we defineE by the formula

Ei = (FG(Vi)Σ) ∩ (Σ∗ − FG(Vi)) ∩ (Fi(Σ
∗)−1).

Note that the new listE is still a regular periodic forbidden
list of X for the periodp. Indeed, it is clear thatXE ⊂ X.
Conversely, letx∈ X. Up to some shift, the wordx is the label
of a path inG going through a state ofV j before reading the
block x[ j,k] for any k > j. Hence x[ j,k] ∈ FG(V j) and thus
x[ j,k] /∈ E j. Thus,X = XE .

Now, we remove each wordw∈ Ei which is not inF (G , c)i

and add at most one word shorter thanw into someE j in order
to still have a periodic forbidden list ofX. If w /∈ F (G , c)i,
there are indicesj, j′ such thatw[ j, j′ ] ∈F (G , c)i+ j mod p. We
add w[ j, j] ∈ E j and removew from Ei. It is important to note
that j, j′ are unique in this case. Indeed, let us assume that
there are two factorsv1 and v2 of w, both shorter thanw,
with v1 = w[ j, j′ ] in F (G , c)i+ j mod p and v2 = w[k,k′ ] in
F (G , c)i+k mod p. Sincew[0,|w|−2] ∈ FG(Vi), j′ = k′ = |w| −
1 and v1 is a suffix of v2, or vice-versa. This contradicts the

fact thatF (G , c) is periodic anti-factorial. Hence at most one
word is added whenever one is removed.

The new listD satisfiesDi ⊆ F (G , c)i. We now show that
Di = F (G , c)i. Assume the contrary and letw be a word
in F (G , c)i − Di. If w = ua = bv with a, b∈Σ, we have
u∈ FG(Vi), ua /∈ FG(Vi), andv∈ FG(Vi+1). Henceu is the
label of a path inG starting at a stateI ∈Vi and v is the
label of a path ending in a stateJ ∈Vi+|w| mod p. For any
left-infinite word z labeling a path ending atI, and any right-
infinite word y labeling a path starting atJ, the wordzwy is in
XD. It is possible to choosez andy such thatzwy /∈ XF (G ,c),
which contradicts the factX = XD. HenceD = F (G , c). By
construction, ifF is finite, thenD is also, andsize(D) 6

size(E) 6 size(F ). Thussize(F (G , c)) 6 size(F ).
We now prove the second statement of the proposition. We

first transformF (G ′, c′) into F ′ as above. The size ofF ′ is
less than the size ofF (G ′, c′) if F ′ 6= F (G ′, c′). We then
transformF ′ into D = F (G , c). Again, the size ofD is less
than the size ofF ′ if D 6= F ′. It follows thatsize(F (G , c)) 6

size(F (G ′, c′)) and the two sets are equal whenever the sizes
are equal. By reversing the roles played bysize(F (G , c)) and
size(F (G ′, c′)), we conclude that equality holds and that the
two lists are equal, up to some conjugacy.

For an irreducible sofic shiftX, we denote bySO(X) the
list F (G , c) where G is the Shannon cover ofX, p is the
period of G, and c is a p-coloring of the states ofG. It is
defined up to a conjugacy of the list. Although the words
in this periodic forbidden list were called the periodic first
offenders ofX in [14], [15], the discussion above prompts
us to more appropriately call them theShannon periodic first
offendersof X.

Example 10 The Shannon cover of the interleaved-biphase
shift, Fig. 8, has period4. The Shannon periodic first offenders
are

O0 = {000, 010, 101, 111},

O1 = {000, 010, 101, 111},

O2 = ∅,

O3 = ∅.

The following corollary, which is a direct consequence of
Proposition 13, provides an alternative way to check whether
an irreducible sofic shift is PFT, based upon the size of the
list of Shannon periodic first offenders.

Corollary 14. Let X be an irreducible sofic shift. Then the fol-
lowing assertions are equivalent.

• X is PFT.
• SO(X) is finite.

