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Periodic Finite-Type Shift Spaces

Marie-Pierre Bal, Member, IEEE Maxime CrochemoreMember, |IEEE
Bruce E. MoisionMember, IEEE and Paul H. SiegeFkellow, IEEE

Abstract— We study the class of periodic finite-type (PFT) shift sequences limit the running-digital-sums of subsequetwes
spaces, which can be used to model time-varying constrained range ofc > 2 consecutive integer values. These codes, of-
codes used in digital magnetic recording systems. A PFT shift is 1o calleddc-free ensure that the average power spectral den-

determined by a finite list of periodically forbidden words. We itv of cod ish ¢ f In sont
show that the class of PFT shifts properly contains all finite-type Sity of code sequences vanishes at zero trequency. in sontra

(FT) shifts, and the class of almost finite-type (AFT) shifts prop- t0 the (d,k)-RLL constraint, thec-charge constraint cannot
erly contains all PFT shifts. We establish several basic properties be characterized by a finite list of forbidden words. However

of PFT shift spaces of a given periodl', and provide a charac- these constraints can be specified by a countably infinitefset

terization of such a shift in terms of properties of its Shannon 5 pidden words. They are representative of constrairitecta
cover (i.e., its unique minimal, deterministic, irreducible graph .-
almost finite-type (AFT)

presentation). We present an algorithm that, given the Shannon . . .
cover G of an irreducible sofic shift X, decides whether or not During the past decade, advances in digital recording have
X is PFT in time that is quadratic in the number of states of led to the introduction of constrained codes that are desdri

G. From any periodic irreducible presentation of a given period, py time-varying constraints. An important example is thafa
we define a periodic forbidden list, unique up to conjugacy for ily of Time-varying Maximum Transition Run codes with pa-

that period, that satisfies certain minimality properties. We show .. .
that an irreducible sofic shift is PFT if and only if the list corre- rameteryj, j+ 1), denoted TMTRY, j +1). These codes con-

sponding to its Shannon coverG and its period is finite. Finally, ~Strain the run-lengths of 1s to be at mgsstarting at odd
we discuss methods for computing the capacity of a PFT shift time indices andj + 1 beginning at even time indices [2],

from a periodic forbidden list, either by construction of a corre-  [3], [4], [5]. These codes were developed for systems employ
sponding graph or in a combinatorial manner directly from the  j,q higher-order partial-response equalization and mawim
list itself. ST . .
likelihood sequence detection. For selected partialaesp
~ Index Terms—Shift spaces, sofic system, constrained code,target channels, they amistance-enhancingodes; that is,
finite-type, capacity of constrained system, periodic constraint they eliminate bit patterns occurring in the dominant error
events of the target-matched sequence detector [6], [{RE
cently, generalized TMTR codes, which limit maximum run-
lengths of 1s beginning at more than two phases, have also
IGITAL data storage systems based upon magnetic abhden studied [9].
optical recording typically use constrained modulation Time-varying constraints also arise in the context of con-
codes designed to efficiently avoid sequences that are pretrained codes with unconstrained positions, introdundQ]
lematic to data recording and retrieval [1]. and further studied in [11], [12], [13]. These codes permit
The family of (d, k)-constrained run-length limited (RLL) the insertion of parity bits generated by a systematic error
codes over the binary alphabg, 1} is a well known exam- correcting code into specified bit locations in a constraine
ple. The code sequences satisfy the constraint that theerumtnde sequence, thereby efficiently combining the moduiatio
of Os between consecutive 1s in a sequence is at teasd and error correction functions of the two codes.
no more thark. Their purpose is to aid in timing recovery and In general, these time-varying constraints are not FT, but
to limit intersymbol interference. Thgi, k)-RLL constraint is they all have the property that they can be specified by a finite
characterized by a finite list of forbidden words. For exampllist of periodically forbidden words. The study of such time
the (1, 3)-RLL sequences are precisely those in which neithearying constrained systems was initiated in [14], [15] eveh
of the words{11,0000} appears. Such constraints are callethey were callecperiodic finite-type (PFT)The purpose of
finite-type (FT) this paper is to present a detailed analysis of their pragsert
Another widely used family of codes are thecharge con-  Section |l reviews necessary concepts, terminology, and no
strained codes over the bipolar alphabetl }. Here, the code tation for use in the rest of the paper.
In Section Ill, we formulate the definition of PFT constraint
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I. INTRODUCTION



we give a necessary and sufficient condition for an irredacibwhose symbols are drawn from a finite alphabet

sofic shift to be a PFT) shift, based upon properties of its 7 def .

Shannon cover (i.e., its unique minimal, deterministice-ir 1% ={x|x;exr, VieZ}.

ducible graph presentati_on) [17]. This leads to an a_lgmithA word or block w € X, for some integer, is a finite string
that, when presented with the Shannon cogeof an irre- ot consecutive symbols. We say thatis asubworgsubblock
ducible sofic shift, decides in time quadratic in the numider @ ¢otor of the sequence, or equivalently thate contains

states ofg if the shift is PFT. w, if w=x;X;1...%,_1 for some index. We denote this

In Section V, we study periodic forbidden lists that offer Fact byw ~; x. To conveniently specify the position of a word
concise description of a PFT shift. From an irreducible Preithin a sequence, we write

sentation with periodl’, we derive a periodic forbidden list
that satisfies a minimality property for the chosen perfad Xi | e iy - X,
We prove that the list, up to a permutation of the time indices ) ) ) )
is unique and independent of the choice of the presentatiyfereéi < j. We sometimes writer; to denotex;. When
with period T. The notion of minimality, as well as the defini-the context is clear, we will use similar concepts and nofati
tion of the list, are directly inspired by the constructiditiee Whenx denotes a word.
set of first offenders of a FT shift [18], [16], so we refer to Let I* be the collection of words ovek, including the
the periodic forbidden list as the set périodic first offenders €mpty word, and leL* denote the subset of non-empty words
for the period. We then consider the periodic first offendef8 £*. Thelengthof a word, |w|, is the number of symbols in
corresponding to the Shannon cover and the period of its tf-and we refer to a block of length as ann-block The shift
derlying graph. We prove that an irreducible sofic shift ifPFMapo takes a sequenceto the sequencg = o(x) with ith
if and only if this list is finite. coordinatey; = x;,1. The inverse of the shift map takes a
We define the size of a periodic forbidden list to be the suffduencey to x = o~ (y) with ith coordinatex; = y;_1.
of the lengths of its words. We prove that the minimum size When speaking of a finite collection of words, we say
over all periodic forbidden lists for all periods is attainey a thatF is anti-factorial or non-redundantf no word u € 7 is
periodic forbidden list for a period dividing the period d¢fet a factor of any wordw € F with u # w.
graph underlying the Shannon cover. Let F be a collection of words over andxé denote the
Finally, in Section VI we discuss methods for computing theubset of£Z consisting of all bi-infinite sequences that do not
capacity of a PFT shift from a periodic forbidden list deperi contain a word fromF. In this contextF is referred to as a
tion of the shift. The conventional method for computing théorbidden list A shift spacés a setX = Xé. This terminology
capacity of a sofic shift is based upon determining the largeeflects the fact thaX is invariant under the operation of the
real eigenvalue of the adjacency matrix of a lossless ptasershift map, i.e.,o(X) = X. A shift space is ashift of finite
tion of the system. We review a number of techniques, sevet@be if there exists a finite sef such thatX = Xff.
of which are formulated in terms of the theory of finite au- Let B,(X) denote the set of all length-words that occur
tomata, for constructing such a presentation from a finéte lin X. The languageof X is the collection
of periodically forbidden words. o
We then present a quite different method which relies upon B(X) def U B(X),
the Principle of Inclusion and Exclusiofi9], [20] from enu- ne0
merative comblnatorlcs. It extend§ to PFT shifts the tanml whereBy(X) — {e}, the empty word. The language of a shift
presented by Pimentel and WrFilho in [21] for computing . o .
the capacity of FT shifts from a finite list of forbidden words>P2Ce determines the space [16, Proposition 1.3.4]. That is
It appears to be quite effective when the size of the periodb"Inflnlte sequence belongs to the shift spack if and only

forbidden blocks is large compared to the number of bIocIﬁga" of its sub-blocks belong t#(X). ConsideringBy (X) as

: . 7
in the list, as is the case for some TMTR constraints. antﬁg)r;?:et,_ thavth higher power codgy : X — (By(X))
Section VII concludes the paper. IS PpINg

(YN (%)) = X[in,iN+N-1]/
Il. BACKGROUND AND TERMINOLOGY . .
which takes a sequence fra¥hand breaks it into a sequence of

In this section we review terminology and background re- - . : N def

sults to be used in the remainder of the paper. The notatior?ll(rjun ove_rlappmg\l bI.OCkS' The 'mage oK underyy, X =
. ; .~ ¥YN(X), is the Nth higher power shiftof X.