It was conjectured in [14], [15] that the size ofMF (X)
is the minimal size of any periodic forbidden list ofX for
anyperiod. The following example shows that this is not true.
Thus, the minimality of the Shannon periodic first offenders
is in general limited to periodic forbidden lists for the period
of the Shannon cover.
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Example 11 Let X be the shift on the alphabetΣ =
{a, b, c, d, e} presented by the Shannon cover of Fig. 11.
The shift X is FT and its minimal periodic forbidden list
for the period p = 1, i.e., its list of first offenders, is
F = {c, d, e, aa, bb}. For the period p = 2, which is
the period of the Shannon cover,SO(X) = E where
E0 = {c, d, e, b}, E1 = {c, d, e, a}. Hencesize(SO(X)) >
size(F ).

0 1

a

b

Fig. 11. A shift of finite typeX over the alphabetΣ = {a, b, c, d, e}. We
haveX = XF with F = {c, d, e, aa, bb} for the periodp = 1. We also have
X = XE with E0 = {b, c, d, e}, E1 = {a, c, d, e} for the periodp = 2. The
size ofF is less than the size ofE and the period of the Shannon cover of
X is 2.

Let X be an irreducible PFT shift andp the period of its
Shannon coverG. Whend divides p, we denote bySO(X, d)
the list F (G , c) where c is a d-coloring of G. The example
above suggests the following proposition.

Proposition 15. Let X be an irreducible PFT shift andp the
period of its Shannon cover. We have

min
d/p

size(SO(X, d)) 6 min
F|X=XF

size(F ).

Proof. Note that the numbers involved in the inequality are
finite wheneverX is PFT.

Let F be a finite periodic forbidden list of an irreducible
PFT shift X for a periodT. By Lemma 5, one can assume,
without loss of generality, thatF is a finite periodic forbidden
list of X for the periodd = gcd(p, T) (the size ofF is
unchanged). By Proposition 13,size(F ) > size(SO(X, d)),
which completes the proof.

VI. CAPACITY OF PFT SHIFTS

The base-2 capacity, or simply capacity of a sofic shift
spaceX over an alphabetΣ is defined as

C(X) = lim
n→∞

1

n
log2 |Bn(X)|.

It measures the growth rate of the number of words of length
n in X. It is well known that the capacity of a sofic shift is
the logarithm of the largest real eigenvalue of the adjacency
matrix of a lossless presentation [16], [17].

In this section, we discuss methods for computing the ca-
pacity of a PFT shift from its periodic forbidden list. In Sec-
tion VI-A, we review techniques for generating lossless (in
fact, deterministic) presentations of a PFT shift described by a
finite list of periodically forbidden words. Several of the tech-
niques draw on the connections between symbolic dynamics
and automata theory.

the nevertheless

In Section VI-B, we present a combinatorial technique for
computing the capacity directly from a periodic forbidden list.
It extends to PFT shifts the computation of the capacity of FT
shifts presented by Pimentel and Uchôa-Filho in [21], relying
on the well-knownInclusion-Exclusion Principlefrom enu-
merative combinatorics [19], [20]. It is also known as the
Goulden-Jackson Cluster Method[31,32], [33, III.7.4] (see
also [34]). This combinatorial method provides a much more
efficient means to compute the capacity than the conventional
graph-based method when the lengths of the periodically for-
bidden words are large compared to the number of words.

A. Graph Construction

Suppose one is given a finite, anti-factorial listF of forbid-
den words over an alphabetΣ. One can construct in a straigh-
forward manner a presentation of the corresponding shift of
finite typeX

Σ
F with |Σ|ℓmax−1 states, whereℓmax is the length

of the longest word inF . Of course, this construction has time
complexity that is exponential insize(F ).

An alternative algorithm was described in the unpublished
masters thesis of Sindhushayana [35]. The construction makes
use of the close connections between symbolic dynamics and
automata theory, a theme that underlies several of the other
techniques we will mention. Although generally more practi-
cal than the straightforward approach, it is not computation-
ally efficient in the sense of guaranteed time complexity poly-
nomial in size(F ). A similar construction appeared in the
unpublished doctoral dissertation of McEwen [36]. In [24],
Crochemoreet al. gave an efficient, automata-theoretic con-
struction of a deterministic presentation that requires time only
linear in size(F ).

These algorithms for FT shifts can be extended, often natu-
rally, to PFT shifts. McEwen [36] includes such an extension,
and [15] described a generalization of the procedure in [35].
Although neither of these run in polynomial time, for many ap-
plications they are convenient to implement and give insights
into the properties of the PFT shift.

Constrained systems with unconstrained positions, intro-
duced by Wjngaarden and Immink [10] and further studied
by de Souzaet al. [11], represent a natural example of PFT
shift spaces. Given a sofic shiftX, a positive integerT, and
a subsetU of integers moduloT, the authors of [11] con-
struct a presentation of the unique maximal subsystem such
that any position moduloT in U is unconstrained. Begin-
ning with a finite-state presentation of the underlying shift
X, their algorithm in general has exponential time and space
complexity. However, for FT shifts, under a certaingap condi-
tion that restricts|U| relative to the memory of the shift, their
algorithm if efficient, requiring only quadratic complexity in
space and time. They also provide an efficient construction
for Maximum-Transition-Run (MTR) constraints with param-
eter j > 1 [8], the systems in which the maximum allowable
length of a run of consecutive1’s is j.

Béalet al. [13] also recognized the connection between PFT
shifts and constraints with unconstrained systems. Their con-
struction of a presentation for such a system consists of two
steps. First, they derive a periodic list of forbidden wordsthat
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define a maximal subsystem forT andU, given a prefix-free
list F of forbidden words defining the underlying FT shift.
The description ofF must be in the form of a tree-like deter-
ministic automaton called atrie [13]. (A linear time and space
algorithm for this step has recently been given in [30].)

In the second step, they invoke a general procedure for con-
structing a finite-state presentation of a PFT shift defined by a
periodic forbidden list The input to the algorithm is a collec-
tion of T tries representing the periodically forbidden words
associated with the phases0, 1, . . . , T − 1. They show that this
step has time and space complexity that is linear in the size
of the periodic forbidden list.

In the remainder of this section, we briefly describe the con-
struction algorithm presented in [15]. Although, strictlyspeak-
ing, it is not efficient, it has proven to be useful in practicein
the study of PFT constraints for data storage applications.

We first construct a non-deterministic finite automaton that
accepts the complement of the language in which we are in-
terested. An automaton accepting the language is formed by
following a constructive proof that the class of regular lan-
guages is closed under complementation; see, e.g., [22, Theo-
rem 3.2]. By deleting the non-accepting states of the resulting
automaton, we obtain a graph representing the shift space. A
detailed description of the construction follows.

Fix a pair {F , T}. For i = 0, 1, 2, . . . , T − 1, define the
language

Li
def
= {v| settingv = vnvn+1 · · · vn+|v|−1,

∀m, p∈ [n, n + |v| − 1], with m 6 p, and all w∈Fi ,

if m mod T = i then v[m,p] 6= w},

as well as its complement,

Lc
i = {v| settingv = vnvn+1 · · · vn+|v|−1,

∃m, p∈ [n, n + |v| − 1], with m 6 p, and w∈Fi ,

such thatm mod T = i and v[m,p] = w}.

Note thatB(X{F ,T}) ⊆
⋃T−1

i=0 Li.
Construct a non-deterministic graphGnd as follows. FixT

states labeledI0, I1, . . . , IT−1. Draw an edge for eacha∈Σ
and eachi ∈ [0, T − 1] from Ii to I(i+1) mod T with label a.
Fix a state labeledK, and draw an edge (cycle) fromK to K
with label a for eacha∈Σ. Now draw a path fromIi to K for
each wordw = w0w1 · · ·w|w j |−1 in F with phasei.

Note that we may reduce the number of states inGnd by
sharing common suffixes of forbidden words. From this ob-
servation, we have a simple relation for the number of states
in Gnd when suffixes are shared,

|V(Gnd)| = T + 1+
(

∑ lengths of distinct suffixes of words inF
)

.