Sections 1I-A and 1I-B follows that found in the text by Lind Let X b hift & and lety : B x

and Marcus [16], and a thorough presentation may be fouPd € € a shift space ovel, and let¥ : Byq41(X) —

there. Section II-C contains terminology on finite autonmata be a mapping from allowedm + a + 1)-blocks in X to

evant to the construction procedures in Section VI-A. A more mr?glsnltri] ?n ‘;lilp:a?:; Thzsgd{;% bltﬁcknc]ode/;/:h n?e)znory
detailed exposition on automata may be found in [22]. m andanticipationa induced by¥’ is the mapping) : X —

rZ defined by
A. Shift Spaces y=1(x),
Let £Z denote the set of bi-infinite sequences where, forx € X,

X =...X_3X_2X_1X0X1X2 ... Yi :W(X[i,m,lgr”}).



A sliding block codey : X — Y is a conjugacyfrom X An irreducible sofic shift isalmost-finite-type (AFTIf it

to Y if it is invertible. The shiftsX and Y are conjugateif has a presentation with finite local anticipation and finiteel

Y = ¢(X) andy is a conjugacy. memory. Since every sofic shift has a deterministic presenta
tion [16, Theorem 3.3.2], a sofic shift is AFT if and only if it

. . has an irreducible, deterministic presentation with fithiteal

B. Sofic Shifts memory.

A labeled graphG = (G, L) consists of a graplG =  Sofic shifts are shift spaces [16, Theorem 3.1.4]. Hence, for
(V, E) with a finite set of state3’ = V(G), a finite set of every X there exists a forbidden listF, of words over:
directed edgeg = E(G) connecting the states, andadeling such thatXg = x;,

L:E — I that assigns a label to each edge. Each @d§e  There is a unique, up to labeled graph isomorphism, deter-
directed, with initial statei(e) and terminal state(e). A path ministic graph presenting an irreducible sofic shift witre th
in the graph is a finite sequence of edges- eje; - - - en SUCh  minimal number of states [16, Theorem 3.3.18]. This graph is
thatt(e;) = i(ej.1). The initial state of a patit = e1ez - -en  referred to as th&hannon coveof the shift. It is also called

is defined as(7) = i(e;), and the terminal state is defined aghe Fischer cover One can obtain the Shannon cover from
t(r) = t(en). A path is acycleif i(7r) = t(7r). The label of any presentation via determinizing and state-minimizig-a

7 is the wordL(7r) = L(e1)L(ez) ... L(en). rithms, e.g., [16, pp. 92], [22, pp. 68]. A Shannon cover glva
Whereas a path is finite, walk on G is a bi-infinite se- has at least one synchronizing word [17]. An irreduciblecsofi
quence of edges, = ---e_jeger--- such thatt(e;) = shift is FT (resp. AFT) if and only if the Shannon cover is
i(ej+1). The label of a walk is the sequence definite (resp. has finite local memory) [17].
def The follower setFg(I) of statel in V is the collection of

Loo(£) ~L(e-1)L(eo)Ller) - - labels of paths starting dt
A graph G is irreducible if for any pair of stated, ] €V def . .
there exists a path with(7r) = I andt(z) = J. An irre- Fg(I) = {L(m)|£(7) € B(Xg) andi(x) = I}.
ducible componenof a graphG is a maximal (with respect Note that for a graphg,
to inclusion of vertices) irreducible subgraph Gf

A vertex I € V is strandedif either no edges start dt or U Fg(I) = B(Xg).
no edges terminate dt A graph isessentialif no vertex is revg)
stranded. The follower set of a collection of states is simply the union

A graph haslocal anticipationa if a is the smallest non- of their respective follower sets. Théth higher power graph
negative integer such that, for eatke ), all paths of length GN = (GN, £N) of G is the labeled graph with underlying
a+ 1 that start ai and have the same label start with the samgraphGYN and the naturally induced labelingY. Specifically,
edge. Similarly, a graph hadscal memorym if m is the small- the vertex set i8’(GN) = V(G), and there is one edgs,
est nonnegative integer such that, for edeh), all paths of in E(GN) from I to ] with label LN (e,;) = L£(7) for each
lengthm + 1 that end at and have the same label end wittpath 7r of length N from I to | in G. The Nth higher power
the same edge. A graph éeterministicif it has local antici- graph presents tha/th higher power shiftXgn = (Xg)N.
pation0, i.e., if edges with the same initial state have distinct For,]J eV, let Ay denote the number of edges frahto
labels. J in G. The adjacency matrixof G is the |V| x |V| matrix

A graph is(m, a)-definiteif, given any wordw = w_,, ., Ag = [Aj)].
the set of pathst = e, ...¢eo...e, that generatev all agree  Given a nonnegative matrix, the period of state | per(I),
in the edgex. If a graph is(m, a)-definite for some integers s the greatest common divisor of those integers: 1 for
anda, it is said to bedefinite An irreducible graph is definite which (A™);; > 0, if such integers exist. Otherwise, we define
if and only if no two distinct cycles generate the same worger(l) — 0. Theperiodper(A) of A is defined as the greatest

An (m, 0)-definite graph is said to bénite-memory ~ common divisor of the finite periods {d), or asco if none
A sofic shiftXg is the set of bi-infinite sequences obtainedf the state periods pél) is finite. Theperiod of a graph
by reading the labels of walks o@, per(G), is the period of its adjacency matrix. It is the same

def as the greatest common divisor of the lengths of cycleS.in
Xg = {x[Leo(£) = x for somes a walk onG }. The periods of the states in an irreducible graph are equal.

We say thal is apresentatioror coverof Xg, or G presents For a labeled graply = (G, £), the period ofg is defined
Xg. A sofic shift isirreducibleif it has an irreducible presen-as pe(G).
tation. The set of finite words generated by path§ jlenoted ~ LetG be a labeled graph. }f is a positive integer, aoloring
S8(G), is called aconstrained systenand similar terminology of G in p colors, or ap-coloring for short, is a functiorr from
is used in that context. V(G)t10{0,1,...,p— 1} such that, whenever there is an edge

Let G be a deterministic graph. For any wonds B(Xg), from a statel to a state], c(J) = c¢(I) +1 mod p. Note that
we denote byr(u) the set of terminal states of all paths withan irreducible presentation has a coloringpircolors if and
label u. The cardinality ofr(u) is called therank of 1, which only if its period is a multiple ofp.
we refer to asr(u). If r(u) = 1, thenu is called asynchro-  We say that a graplG; is T-partite if the vertices ofG
nizingword, and it is said tdocusto the single state in(u). may be divided intdl disjoint subset®,, D1, ..., Dy_1 such



that any edge that begins iD; terminates inD(l.H) mod T Let X be a finite alphabet. Lef’ be a positive integer (the

If per(G) = T then G is T-partite, and the sets period), and let* = (Fo, F1,..., Fr_1) be alist of T pos-
Dy, Dy,...,Dr_q are referred to as theeriod classe®f the sibly empty sets of finite-length words. The list is said to be
graph. regular (resp.finite) if all its sets are regular (resp. finite) sets.

The T-cascadeof a graphG is the T-partite graph with  Let Xy be the set of bi-infinite words over X such that,
vertex set given by’ copiesVy, V1, ..., Vr_1 of the vertex set for each integei, one has
V(G) and exactly one edgefrom [ € V; to | € V(i+1) mod T
for each edge from I to J in G. For a sofic shifg = (G, L),
the T-cascade ofj is the shift presented by thE-cascade of Hence, at position, the wordx avoids the words iF; 04 T
G with the natural labeling induced bg. for all positionsi. A word f € F; is said to havephaseequal

If G = (G,L) is irreducible with pefG) = p, then toi, and we sometimes denote such a word together with its
GT = (GT, L") decomposes intqg = gcd(p, T) irreducible phase by(f,7). The set of all bi-infinite sequences obtained
components. Moreover, it is easy to verify that each compby all integer shifts of words Xy defines a subshifk. The
nent has periogh /. list 7 is called aperiodic forbidden listof the shiftX for the
period T. Note that the definition oK depends on the choice
of the alphabet..

More formally, we have the following definition.

U=<;x=1u ¢ Fimod T

C. Finite Automata

A languageover X is a subsefl. C X*. A finite automaton
M is defined by a quadrupld! = (G, %, Iy, F), where X Definition 1. Given a periodl and a periodic forbidden list
is theinput alphabetG = (V, E, L) is a finite-state labeled F = (Fy, Fq,...,Fr_1), The shiftX = XZFT is defined
graph,y € V is theinitial state, and® C V is the set offinal  as the set of all bi-infinite sequencesver the alphabet such
states. Elements df are acceptingstates of the automaton;that there exists some integee [0, T — 1] with the property

any other state is aon-acceptingstate. that thek-shifted sequence (x) satisfies
An automaton igleterministicif G is deterministic. A word P
w is acceptedby automatorM = (G, £, Iy, F) if there exists u=i0 (x) = u ¢ FimodT

a pathz on G with i(7r) = Iy, t(mr) € F, and L(7) = w. for every integei. Note thak may depend upon.
Thelanguage accepted by the automatéfiM), is the set of

words accepted by the automatonrejular language (or set) ~ Shift invariance ofX = XZ}'IT is an immediate conse-
isa |anguage accepted by a finite automaton. In a determinigtuence of the definition. Sometimes we will use the simpler
automaton, there exists a unique path from the initial state notationXz 1, or X to denote the shifX when the context
an accepting state that generates eachL(M). prevents any confusion.
so;‘lg?esrﬁi fltz :nga:z;:Iacrolr;ensg%(;rglesnc'?hgeg\;\ Zigéznggzgzz@%position 1. A shift is a sofic shift if and only if it has a reg-
shift is a regular language [16], [18, A.12]. However, ndt af"lfér periodic forbidden list for any period.
regular languages are languages of sofic shifts. In paaticul Proof.Let X be a sofic shift over a finite alphabEt Hence
if M =(G,%, I, F), thenL(M) does not necessarily equalB(X) is a regular language. For any positive inteffethe list
B(Xg). Simple counter-examples may be constructed frofh defined byF; = X* — X*B(X)X*, forany0 <i < T —1,
graphs with initial or final states that are stranded. is a regular periodic forbidden list of for the periodT.

The graph construction algorithm in Section VI-A makes Conversely, supppos& = X r 1, for a periodT where
use of the constructive proof that the class of regular laggas F; is a regular language for any < i < T—1. Let G
is closed under complementation; see, e.g., [22, Theorm 3be a finite-state automaton accepting the regular language
Hence, ifL is accepted by a finite automaton, then there isl& = L* — uiT:})l(ZT)*Zi]:iZ*. The finite-state labeled graph
finite automaton that accepts its complement. obtained from this automaton by removing the non-final state
of G and by keeping its essential paire(the states belonging
to a bi-infinite path) is a presentation of the shift m

IIl. PERIODIC-FINITE-TYPE (PFT) SHIFT SPACES It follows from the definition that the list

In this section we formally introduce the class of periodic
finite-type (PFT) shift spaces and study their relationgbip F' = (Fr_1,Fo, -, Fr_a)

FT shifts and AFT shifts. formed by adding one, modul®, to the phase of eacty, i)

o _ pair in F, satisfiesX; z ry = X(z r}. We refer to the peri-

A. Periodic Forbidden Words odic forbidden lists obtained by repeated application @ th

In Section II-A, we defined a shift space in terms of a foprocedure as theonjugatesof the list F.
bidden listF. Here, we will define a sequence space in terms
pf a set of pgrlodlcally forbldd'en. Wor(js. A subtlety is remggi B. PET Shifts
in the definition to ensure shift invariance.

The notion of periodically forbidden words [14] generatize A shift spaceX is periodic finite-type (PFTfor a positive
the notion of minimal forbidden words (or minimal forbidderinteger periodI” if it can be described aX = X’ff,T}, where
factors) of a bi-infinite word (see for instance [23], [245]). F is afinite periodic forbidden listF = (Fy, F1, ..., Fr_1)-



We say that such a shiK is PFT(I'). Note that a shift is finite-  To show the reverse inclusion, choase X -, and letk be
type if and only if it is PFT(1). an integer such thay = o*(x) satisfiesy, yi1-1] # W

Example 1 Consider the PFT sofic shif over the alphabet fOr €achwe 7 agd meZ with m mod T = 0. Since
{0,1} presented by the graph shown in Fig. 1. Foe 2, the U(LT) presentsZ®, y is the label of a walk ori/(l, T).
shift X has the periodic forbidden lisF = (Fo, 7y), with L€t & = (...e—1ees...) be the walk onl/(l,T) such
Fo = {1}, F, = 0. that £.(¢§) = y and |(¢0) € V. Suppose an ed.ge i8 is
deleted when constructing (so thaty ¢ Xg). This occurs
only if Yy i1y = w for somew e F and m € Z with
0 m mod T = 0, contradicting the properties af. Therefore
xEXg andXr C Xg. ]
The constructive proof of Theorem 2 provides a method to
Q c obtain a graph presenting a PFT shift. The drawback of using
the method in practice is the size of the initial represéorat
which grows exponentially with the length of the longest el-
ement inF. In Section VI, we discuss alternative algorithms
1 for generating graph presentations of a PFT shift.
The construction in Theorem 2 actually implies a stronger

Fig.1. The periodic finite type shifKz for the period2 over {0,1} with result, namely’ that any PFT shift is AFT.
Fo={1h 71 =0 Theorem 3.Irreducible PFT shifts are AFT.

Itis easy to see that, for a PFIT(shift X » over the alphabet ~ Proof. Let X, 7, be a PFT{) shift over the alphabel.
¥, one can construct a periodic forbidden U5t in which all It is easy to see that the graghconstructed in Theorem 2 is
words have the same phase, the same length, or both. A cateterministic. Therefore, to prove th¥ r ) is AFT, it suf-
mon phase is obtained by taking each wgrd F;, prepending fices to show thaty has finite local memory. In fact, since
each of thdZ| prefixes of lengthi to f, and associating phaseG C U(l,T), and the operation of passing to a subgraph
0 with each of the resulting words. The sets corresponding poeserves the property of finite local memory, it suffices to
the other phases are defined to be empty sets. A commanify that/(I, T) has this property. Without loss of gener-
word length is achieved by replacing eaghin F; with the ality, consider a verteX € V,, with I = (aa2...4;). Let
words obtained by appending each of {ad!~|f| suffixes to 7 = ege1...¢; and ' = e} ... e} be two paths of length
f, wherel > maxs e r |f|, so that each word has length [+ 1 that terminate inl and generate the worbb; . ..D;.
Finally, a list that satisfies both properties may be cowstai Let ] = i(e;) and ]’ = i(e). From the definition of{ (I, T),
by applying the first transformation followed by the secondit follows that] € Vr_; and]’ € Vr_1, and, moreover, botfi

and]’ correspond to the statgb; ...b;_1 = bpaiay ...a;_1.

C. PFT Sofic Shifts The edge from this state to stafewith label a; is unique,

The following theorem, an analog to [16, Theorem 3.1.% plying thate; = ¢;. Thusl/(1,T) has finite local memory.

for shifts of finite type, establishes that PFT shift spaces

sofic shifts by explicitly constructing a presentation. The sliding block coding theorem [16, Theorem 5.5.6] holds

for AFT systems [26]. Therefore there exist sliding-block-
Theorem 2. Every periodic-finite-type shift space is sofic.  gecodable finite-state codes into irreducible PFT shifteaat
Proof. Let X+ be a PFT) shift space. Assume, withouttional rates less than or equal to the Shannon capacity of the
loss of generality, thaf; = () fori = 1,...,T — 1, and that shift. (In Section VI, we address the computation of the ca-
each wordw € F has lengthw| = 1. pacity of PFT shifts.)
Forl > 1, letl(]) be the graph with vertex s&t(U/ (1)) =
! the set of alll-blocks of letters fromZ. For each pair of Proper PFT Shifts
vertices] = ajay...a; and] = biby... by in V(U(1)) with

tyas...a; = biby...b_1, draw an edge fron to | with We further distinguish a PFT shift gsoper if it is not FT.

label b, For any proper PFT shift, there exists a word that is allowed i
' i . some, but not all, phases. Hence proper PFT shifts arefJFT(
Let (I, T) be the T-cascade oft/(l) with vertex sets only for p > 1. The PFT(2) shift of Example 1 is proper.

Vo, V1,...Vr_1. LetU(I, T, F) be the graph formed from .
U(1, T) by deleting the edges starting and ending at each Vl-lrgre are two further examples of proper PFT constraints that

ave found practical application in magnetic recording- sys
tex] = ayay...a; €V, pmod 7 Such thatl = w wherew € 7, S . . »
as well as the vertex itself. tems. Historically, these constraints provided the mtitiva

Let G be the largest essential subgraph fl, T, F). for the definition and study of PFT shifts.
We will show that X = Xg. Choose x = Example 2 The well-known biphase shift is a PFT(2) shift
Loo(---e_jeper - -+ ) € Xg. Suppose thaitleg) € Vx, N V(G). over the binary alphabet wittFy = {00,11} and F; = 0.

Let y = o (x). Then Yimms1-1) 7 w for eachw € F and Fig. 2 illustrated( (I, T, F), as described in the proof of The-
m € Z with m mod T = 0. Thereforey € Xz and we conclude orem 2, where the cyclic nature of the cascade is represented
that Xg C Xr. by re-drawingV);. Deleted edges and states are drawn with



dashed lines. The Shannon cover is illustrated in Fig. 3 It i 0
easily shown and well known that the biphase shift is not FT
(see, for example, [16, Theorem 3.4.17], [17, p. 1657]) and

1 1 1
hence is proper PFH. @ c g 9

Fig.4. Shannon cover of the TMTR shift.

Proposition 5. If X is an irreducible PFTI) shift which has an
irreducible presentation of perigdthenX is PFT(gcd(T,q)).

Proof. Let X = Xz with F = (Fy, F1,..., Fr_1). Let
d = gcd(T,q) andk = T/d. Let Y = X¢ with £ =
(£0,&1,...,E4-1) and & = U’]?;é]-‘i+jd. It is straightforward
to see thatr C X.