Put Mnd,i = (Gnd,Σ, Ii , K). It is straightforward to show
that L(Mnd,i) = Lc

i . Indeed, a word inLc
i is of the form

uwv, whereu and v are elements ofΣ∗, w∈Fn, and (i +
|u|) mod T = n. These are precisely the words accepted by
Mnd,i.

Following the constructive proof in [22, Theorem 3.2], we

will build a deterministic automaton that acceptsL(Mnd,i)
c =

Li. First, construct a deterministic graphGd from Gnd via
the well-knownsubset construction algorithm, e.g., [16, The-
orem 3.3.2], as follows. The state set,V(Gd), is the set of all
nonempty subsets ofV(Gnd). For every edgee in E(Gnd) from
i(e) to t(e) put edges inE(Gd) with labelsL(e) from each
I ∈V(Gd) to eachJ ∈V(Gd) such thati(e)∈ I and t(e)∈ J.

Put M′
i = (Gd,Σ, Ii , F), where F is the subset ofV(Gd)

consisting of those states that contain the accepting stateof
Mnd,i, i.e., K. The automatonM′

i is deterministic and one can
show thatL(M′

i) = L(Mnd,i), e.g., [22, Theorem 2.1]. (We re-
mark that this subset construction has, in generally, complexity
that is exponential in the size of the initial presentation.)

Let Mi = (Gd,Σ, Ii ,V(Gd) − F), i.e., the automaton con-
structed from M′

i by switching the roles of the accepting
and non-accepting states. SinceGd is deterministic,Mi ac-
cepts a wordw if and only if w is in Lc(M′

i), therefore
L(Mi) = Lc(M′

i) = Li. Note that the underlying labeled
graphGd and the set of accepting statesV(Gd) − F are the
same for eachi ∈ [0, . . . , T − 1], i.e., for each automatonMi.

No accepting state ofMi may be reached from a non-
accepting state. Hence we can delete the non-accepting states
from Gd without changing the language accepted byMi. LetG
denote the graph that results from deleting the non-accepting
states fromGd. The construction may be simplified by keep-
ing in mind that all accepting states will be deleted fromGd,
hence there is no need to distinguish between different ac-
cepting states nor to draw edges between different accepting
states when constructing the deterministic automaton. In ad-
dition, only the subgraph ofGd which may be reached from
the starting states needs to be considered.

Finally, take the essential subgraph ofG and apply a state-
minimization algorithm, e.g., [16, pp. 92]. If the shift is irre-
ducible, this will result in the Shannon cover.

In Table I, we summarize the construction procedure, in-
cluding the simplifications mentioned above.

TABLE I

SUMMARY OF GRAPH CONSTRUCTION

1) Construct the non-deterministic graphGnd as described.
2) Construct a deterministic graphGd using the subset con-

struction algorithm including only those states which
may be reached from one of the starting states, and di-
recting any edge which terminates in an accepting state
into a single accepting state.

3) ConstructG by deleting the accepting state and all edges
which begin or terminate there.

4) Take the essential subgraph ofG, and apply a state-
minimization algorithm.

The following proposition establishes thatXG = X{F ,T}.

Theorem 16.Choose{F , T}. Let G be the graph constructed
following the method described above. ThenX{F ,T} = XG .

Proof.Choosex∈XG . Since|V(G)| is finite and every state
in G is reachable from someIi, choose a starting stateIi such
that any sub-word ofx lies on a path originating fromIi. Letπ
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be a path starting atIi and terminating ati(L−1(x0)). Putk =
−(|π |+ i). Then for allm and allw∈Fn, if m mod T = n
thenσk(x)[m,m+|w|−1] 6= w. Thereforeσk(x)∈X{F ,T} and
XG ⊆ X{F ,T}.