Let us assume that there is a bi-infinite sequeniteX — Y.
It is no loss of generality to take as a periodic sequence.
Sincex ¢ Y, for each intege0 < ! < d —1, there are in-
tegers0 < i <d—-1,0 < j < k—1, a positive integer
n, and a finite factom of x at position! + nd + i such that
u € Fiyjs- Moreover, sincex is periodic, one may assume
without loss of generality that the distance between two po-
Fig.2. U(I, T, F) presenting the biphase shift. sitions [ + nd + i is greater than the maximal length of the
words in the listF. Let 7t be a path labeled by in the ir-
reducible presentation o of periodg. Let I be the state in
7t at position! + nd + i. Since the presentation is irreducible

1 1 and of periodg, there is a positive integelN such that for

any nonnegative integerthere is a cycle around of length

Q.G.Q NTq +rq. Sinceged(T,q) = d, there are integers, b such
0 0 thataT = —bg + d. One can moreover chooge> 0. Let

M be a positive integer such thatj —n) + MT > 0. We
chooser = b(j —n) + MT. Hence there is a cycle around
I of sizeZ = NTq+ b(j —n)g+ MTq. Its length is thus
equal to jd — nd mod T. The bi-infinite sequence labeling
a path obtained fronx by inserting this cycle at position
Example 3 The time-varying maximume-transition-run/ + nd + i belongs toX. At the position! + nd +i + Z,
(TMTR) shift [2], [3], [4] is a binary PFT(2) shift with equal tol +i+ jd mod T, this sequence contains a factor in
Fo = {111} and F; = (. The Shannon cover is shown INFi | idmod T- By inserting such cycles simultaneously into
Fig. 4. It is easy to verify the TMTR shift is not FT ; for ex-at all positions! + nd + i, we get a sequence such that every
ample, note that the Shannon cover contains the cover for #gft of this sequence by positions has a factor at a posi-
biphase shift, Fig. 3, as a subgraph. Therefore it cannot tien equal toi + jd mod T which belongs ta%;, j4. Hence
definite, implying that the TMTR shift is a proper PFT shiftx ¢ X, which is a contradiction.m
[ ] Let G be a presentation of a PFITY shift X . The following
proposition gives a condition that can be used to deternfine i
i ) X £ is not a proper PFT shift, namely, the period Gfand
E. Periods of PFT Shifts the periodT associated with the forbidden list must share a
We now explore the period§ with which a PFT shift can nontrivial common factor.
be associated.

Fig.3. Shannon cover of the biphase constraint.

Proposition 6. If G is an irreducible presentation of a proper
Lemmad4. If X is an irreducible PFT) shift, then X is PFT(T) shiftXr over an alphabet, then gcdperG), T) # 1.

PFTT) for any positive integen. Proof. Suppose that gdgerG),T) = 1. Since Xz is
Proof. If X = Xz with F = (Fo, F1,...,Fr_1), then proper, there exists a word € F and a statd € V(G) such
we have trivially alsoX = X¢ with £ = (&)o<i<aT—1 and thatw € Fg(I). From the irreducibility ofG, we can choose a
E=FimodT W word v such that the path presenting is a cycle. Choose a



cycle 7t with i(7r) = I such thatl’ and! = |7| have no com- Example 6 Fig. 7 is the Shannon cover of thewen shift so
mon divisors greater thah. Let u = £(7r). One can choose called because its bi-infinite sequences contain only evem n
positive integersjg, q1, ..., qr—1 such that bers of consecutivé’s. It is easily verified that the even shift
is AFT but not FT. By inspection, we see that (@) = 1.
Therefore, by Corollary 7, the even shift is not PFY (for
is the label of a walk org andw appears inx at all phases anyT > 1.m
0,...,T—1. This impliesx ¢ Xz, a contradiction. Hence
gedper(@), T) #1 m

The following corollary is an immediate consequence.

Corollary 7. Let X be an irreducible PFT() shift for some 1 O
period T. Let G be an irreducible presentation of. If

ecd(perG), T)=1, thenX is FT. ‘@ c

[ ]

Note that the PFT shifts in Examples 2 and 3 above — the O
biphase and TMTR shifts - are not FT. The period associated
with each of their respective forbidden lists 5= 2, and
the graph period of each of their respective Shannon cosers i
also 2. Hence, gdgenG),2) = 2 # 1, in accordance with Fig.7. Shannon cover of the even shift.
Proposition 6.

X = -- wvuql)wvuql e w’vunfl e

o ) Example 6 shows that the PFT shift spaces are a proper
Example 4 The graphg in Fig. 5 is the Shannon cover of g ,pset of the AFT shift spaces.
a shift that we will refer to as thabcd shift The a_bcd shift Manada and Kashyap [27] have examined the relationship
is clearly FT, and therefore not proper PFT. Since any Rfetyween the period inherent in the definition of a PFT shift
shift may be_ described as a PHY)(shift for arbitrary pe_rlod X = X1y and properties of the shift. They also study the
T by assigning all phases 1,...,T —1 to each word in & (g|ationship of thislescriptiveperiod to the periods of periodic

finite forbidden list, we may choos# = (Fy, 71) such that geqiences ik and to the periods of its graphical presenta-
Xg = X is PFT(2). Since p&tj) = 2, ged(per(G), T) = 2.  tions.
This demonstrates that the converse of Proposition 6 is not
true.m
IV. CHARACTERIZATION AND DECIDABILITY

In this section, we further characterize PFT shifts in terms

b of properties of their presentations. The characterination-
a ply the decidability of the PFT property, and they suggest a
Q c Q testing algorithm that is quadratic in the number of staties o
the Shannon cover.
d Cc

A. Graphical Characterization

The following proposition proves the decidability of theTPF

Fig.5. Graph presenting theéhcd shift. ! . . .
property for an irreducible sofic shift.

Proposition 8. Let X be an irreducible sofic shif¢; its Shan-

Example 5 Fig. 6 illustrates a graph that presents valitk) X e
non cover of period), andT a positive integer. Then the fol-

sequences. Aside from the trivial case whdre- k, we find ) ! :
per(G) = 1; hence(d, k) shifts are not proper PFi lowing assertions are equivalent.
1) X is PFT[T).
2) The irreducible components af8<d(T4) are definite
graphs.

Proof. Let us assume thaX is PFT(T). Let g be the period
of the Shannon cover of andd = gcd(T,q). By Lemma 5,
X is PFT@). We prove that the irreducible components of
G? are definite. LetC be one of these components. Let us
suppose tha€ is not definite over the alphab&t’. HenceC
has two distinct cycles with the same label, one around a stat
I, another around a stafedistinct fromI. Hence there is ii§/
Fig.6. Graph presenting th@, k) shifts. a cycle around (resp.]) labeled by a word: of lengthnd for
, , some positive integer. Sincel and ] belong to a common
The following example shows that not all AFT shifts are  oducible component a§?, there is a path labeled hyfrom

PFT shifts. Ito ] in G of lengthmd for some positive integem. Let v




be a left-infinite sequence ending with a synchronizing word
that focuses td in G. Sinceg is the Shannon cover df, the
statesI and ] have different follower sets. Lef; be a right-
infinite sequence generated by some patf starting at] that
is not the label of a path starting &t For any nonnegative
integer N, the bi-infinite wordx = vuNzu!N f; belongs toX.
Since X is PFT{), this implies that, for a large enougX,
x' = vulN f; belongs toX, which is a contradiction of the fact
that f; is not generated by a path startinglat

Conversely, let us assume that each irreducible component
C of G4 is a definite graph. Sincé has period;, one can or-
der the irreducible components @f into (Co,Cq,...,C4-1),
such that there is at least one edge from some state o
some state irC;;1 mod 4 IN G. Each componen€; presents
a shift of finite typeXx, over the alphabeB = v4 where
F; is a finite subset ofB*. Let & be the set of words
in F; with symbols in the alphabel. Let Y = Xg¢ with
E =(&,¢&1,...,€-1). By constructionX = Y. It follows
that X is PFT{) and also, by Lemma 4, PFT{. m

Corollary 9. Let X be an irreducible sofic shift andbe the pe- rig 8. shannon cover of interleaved-biphase shift.
riod of the Shannon covér of X. Then the following assertions
are equivalent,
1) X is PFT. Since§ has periodp, one can define a coloring functien
2) X is PFTp). from V(G) to {0,1,...,p — 1} such that, whenever there is
3) The irreducible components GF are definite graphs.  an edge from a staté to a state], ¢(J) = c¢(I) + 1 mod p.
Proof. (2) < (3) comes from Proposition 8. We proveThe color of each state can be computed through a depth-first-
(1) = (2). If X is PFT(T) for some positive integef, we Se€arch of the graph df in time O(n).
get from Lemma 5 thak is PFT@cd(p, T)). It is then also ~ One then computes thber productgraph’™ = G * G

PFT(y) by Lemma 4. Finally(2) = (1) follows from the Whose set of states is the set of pafis]), wherel, ] are
definition of a PFT shift.m states ofG [17]. There is an edge labeled lyfrom (I, ]) to

(I',]') if and only if there are two edges labeled byrom I
to I’ and from] to J'. The graphH is deterministic ovelz

Corollary 10. Let G be irreducible with period. If an irre-

. . . T T

ducible componeritt O/ng IsFT W’thx%t = X5, thenXg = 40 has at most? states. TherX is PFT if and only if there is
XFry whereFo = 7' andF; = 0, fori=1,...,T - 1.m no cycle inH going through a statél, J) with I # J andI, |
Example 7 The Shannon cover of th&nterleaved-biphase having the same color. Indeed, the existence of such a cycle
shift is illustrated in Fig. 8. The period of the graphdisand is equivalent to the existence of two identically labeledleg

one can show the irreducible componentgéfare finite-type. in G7, one starting at, the other one af with I # | and

In particular, if H denotes the irreducible component consist, | in the same irreducible component gf. The existence

ing of the central state in Fig. 8, thefy, = Xz, where of such cycles can be determined in time that is linear in the

F' = {0000,0001,0010,0100,0101,0111, size n? of H, for instance by inspection of the irreducible

components ofH. The final worst case time-complexity is
1000,1010,1011,1101,1110,1111}. thereforeO(n? x log|Z|). m

Hence the interleaved-biphase shift is PFT(4), wih =
F! and F = F, = F3 = ).m

B. Decidability of PFT Property 0 c 9

We now derive from the previous propositions a quadratic-
time algorithm to check whether an irreducible sofic shigé-pr 0 0
sented by its Shannon cover is PFT.

Proposition 11. Let X be an irreducible sofic shift presented
by its n-state Shannon cover. It is decidable in ﬁ@(mz % Fig.9. A 2-coloring of the Shannon cover of the biphase shift
log |Z|) whetherX is PFT.

Proof. Let G be the irreducible Shannon cover Bf One Example 8 Let us consider again the biphase shift of Exam-
first computes the periogt of G. This operation can be per-ple 2. The Shannon cover, shown in Fig. 9, has pefioBor
formed with one depth-first search of the graphdofn time any 2-coloring, the statésand2 have the same color whilke
O(nlogn x |X|) (see [28], [29]). has a different color, as illustrated. The coféiis represented



in Fig. 10. (StatesQ;2) and @,0) are not shown, as there arechoose
no edges inH starting or ending in these states.) Since the

g— Tyt _ (sT\+ .y
cycles go only through pairs of states with different colors Fi = Fi- AL (X)7Fix

through pairs with the same color but also with equal states, =1 STV siF. 5
we conclude that the biphase shift is PFT. o Ul( ) i+jmod T+ -
]:

Periodic anti-factorial lists do not seem to satisfy anyfuise
kind of minimality property among periodic forbidden lists
of a PFT shift. We consider, instead, periodic forbiddetslis
based upon sets of periodic forbidden words cajediodic
first offenderghat were introduced in [14], [15]. Their defini-
tion is intended to mimic that of thérst offendersof a shift
X [18] and to refine the notion of periodic anti-factorial list
A key difference, however, is that their definition is notrint
sic; rather, it refers specifically to a presentation of thécs
shift.

We first recall the key properties of the set of first offend-
ers. A wordw is afirst offenderfor a shift X if w ¢ B(X)
but every proper subword ab is in B(X). The collection of

Q) & &
888

1 first offenders,O, describes the spac& = X, and satis-
@ @ fies the following minimality properties [18], [16, Exereis
1.3.8,2.1.10]:
0 (1) if FC O andXz = X, thenF = O,

(2) if Fis finite andXx = X, then g lw| < g |w].

Fig.10. GraphH for checking if the biphase constraint is PFT. Names of weo wer
shaded states are shown in bold font. Stranded states ashawh. Clearly, the words in® form an anti-factorial list.

We now introduce an analogous construction for the peri-
odic scenario. Leg be an irreducible presentation of peripd
of an irreducible sofic shif. The states’ of G are colored
in p colors by a coloring functiom : V — {0,1,...,p —1}.

In this section, we define a notion of minimal periodic forOne hasc(]) = ¢(I) + 1 mod p whenever there is an edge
bidden list of a PFT shift for a given period. from I to J. We denote byV; the set of states of colar for

Let F = (Fo, F1,...,Fr_1) be a periodic forbidden list 0 < i < p — 1. We also say that these states arghasei.
of a shift X for some positive period’. We say thatF is We denote byF(G,c) the list 7 = (F;)o<i<p—1 Where the
periodic anti-factorialif and only if for any0 < i < T—1 setsF; are the sets of finite worde = W(0, | 1] such that
and any;j > 0, 1) w ¢ Fg(V),
2) for any0 < j < |w| -1, wy ; € Fg(Vi),
. o . o . 3) forany0 < j < lw| —1, Wi w|-1) € Fg(Vi+j modp)-
The notion of periodic anti-factorial list was introduced13]. Note that the second condition can be replaced by
It gene_ralizes the notion of anti-f_act_orial Ignguage (s_'mg)[ Wi, 0| —2] € Fg(V;), and the third one can be replaced by
In particular, the setsF; of a periodic anti-factorial list are W o)1) € Fo(Vip1 modp). Hence, for0 < i < p — 1, the

V. PERIODIC FIRST OFFENDERS

weF andu <jwwith u #w = u ¢ Fi,jmod T

prefix-free and suffix-free codes. setsF; can also be defined by

Example 9 The list Fi= (2" =FgWVi)) N (Fg(V)Z) N (2Fg(Vit1mod p))-
Fo=1{00,11} Note also that, whenc in changed into another col-
F1 = {00,11,010}, oring of the graph inp colors, the list 7(G,c) =

. i o ) i i . (Fo, F1,--.,Fp-1) is changed into one of its conjugates

with T = 2 is periodic anti-factorial, while the list (]:j, Fisrreeos Fp1, Fo, .. 7‘}1)-
Fo ={00,11,010} Proposition 12.LetG be an irreducible presentation with a col-
F = {00,10}, oring of its states in p colors. The listF (G, c) is a regular and

anti-factorial periodic forbidden list of the sofic shiftgzented
with T = 2 is not periodic anti-factorial. Indeed, in the lattet), g

list, 010 € 7o, 10 € 7, and10 =; 010. Proof. Let F = F(G,c). It follows from the defi-
For any regular periodic forbidden ligt of a shift X, there nitions that X C Xjz. Conversely, letx € Xz. We will

is a regular and periodic anti-factorial forbidden &t of X show that every subword ofc is in B(X). Up to a
such thatF] C F; for any0 < i < T — 1. Indeed, one can power of the shift of the sequence, for any integers
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i,j, we havex[i,ﬂ ¢ Fimod p- We prove by recurrence fact thatF (G, c) is periodic anti-factorial. Hence at most one
on j that xj; j €Fg(V;) and x|iq; € Fg(Viy1) for any word is added whenever one is removed.

j > i Sincex; ¢ F andxq ¢ Fiy1, we have  The new listD satisfiesD; C F(g, c);. We now show that
xj € Fg(V;) andxjyq € Fg(V,11). By definition of 7, from  D; = F(G,c);. Assume the contrary and let be a word
X1 ¢ Fio we getxj;.q €Fg(V;). Let us now as- in F(G,c)i—D;. If w = ua = bv with a,bex, we have
sume thatx;; ; € Fg(V;) and x| 1 €Fg(Vit1). By def- u€ Fg(Vi), ua ¢. Fg(Vi),_andve Fg(Vit1). Henceu is the
inition of F;, we get X[j i41) € Fg(V;). This implies also label of a path inG .staryng at a statd € V; and v is the
X(is1,j+1] € Fg(Vig1). Thus, any subword ofc belongs to label of a path ending in a Statee Vi |y| mod p- FOT any
B(X). This shows that € X. It is clear thatF (G, c) is anti- left-infinite word z labeling a path ending &t and any right-

factorial. m infinite wordy labeling a path starting gt the wordzwy is in
We denote bysize(F) the size of a periodic forbidden list Xp- Itis possible to chooseandy such thatwy ¢ Xz ),
F for a periodp. It is defined by which contradicts the fack = Xp. HenceD = F(G,¢). By
) construction, if F is finite, thenD is also, andsize(D) <
size(F) = Z g |wl. size(€) < size(F). Thussize(F(G,c)) < size(F).
o<isp—-lw e F

We now prove the second statement of the proposition. We

Proposition 13.Let X be an irreducible sofic shift arél be an first transformF(G’,¢’) into F' as above. The size of’ is
irreducible presentation of with a p-coloringc. Let F be any less than the size of (G',c') if F' # F(G',c"). We then
regular periodic forbidden list oX for the periodp. If F is transformF’ into D = F(G,c). Again, the size ofD is less
finite, F (G, c) is finite andsize(F (G, c)) < size(F). than the size ofF” if D # F'. It follows thatsize(F (G, c)) <

Let G’ be another irreducible presentation ¥fwith a p- size(F(G’,c’)) and the two sets are equal whenever the sizes
coloring ¢’ of its states. Up to a conjugacy-(G,c) and are equal. By reversing the roles playedstye(F (G, c)) and
F(G',c) are equal. size(F(G’,c")), we conclude that equality holds and that the
two lists are equal, up to some conjugaay.