For the reverse inclusion, choosew∈B(X{F ,T}). Then
there exists i such that w∈ Li. In addition, w is left-
extendable by words inB(X{F ,T}). Hence we can choose
uw∈B(X{F ,T}) such thatuw∈ ⋃T−1

i=0 Li and w∈B(XG),
i.e., we can choose someu such that w lies on the es-
sential subgraph ofG. ThereforeB(X{F ,T}) ⊆ B(XG) and
X{F ,T} ⊆ XG .

Example 12 Consider the PFT(2) shift space over the binary
alphabet{0, 1} with F0 = {101} and F1 = {010}. Ap-
plying the graph construction described above produces the
non-deterministic graphGnd shown in Fig. 12, the determinis-
tic graphGd shown in Fig. 13, and finally the Shannon cover
G shown in Fig. 14,

I0

K

I1

1 0
1

0 1
0

0, 1

0, 10, 1

Fig. 12. GraphGnd corresponding toΣ = {0, 1}, T = 2, F0 = {101},
F1 = {010}.

K

1

1

0
1

0

0

0

1
0

1

0, 1

10

Fig. 13. GraphGd corresponding toΣ = {0, 1}, T = 2, F0 = {101},
F1 = {010}.

B. Combinatorial Determination of Capacity

The method we describe here is a computation of the ca-
pacity directly from the periodic forbidden list. As metioned

1

1

0

0

0

0

1

1
10

Fig. 14. Shannon cover corresponding toΣ = {0, 1}, T = 2, F0 = {101},
F1 = {010}.

in the Introduction, it extends to periodic finite shifts thecom-
putation of the capacity of shifts of finite type presented by
Pimentel and Ucĥoa-Filho in [21], based upon the combina-
torial Inclusion-Exclusion Principle [19], [20], also known as
the Goulden-Jackson Cluster Method[31], [32], [33, III.7.4],
[34]).

Let us assume thatX = XF , whereF is some finite anti-
factorial periodic forbidden list for a periodT. (Note that if the
given list is not anti-factorial, it can be changed into one that is
in linear time [13].) DenotingBn(X) by xn for convenience,
we define the generating series counting the number of factors
of X:

C(z) = ∑
n>0

xnzn. (1)

It is known (see for instance [37]) thatC(z) is a rational series
and thatC(X) is log 1/ρ, whereρ is the radius of convergence
of C(z).

Recalling the definition of the setX0 in Section II, we de-
note byB(i)(X) (for 0 6 i < T) the set of factorsu of X
such thatu ≺i x, for somex∈ X0.

We set x
(i)
n = |B(i)(X) ∩ Σn|, and define the generating

series of the integers∑T−1
i=0 x

(i)
n :

D(z) = ∑
n>0

T−1

∑
i=0

x
(i)
n zn. (2)

For an irreducible PFT shiftX, it is known that

C(X) = lim
n→∞

1

n
log

T−1

∑
i=0

x
(i)
n . (3)

andC(X) is log 1/ρ, whereρ is the radius of convergence of
D(z).

Let 0 6 i < T and let k > 0. If u∈Σ∗, we denote by
n(u, i) the number of occurrences of a factorv of u such
that v ≺i+ j u and v∈F j mod T. We denote byd(u, i, k) the
number of ways to choosek indices j such that there is a factor
v of u with v ≺i+ j u andv∈F j mod T. Note thatd(u, i, k) =
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(n(u,i)
k ). Finally we define

∆(n, i, k) = ∑
u:|u|=n

d(u, i, k).

By the Inclusion-Exclusion Principle, each wordu of length
n contributes0 to ∑u:|u|=n d(u, i, k) if it contains at least one
word v ≺i+ j u, where v∈F j mod T. It contributes1 other-
wise, i.e. when it belongs toB(i)(X). We deduce that

x
(i)
n = ∑

k>0

(−1)kd(n, i, k). (4)

We define the following bivariate generating series:

D(z, y, i) = ∑
n>0

∑
k>0

∆(n, i, k)zn yk , (5)

D(z, y) =
T−1

∑
i=0

D(z, y, i). (6)

It follows from Equations (2), (4), and (6) that

D(z) = D(z,−1).