For an irreducible sofic shifk, we denote bySO(X) the
list 7(G,c) where G is the Shannon cover oX, p is the
period of G, and c is a p-coloring of the states of. It is
defined up to a conjugacy of the list. Although the words
in this periodic forbidden list were called the periodic ffirs
offenders of X in [14], [15], the discussion above prompts
4s to more appropriately call them ti$hannon periodic first
offendersof X.

Proof. We first prove that, up to a conjugacy ¢f, we
have Fg(V;) N F; = 0. Let us assume that this is false
For any j such that0 < j < p — 1, there exists an in-
tegeri;, with 0 < i; < p — 1, such that there is a word
w]-ng(Vij) 0.7-"(1-],+]- mod p)- That is, the wordw; is the
label of a pathr; starting at some state iﬁg(V,’].) with
w; € Fi4jmod p)- Sincey is irreducible, one can choose
walk with labelx that Moreover, sincg has ap-coloring and
w]- S Fg(Vij), one

can choose the path such that <;. u for all integers;. Example 10 The Shannon cover of the interleaved-biphase
SinceX = X, there is an integelr suéh that, for any integer shift, Fig. 8, has period. The Shannon periodic first offenders
LLw <y x = w ¢ Friimod p)- BY taking! = i, we get are

Next, we changeF into another list€ such that each proper
prefix of a word in&; belongs tdFg (V;). For this, one replaces Op = {000,010,101, 111},

each word inF; by its shortest prefix which is not ifig (V;). O, =10,
Thus we define€ by the formula O3 = 0.
& = (FgW)D) N (T = Fg(V) N (F(Z) 7. n

Note that the new lis€ is still a regular periodic forbidden The following corollary, which is a direct consequence of

list of X for the periodp. Indeed, it is clear thaXs C X. Proposition 13, provides an alternative way to check whethe

Conversely, letc € X. Up to some shift, the word is the label an irreducible sofic shift is PFT, based upon the size of the

of a path inG going through a state df7]- before reading the list of Shannon periodic first offenders.

2;?Zkg[?] f?r:uzn)};k:ig] - Henceux|;) € Fg(V)) and thus Corollary 14. Let X be an irreducible sofic shift. Then the fol-
]Now, w]e remove each word € &; which is notinF (g, c); lowing gssertlons are equivalent.

and add at most one word shorter thaimto someg; in order « Xis PFT‘ -

to still have a periodic forbidden list o. If w ¢ F(G,c);,  * SO(X)isfinite.

there are indiceg, j/ such thatw(; i € F(G,¢)itjmod p- W m

addwy; ; € &; and removew from &;. It is important to note It was conjectured in [14], [15] that the size 8#{F(X)

that j, /' are unique in this case. Indeed, let us assume tligtthe minimal size of any periodic forbidden list &f for

there are two factors; and v, of w, both shorter thanv, anyperiod. The following example shows that this is not true.

with o1 = wy; i} in F(G,¢)itjmodp and vy = Wik I Thus, the minimality of the Shannon periodic first offenders

F(G,6)itkmod p- SinCeW[q oy € Fg(V1), j =k = |w|— s in general limited to periodic forbidden lists for the joer

1 andov; is a suffix of v, or vice-versa. This contradicts theof the Shannon cover.
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Example 11 Let X be the shift on the alphabel = In Section VI-B, we present a combinatorial technique for
{a,b,c,d, e} presented by the Shannon cover of Fig. 1komputing the capacity directly from a periodic forbiddést. |
The shift X is FT and its minimal periodic forbidden listIt extends to PFT shifts the computation of the capacity of FT
for the periodp = 1, i.e, its list of first offenders, is shifts presented by Pimentel and @ehFilho in [21], relying
F = {c,d,eaa,bb}. For the periodp = 2, which is on the well-knownInclusion-Exclusion Principl€rom enu-
the period of the Shannon cove§O(X) = & where merative combinatorics [19], [20]. It is also known as the
& = {c,d,e b}, & = {c,d,ea}. Hencesize(SO(X)) > Goulden-Jackson Cluster Methd81,32], [33, IIl.7.4] (see
size(F). m also [34]). This combinatorial method provides a much more
efficient means to compute the capacity than the converdtiona
graph-based method when the lengths of the periodically for
bidden words are large compared to the number of words.

a
A. Graph Construction
b Suppose one is given a finite, anti-factorial li5tof forbid-

den words over an alphabEt One can construct in a straigh-
forward manner a presentation of the corresponding shift of
ni z I lmax—1 i
Fig.11. A shift of finite typeX over the alphabeL = {a,b,c,d,e}. We finite typeXf with |Z| states, W_herémax IS _the Iengt_h
haveX = Xz with F = {c,d, e, aa, bb} for the periodp = 1. We also have Of the longest word irfF. Of course, this construction has time
X = Xg with & = {b,c,d,e}, &1 = {a,c,d,e} for the periodp = 2. The  complexity that is exponential inize(F).
size of F is less than the size & and the period of the Shannon cover of . . . . .
X is 2. An alternative algorithm was described in the unpublished
masters thesis of Sindhushayana [35]. The constructioresnak
Let X be an irreducible PFT shift ang the period of its use of the close connections between symbolic dynamics and
Shannon cove;. Whend dividesp, we denote bySO(X,d) automata theory, a theme that underlies several of the other
the list 7(G, c) wherec is a d-coloring of G. The example techniques we will mention. Although generally more practi
above suggests the following proposition. cal than the straightforward approach, it is not computatio
Proposition 15. Let X be an irreducible PFT shift and the 1Y gff||c.|enF in the sense q|1‘ guaranteed time complex@ypﬁl
period of its Shannon cover. We have nomial in size(F). A similar construction appeared in the
unpublished doctoral dissertation of McEwen [36]. In [24],

min size(SO(X,d)) < min size(F). Crochemoreet al. gave an efficient, automata-theoretic con-
d/p FIX=Xr struction of a deterministic presentation that requinegtonly
Proof. Note that the numbers involved in the inequality arénear insize(F).
finite wheneverX is PFT. These algorithms for FT shifts can be extended, often natu-

Let 7 be a finite periodic forbidden list of an irreduciblerally, to PFT shifts. McEwen [36] includes such an extension
PFT shift X for a periodT. By Lemma 5, one can assumeand [15] described a generalization of the procedure in.[35]
without loss of generality, that is a finite periodic forbidden Although neither of these run in polynomial time, for many ap
list of X for the periodd = gcd(p, T) (the size of F is plications they are convenient to implement and give insigh
unchanged). By Proposition 18ize(F) > size(SO(X,d)), into the properties of the PFT shift.

which completes the proofm Constrained systems with unconstrained positions, intro-
duced by Wjngaarden and Immink [10] and further studied
V1. CAPACITY OF PET SHIETS by de Souzeet al. [11], represent a natural example of PFT

shift spaces. Given a sofic shi¥, a positive integefT’, and
a subsetl of integers modulorl, the authors of [11] con-
struct a presentation of the unique maximal subsystem such
C(X) = lim llogz 1By (X)) that any posi.tic_)n moduldl’ in U is unconstrained. Begin-.
n—00 1 ning with a finite-state presentation of the underlying tshif
It measures the growth rate of the number of words of leng#, their algorithm in general has exponential time and space
n in X. It is well known that the capacity of a sofic shift iscomplexity. However, for FT shifts, under a certgiap condi-
the logarithm of the largest real eigenvalue of the adjagention that restrictgU| relative to the memory of the shift, their
matrix of a lossless presentation [16], [17]. algorithm if efficient, requiring only quadratic complexiin
In this section, we discuss methods for computing the cepace and time. They also provide an efficient construction
pacity of a PFT shift from its periodic forbidden list. In Secfor Maximum-Transition-Run (MTR) constraints with param-
tion VI-A, we review techniques for generating lossless (iaterj > 1 [8], the systems in which the maximum allowable
fact, deterministic) presentations of a PFT shift describga length of a run of consecutives is j.