Example 13 We consider the PFT shiftX = XF over the
alphabetΣ = {0, 1} for a periodT = 4 with

F0 = {111},

F1 = {111},

F2 = {1111},

F3 = ∅.

This list of periodically forbidden words defines the
TMTR(2,2,3,3) constraint. This constraint can be described
as follows. The number of consecutive1’s ending at the time
indices0 mod 4 and 1 mod 4 is at most2, while the num-
ber of consecutive1’s ending at the time indices2 mod 4 and
3 mod 4 is at most3. It is not difficult to see that this de-
scription is equivalent to saying that the block111 is forbidden
when it begins at the time indices2 mod 4 and3 mod 4, and
the block1111 is forbidden when it begins at the time indices
0 mod 4. Hence the TMTR(2,2,3,3) constraint is described by
the shiftXF .

Let u = 000011111100. It has the word111 of F0 as
a factor at position4, the word 111 of F1 as a factor at
position5, and the word1111 of F2 as a factor at position6.
Hence it contributes1 to d(12, 0, 0), 3 to d(12, 0, 1), (3

2) to
d(12, 0, 2), 1 to d(12, 0, 3), and0 to d(12, 0, k) for k > 3. Its
total contribution to∑k>0(−1)kd(n, 0, k) is 1 − (3

1) + (3
2) −

1 = 0.
Now let u = 000000000000. It contributes1 to the sum

∑k>0(−1)kd(n, 0, k) since it contributes1 to d(12, 0, 0) and
0 to d(12, 0, k) for k > 0.

We now describe how to compute the bivariate series
D(z, y). Let F = (F0, . . . ,FT−1) be a finite periodic for-
bidden list. If Fi is a nonempty set, we define the setF̃i =
{( f , i) | f ∈Fi}. If Fi is the empty set we denote bỹFi the
singleton containing the integeri. We denote byF̃ the union
of the F̃i. Note that the size of̃F is at mostsize(F ) + T − 1.

Let (x, i), (y, j) be two pairs of a word and an integer mod-
ulus T. We denote by(x, i) ⊗ (y, j) the set of pairs(uvw, i)

such thatx = uv, y = vw, with u 6= ε, u 6= x, and
v ≺ j−i mod T x (see Fig. 15).

j + 3T

v w

u v

Fig. 15. An example of a factorization ofx = uv and y = vw. The pair
(uvw, i) belongs to(x, i)⊗ (y, j).

We define a square matrixG(z) with entries indexed by
F̃ × F̃ as follows. For any( f , i), (g, j), k, r in F̃,

G(z)( f ,i)(g, j) = ∑
(uvw,i)∈ ( f ,i)⊗(g, j)

f =uv, g=vu

z|u|,

G(z)k( f ,i) = G(z)( f ,i)k = G(z)kr = 0.

Example 13 (continued). The matrix G(z) for the periodic
forbidden listF of period 4 of Example 13 is the following
|F̃| × |F̃| matrix with F̃ = {(111, 0), (111, 1), (1111, 2), 3}.

G(z) =









0 z z2 0
0 0 z 0
z2 z3 0 0
0 0 0 0









.

If P, Q are sets of pairs(x, i), wherex is a word and0 6

i < T, we denote byP ⊗ Q the set

P ⊗ Q =
⋃

(x,i)∈ P
(y, j)∈ Q

(x, i) ⊗ (y, j),

and by (x, i) ⊗ Q the set{(x, i)} ⊗ Q. Note that((x, i) ⊗
(y, j)) ⊗ (z, k) = (x, i) ⊗ ((y, j) ⊗ (z, k)), and that, fork >
0, the (( f , i), (g, j))th entry of G(z)kz|g| is the number of
sequencesu beginning with f , ending withg such that(u, i)
is a k ⊗-product in( f , i)⊗ . . . ⊗ (g, j).

We extend the construction of the sets of pairs( f , i)⊗ (g, j)
to all possible⊗-products among sequences inF . Let

V = ∪r>2{( f1, i1) ⊗ ( f2, i2) ⊗ . . . ⊗ ( fr, ir) | ( f j, i j)∈ F̃}.