The base-2 capacityor simply capacity of a sofic shift
spaceX over an alphabek is defined as

finite list of periodically forbidden words. Several of thech- Béalet al.[13] also recognized the connection between PFT
nigues draw on the connections between symbolic dynamidsifts and constraints with unconstrained systems. Thoir c
and automata theory. struction of a presentation for such a system consists of two

the nevertheless steps. First, they derive a periodic list of forbidden wottaist
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define a maximal subsystem f@rand U, given a prefix-free will build a deterministic automaton that acceptgMl,,; ;)¢ =
list F of forbidden words defining the underlying FT shift.L;. First, construct a deterministic graghy from G,; via
The description ofF must be in the form of a tree-like deter-the well-knownsubset construction algorithne.g., [16, The-
ministic automaton called t@ie [13]. (A linear time and space orem 3.3.2], as follows. The state s&%G,), is the set of all
algorithm for this step has recently been given in [30].) nonempty subsets 8f(G,,;). For every edge in E(G,,;) from

In the second step, they invoke a general procedure for cae) to t(e) put edges inE(G;) with labels £(e) from each
structing a finite-state presentation of a PFT shift defined b I € V(G,) to each] € V(G;) such thati(e) € I andt(e) € J.
periodic forbidden list The input to the algorithm is a cole  Put M/ = (G, L, I;, F), whereF is the subset o (G,)
tion of T tries representing the periodically forbidden wordsonsisting of those states that contain the accepting sfate
associated with the phasesl, ..., T — 1. They show that this M, ;, i.e.,K. The automatorM! is deterministic and one can
step has time and space complexity that is linear in the sigkow thatL.(M!) = L(M,,,), e.g., [22, Theorem 2.1]. (We re-
of the periodic forbidden list. mark that this subset construction has, in generally, cerify!

In the remainder of this section, we briefly describe the cothat is exponential in the size of the initial presentajion.
struction algorithm presented in [15]. Although, strictlyeak- Let M; = (G4, L, I;, V(G4) — F), i.e., the automaton con-
ing, it is not efficient, it has proven to be useful in practice structed fromM/ by switching the roles of the accepting
the study of PFT constraints for data storage applications. and non-accepting states. SinGg is deterministic,M; ac-

We first construct a non-deterministic finite automaton thaepts a wordw if and only if w is in LC(M;), therefore
accepts the complement of the language in which we are itM;) = L°(M]) = L;. Note that the underlying labeled
terested. An automaton accepting the language is formed gnaph G, and the set of accepting stat¥$G,;) — F are the
following a constructive proof that the class of regular-larsame for eachie [0,..., T — 1], i.e., for each automatod;.
guages is closed under complementation; see, e.g., [2®-The No accepting state ofV; may be reached from a non-
rem 3.2]. By deleting the non-accepting states of the negult accepting state. Hence we can delete the non-acceptirgs stat
automaton, we obtain a graph representing the shift spacefram G; without changing the language accepted\iy Let G

detailed description of the construction follows. denote the graph that results from deleting the non-aawgpti
Fix a pair {F,T}. Fori = 0,1,2,...,T — 1, define the states fromG,. The construction may be simplified by keep-
language ing in mind that all accepting states will be deleted fréin
hence there is no need to distinguish between different ac-
L; def {v| settingv = v,,0,,41 - - “Dyyfo|-1/ cepting states nor to draw edges between different acgeptin

states when constructing the deterministic automatondin a
dition, only the subgraph ofj; which may be reached from
the starting states needs to be considered.

Vm,p € [n,n+ |v] —1], with m < p, and allw € F;,
if m mod T =i then v[m,p] 7é w},

as well as its complement, Finally, take the essential subgraph®fand apply a state-
minimization algorithm, e.g., [16, pp. 92]. If the shift igé-
L = {v| settingv = 0y vp+1 -+~ Vpppo)—1, ducible, this will result in the Shannon cover.

In Table I, we summarize the construction procedure, in-

dm,pen,n+|v|—1], withm < p, andw € F;, ) (e U ;
cluding the simplifications mentioned above.

such thatn mod T = i and vy, ,) = w}.

TABLE |
SUMMARY OF GRAPH CONSTRUCTION

Note thatB(X{]:/T}) - UZT:701 L;.
Construct a non-deterministic gragh,; as follows. FixT

states labeledy, Iy, ..., Ir—1. Draw an edge for eachc T 1) Construct the non-deterministic gragl, as described.

and eachi € [0, T — 1] from I; to I; 1y mog r With labela. 2) Construct a deterministic graghy using the subset con-

Fix a state labele&, and draw an edge (cycle) froi to K struction algorithm including only those states which

with labela for eacha € £. Now d'raw a path frorﬁl: to K for may be reached from one of the starting states, and di-

each wordw = wow - - - wy,, |1 in F with phasei. recting any edge which terminates in an accepting state
Note that we may reduce the number of stategjip by into a single accepting state.

Sharing common Suf'fiX_eS of forbidden words. From this ob- 3) Construcg by de|eting the accepting state and all edges
servation, we have a simple relation for the number of states  \yhich begin or terminate there.

in G,4 when suffixes are shared, 4) Take the essential subgraph @f and apply a state-
V(Gna)| = T+ 1+ minimization algorithm.

lengths of disti i i) .
(Z engths of distinct suffixes of words i) The following proposition establishes thay = Xz 7y

Theorem 16.Choose{ F, T}. LetG be the graph constructed
following the method described above. Thefl 1 = Xg.

Put My;; = (Gna, I, 1;, K). It is straightforward to show
that L(M,;;) = L. Indeed, a word inL{ is of the form
uwv, whereu andv are elements of*, we F,, and (i +
lu|) mod T = n. These are precisely the words accepted by Proof. Chooser € Xg. Since|V(G)| is finite and every state
My ;. in G is reachable from somg, choose a starting stafesuch

Following the constructive proof in [22, Theorem 3.2], wehat any sub-word of lies on a path originating fronf. Let 7t



13

be a path starting df and terminating ait £~ (x)). Putk =
—(|7z| +1). Then for allm and allw € F,, if m mod T =n
then o* (x) w4 jw|—1) # w. Thereforea®(x) € Xz 1y and
Xg g X{]:,T}'

For the reverse inclusion, choose€ B(Xr ry). Then
there existsi such thatw e L;. In addition, w is left-
extendable by words i3(X;z ry). Hence we can choose
uw € B(X(z,ry) such thatuw e U/ L; and w € B(Xg),
i.e., we can choose some such thatw lies on the es-
sential subgraph of. Therefore B(X;r ) C B(Xg) and

Example 12 Consider the PFT(2) shift space over the binary
alphabet{0,1} with 7y, = {101} and F; = {010}. Ap-
plying the graph construction described above produces the
non-deterministic graply,,; shown in Fig. 12, the determinis-

tic graphG,; shown in Fig. 13, and finally the Shannon coveig !
G shown in Fig. 14,

4. Shannon cover correspondingite= {0,1}, T = 2, Fo = {101},
{010}.

in the Introduction, it extends to periodic finite shifts &mm-
putation of the capacity of shifts of finite type presented by
Pimentel and Udba-Filho in [21], based upon the combina-
torial Inclusion-Exclusion Principle [19], [20], also kwa as
the Goulden-Jackson Cluster Methd81], [32], [33, I1l.7.4],
[34]).

Let us assume thaX = Xz, where F is some finite anti-
factorial periodic forbidden list for a periof. (Note that if the
given list is not anti-factorial, it can be changed into oma&t tis
in linear time [13].) Denoting3,(X) by x, for convenience,
we define the generating series counting the number of factor
Fig.12. GraphG,; corresponding t&& = {0,1}, T = 2, Fy = {101}, of X:

F1 = {010} CE) = 3 x" (1)
n=>0

It is known (see for instance [37]) théXz) is a rational series
and thatC(X) islog 1/p, wherep is the radius of convergence
1 of C(z2).
Recalling the definition of the seéf, in Section Il, we de-
note by B (X) (for 0 < i < T) the set of factors: of X
such thatu <, x, for somex € Xj.

We setxn = |BU ( )ﬂ):”|, and define the generating
0 series of the mtegergizO x,(j):
T-1
D(z) = Z Z x,(f)z”. (2)
0 0 i=0
O For an irreducible PFT shifK, it is known that
C(X) = Y}LrglonlogZx . (3)
;i?':l?’{'(no?_raphg" corresponding td- = {0,1}, T = 2, 7o = {101}, andC(X) is log 1/p, wherep is the radius of convergence of

D(z).