For 0 6 i, j < T, we define the bivariate series

Vi, j(z, y) = ∑
n>0

∑
k>0

v(n, k, i, j)zn yk+1,

wherev(n, k, i, j) is the number of wordsu of lengthn such
that (u, i) is a k-fold ⊗-product ( f1, i1) ⊗ ( f2, i2) ⊗ . . . ⊗
( fk, ik) with i1 = i and ik + | fk| = j. Hence each wordu
counted in the above sum has a decomposition into(k + 1)-
overlapping words inF (see Fig. 16).

We define theT × T-matrix V(z, y)

V(z, y) = (Vi, j(z, y))06i, j<T .
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Fig. 16. An example of a 3-overlapping. Note that overlappings like the ones
drawn in dashed lines are not allowed since the periodic listis anti-factorial.

We then define the|F̃| × T matrix Φ(z) as follows: For any
( f , i), k in I, 0 6 j < T,

Φ(z)( f ,i) j =

{

z| f | if j = i + | f | mod T,

0 otherwise,

Φ(z)k j = 0.

Example 13 (continued). The matrixΦ(z) for the periodic
forbidden listF for period 4 in Example 13 is an|F̃| × T
matrix with F̃ = {(111, 0), (111, 1), (1111, 2), 3}.

Φ(z) =









0 0 0 z3

z3 0 0 0
0 0 z4 0
0 0 0 0









.

We define aT × |F̃|-matrixΨ(z) as follows: For any( f , i),
k in F̃ and 0 6 j < T,

Ψ(z) j( f ,i) =

{

1 if j = i,

0 otherwise,

Ψ(z) jk =

{

1 if k = j,

0 otherwise.

Example 13 (continued). The matrixΨ(z) for the periodic
forbidden listF for period 4 in Example 13 is an|F̃| × T
matrix with F̃ = {(111, 0), (111, 1), (1111, 2), 3}.

Ψ(z) =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

Note that in this exampleΦ(z) andΨ(z) are square matrices
since|F̃| = T.

Therefore, for0 6 i, j < T, we get

Vi, j(z, y) = ∑
n>0

∑
k>0

v(n, k, i, j)zn yk y,

= ∑
k>0

(

∑
n>0

v(n, k, i, j)zn

)

yk y,

= ∑
k>0

1i
TΨ(z)G(z)kΦ(z)1j yk y

where1i is the column characteristic vector ofi, andI is the
|F̃| × |F̃| identity matrix.

Hence

V(z, y) = Ψ(z) ∑
k>0

(G(z)k yk)Φ(z)y,

= Ψ(z)(I − G(z)y)−1Φ(z)y.

whereI is the |F̃| × |F̃| identity matrix.
Finally, we define aT × T square matrixP(z). For any

0 6 i, j < T,

P(z)i, j =

{

|Σ|z if j = i + 1 mod T,

0 otherwise.

Example 13 (continued). The matrix P(z) for the periodic
forbidden listF of period 4 of Example 13 is an|F̃| × |F̃|
matrix with F̃ = {(111, 0), (111, 1), (1111, 2), 3}.

P(z) =









0 2z 0 0
0 0 2z 0
0 0 0 2z
2z 0 0 0









.

For 0 6 i, j < T, we denote byVi j the set of pairs(u, i)
of V which are⊗-products of the form( f1, i1) ⊗ ( f2, i2) ⊗
. . . ⊗ ( fr, ir) with i1 = i and j = i + |u| mod T (= ir +
| fr| mod T).

Let P = ({0, 1, . . . , T − 1}, E) be a finite state cover with
labels inΣ∗ and an edge labeled by each letter of the alphabet
Σ from the statei to the statei + 1 mod T, and a path labeled
by u from the statei to the statej for each wordu such
that (u, i)∈Vi j. The form ofP is illustrated in Fig. 17 for
Σ = {0, 1}.

j

1

0, 1

0

0, 1

T − 1

0, 1

i

0, 1

u∈Vi j

0, 1

0, 1

Fig. 17. The automatonP for the periodT.

It comes from [32] that the bivariate seriesD(z, y, i) enu-
merates the labels of paths inP starting at statei for any
0 6 i < T. The bivariate seriesD(z, y) enumerates the labels
of all paths inP .

Hence

D(z, y) = 1T ∑
r>0

(P(z) + V(z, y))r1

= 1T(1 − P(z) − Ψ(z)(I − G(z)y)−1Φ(z)y)−11.
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We get

D(z) = 1T(1 − P(z) + Ψ(z)(I + G(z))−1Φ(z))−11. (7)

As a consequence,C(X) is log 1/ρ, whereρ is the positive
root of minimal modulus of

det

(

I − P(z) + Ψ(z)(I + G(z))−1Φ(z)

)

. (8)

Example 13 (continued). For the periodic forbidden listF of
period 4 of Example 13, the seriesD(z) is1

D(z) =
1

4z8 − 13z4 + 1

(

8z + 16z2 + 30z3 + 4z4

+2z5 − 8z6 − 12z7 + z8 − 2z9 + z10 + 4
)

The capacity ofX is log 1/ρ, whereρ is the positive root of
minimal modulus of

13z4 − 4z8 − 1 = (3z2 + 2z4 − 1)(3z2 − 2z4 + 1),

We getρ =
√√

17−3
2 andλ = 1/ρ = 1.887207676.

Example 14 We consider the PFT shiftX = XF over the
alphabetΣ = {0, 1} for a periodT = 2 with

F0 = {111},

F1 = ∅.

The |F̃| × |F̃| matrices G(z), Φ(z) and P(z), with F̃ =
{(111, 0), 1} are

G(z) =

[

z2 0
0 0

]

, Φ(z) =

[

0 z3

0 0

]

, P(z) =

[

0 2z
2z 0

]

.

The seriesD(z) is

D(z) =
−4z − 2z2 − 3z3 − 2

3z2 + 2z4 − 1
.

The capacity ofX is log 1/ρ, whereρ is the positive root

of minimal modulus of3z2 + 2z4 − 1 We getρ =
√√

17−3
2 .

This PFT shift has the same capacity as the PFT shift of Ex-
ample 13. See [9] for a classification of the capacities of the
TMTR(m) constraints wherem is a positive integral vector
up to a size four.

Example 15 We consider the PFT shiftX = XF over the
alphabetΣ = {0, 1} for a periodT = 2 with

F0 = {101},

F1 = {010}.

The |F̃| × |F̃| matrices G(z), Φ(z) and P(z), with F̃ =
{(101, 0), (010, 1)} are

G(z) =

[

z2 z
z z2

]

, Φ(z) =

[

0 z3

z3 0

]

, P(z) =

[

0 2z
2z 0

]

.

The seriesD(z) is

D(z) =
−2z − 2z2 − 2

z + z2 + z3 − 1
.

1obtained with a MuPAD computation.

The capacity ofX is log 1/ρ, whereρ is the positive root
of minimal modulus ofz + z2 + z3 − 1. This time-varying
constraint has a capacity approximatively0.8791464216. This
capacity is equal to the capacity of the MTR(2) constraint (see
[38] for the relationship between these two constraints).

VII. C ONCLUSIONS

We have introduced the class of periodic-finite-type (PFT)
shift spaces. This class of sofic shifts lie between the class
of finite-type shifts and almost-finite-type shifts. We proved
several properties of graph presentations of these spaces.For
a given PFT space, we identified a particular list of periodi-
cally forbidden words, the periodic first-offenders, that enjoy
certain minimality properties with respect to other forbidden
lists defining the space. Finally, we consider the calculation
of the capacity of a PFT shift. We present a straightforward
algorithm to construct a graph presenting a PFT space that
can be used to determine the capacity of the constraints. We
also present a quite different method which relies upon tech-
niques from enumerative combinatorics and that appears to be
very effective when the size of the periodic forbidden blocks
is large compared to the number of blocks in the list.
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