Let0 < i < T and letk > 0. If u€ X*, we denote by
n(u,i) the number of occurrences of a factorof u such
thatv <;,; u andv € Fj noq 7- We denote byi(u, i, k) the

The method we describe here is a computation of the aaimber of ways to choogeindices;j such that there is a factor
pacity directly from the periodic forbidden list. As metesh © of u with v <;,;j u andv € F; ,oq T- Note thatd (u, i, k) =

B. Combinatorial Determination of Capacity
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(n(z,i))_ Finally we define such thatx = uv, y = ovw, with u # ¢, u # x, and
An,i k) = Z d(u,i, k) U < imod T X (s€€ Fig. 15).

w:|ul=n
By the Inclusion-Exclusion Principle, each wardf length .
n contributes0 to 3 ..\, d(u, 1, k) if it contains at least one j+3T
word v <. u, wherev € Fj o4 r- It contributesl other- ° u ° 0 °
wise, i.e. when it belongs td3() (X). We deduce that 5 g
() _ Ki(n i : :
v =Y (=) (n,ik). (4) : :
& S/ S——
We define the following bivariate generating series:
N . k
D<Z’ Y l) o Z Z A(n, L k)z"y ’ ®) Fig.15. An example of a factorization of = uv and y = vw. The pair
n20k20 (uvw, i) belongs to(x,i) @ (v, j).
T-1
Dz y) = l;) DGy i). © _ We define a square matrig(z) with entries indexed by
It follows from Equations (2), (4), and (6) that F>xF as follows. For any(f, i), (g, j), k,rin F,
D(z) = D(z, 1) S@uaen= 2 2,
’ ) (wow,i) € (£,i)®(8.])
Example 13 We consider the PFT shifk = Xz over the f=uv, g=ou
alphabetz = {0,1} for a periodT = 4 with G(2)(ri) = G(2) (£ = G(2)kr = 0.
Fo = {111}, Example 13 (continued. The matrix G(z) for the periodic
Fi = {111} forbidden listF of period4 of Example 13 is the following
e {1111’} |E| x |E| matrix with F = {(111,0), (111,1), (1111, 2), 3}.
2= ,
Fs = 0. 0 z 22 0
Glz) — 0 0 z O
This list of periodically forbidden words defines the (z) = 2 53 0 0
TMTR(2,2,3,3) constraint. This constraint can be describe 0 0 0 0
as follows. The number of consecuti¥&s ending at the time _ , _
indices0 mod 4 and 1 mod 4 is at most2, while the num-  If P,Q are sets of pairgx, i), wherex is a word and) <
ber of consecutivé’s ending at the time indicesmod 4 and i < T, we denote by’ ® Q the set
3 mod 4 is at most3. It is not difficult to see that this de- : ;
L : . , : P2Q= x,1) @ (Y,
scription is equivalent to saying that the blotKl is forbidden Q (x Z%Je P( )® )
when it begins at the time indic@&mod 4 and3 mod 4, and (i) €EQ

the block1111 is forbidden when it begins at the time indices ) . .

0 mod 4. Hence the TMTR(2,2,3,3) constraint is described b d, by (x,1) ® Q thg set{(x,.z)} ® Q. Note that((x,i) ®

the shiftXz. v,7)® (z,. k) = .(x,z) ® (v, ) ® (zl,ck)), .and that, fork >
Let u — 000011111100. It has the word111 of 7 as O the ((f,i), (g, /))th entry of G(2)"z! is the number of

a factor at positiord, the word 111 of F; as a factor at sequence= beginning withf, ending withg such that(u, /)

position5, and the wordl 111 of 7, as a factor at positios, IS &k @-productin(f,i) @...® (g, j). . ‘
Hence it contributed to d(12,0,0), 3 to d(12,0,1), (3) to _ We extend the construction of the sets of paffs) @ (g, )
d(12,0,2), 1 to d(12,0,3), and0 to d(12,0, k) for k > 3. Its to all possible®-products among sequencesjn Let
tlot_alocontrlbunon tozk>0(_1)kd(n, 0,k)isl—(1+G) - v= Urso{(f1,11) ® (fo,i2) ® ... ® (frir) | (fj,i}) € F}.
Now let u = 000000000000. It contributes1 to the sum  For0 <i,j < T, we define the bivariate series
Yr>0(—1)kd(n,0,k) since it contributed to 4(12,0,0) and N _ S an
0'tod(12,0, k) for k > 0. Vijlzy) = 3 2 olmkij)zy

We now describe how to compute the bivariate Seri‘?ﬁnerev(n, k,i, j) is the number of words of lengthn such

D(z ). Let 7 = (Fo,..., Fr-1) be a finite periodic for- ynat (y, j) is a k-fold @-product (f1,i1) ® (fo,in) @ ... @
bidden list. If F; is a nonempty set, we define the dét= (fe i,(fgll\:\zith i = P V)@ () ..

: ) > =i and iy + |fx| = j. Hence each word:
{(f,0) | f€Fi}. If F;is the empty set we denote By the 14 nteq in the above sum has a decomposition fite 1)-
singleton containing the integér We denote byt the union overlapping words inF (see Fig. 16).
of the F;. Note that the size of is at mostsize(F) + T — 1. We define theT x T-matrix V(z, y)

Let (x,1), (v, j) be two pairs of a word and an integer mod- Y
ulus T. We denote by(x,7) ® (y, j) the set of pairguvw, i) V(z,y) = (Vi,i(z,¥))o<i,j<T-

k+1
’
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Fig.16. An example of a 3-overlapping. Note that overlapgiliie the ones
drawn in dashed lines are not allowed since the periodiddisiti-factorial.

We then define théF| x T matrix ®(z) as follows: For any
(f,i),kin,0<j<T,

2Ifl
@) =9,

(D(Z)k]' =0.

if j=i+|f|modT,
otherwise,

Example 13 (continued. The matrix ®@(z) for the periodic
forbidden list 7 for period 4 in Example 13 is anF| x T
matrix with F = {(111,0), (111,1), (1111,2), 3}.

0 0 0 2
20 0 0
©@)=19 o 4 o
00 0 0

We define &l x |F|-matrix ¥(z) as follows: For any(f, i),
kin Fand0<j<T,

1 if j=i,
W(Z)j(f'i) - {0 otherwise,
1 ifk=,
W(z) =
(2)jx {O otherwise.

Example 13 (continued. The matrix ¥(z) for the periodic
forbidden listF for period 4 in Example 13 is anF| x T

matrix with £ = {(111,0), (111,1), (1111, 2), 3}.
1 0 0 O
01 00
Y@ =10 0 1 0
0 0 0 1
Note that in this exampl@(z) and¥(z) are square matrices

since|F| =T.
Therefore, for0 <i,j < T, we get

Vifen)= 3 3 o(n ki, j)2"y*y,
HS0KS0

5 (g omsine) v
k=0 \n=>0

- k;) LT¥(2)G(2) @ (2) 10"y

wherel; is the column characteristic vector gfandI is the
|F| x |F| identity matrix.
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Hence

V(z,y) =¥(2)

S (G2 o(2)y,
k=0

=¥(z)(I1-G(z)y) ' @(2)y.
wherel is the |F| x |F| identity matrix.

Finally, we define aI' x T square matrixP(z). For any
0<i,j<T,

2]z

P(z);; = {0

Example 13 (continued. The matrix P(z) for the periodic
forbidden list.F of period4 of Example 13 is ar|F| x |F|
matrix with F = {(111,0), (111,1), (1111,2),3}.

if j=i+1modT,
otherwise.

0 2z 0 0
0 0 2z 0
P@) =19 o 0 22
220 0 0

For0 < i,j < T, we denote byV;; the set of pairqu, i)
of V which are®-products of the form(f1,i1) ® (f2,i2) ®
. @ (fy,iy) with iy = iandj = i+ |u/mod T (= i, +
|fr| mod T).

Let? = ({0,1,...,T —1},E) be a finite state cover with
labels in* and an edge labeled by each letter of the alphabet
¥ from the state to the state + 1 mod T, and a path labeled
by u from the statei to the statej for each wordu such
that (u,7) € V;;. The form of P is illustrated in Fig. 17 for
r ={0,1}.

Fig.17. The automatof® for the periodT.

It comes from [32] that the bivariate seriéXz, y,i) enu-
merates the labels of paths & starting at state for any
0 < i < T. The bivariate serieB(z, y) enumerates the labels
of all paths inP.

Hence
D(z,y) =1" Z (P(z) +V(z,¥))1
r=>0

=1"(1-P(z) - ¥(2)(I1- G(2)y) ' @(2)y)~'1.
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We get

D(z) =17(1 - P(2) + ¥(2)(1+ G(z2)) 1 ®@(z)) 1.

root of minimal modulus of

det (1 —P(2) +¥(2)(I+ G(z))—lcp(z)).

Example 13 (continued. For the periodic forbidden lisF of

period4 of Example 13, the serieB(z) ist
1

478 —13z% +1

2 — 825~ 1277 + 28 - 227 + 210 +4)

D(z) = (82 + 1622 + 302° + 42*

The capacity ofX is log 1/p, wherep is the positive root of

minimal modulus of

1324 — 428 —1 = (322 +22* —1)(322 —22* +1),

We getp = /Y1Z=3 and A = 1/p = 1.887207676.

Example 14 We consider the PFT shifK = X over the

)

As a consequencé&;(X) is log1/p, wherep is the positive

8)

The capacity ofX is log1/p, wherep is the positive root
of minimal modulus ofz + z? + z3 — 1. This time-varying
constraint has a capacity approximativél$791464216. This
capacity is equal to the capacity of the MTRREonstraint (see
[38] for the relationship between these two constraints).

VII. CONCLUSIONS

We have introduced the class of periodic-finite-type (PFT)
shift spaces. This class of sofic shifts lie between the class
of finite-type shifts and almost-finite-type shifts. We pedv
several properties of graph presentations of these spRoes.

a given PFT space, we identified a particular list of periodi-
cally forbidden words, the periodic first-offenders, thajog
certain minimality properties with respect to other fodsd

lists defining the space. Finally, we consider the calcoitati

of the capacity of a PFT shift. We present a straightforward
algorithm to construct a graph presenting a PFT space that
can be used to determine the capacity of the constraints. We
also present a quite different method which relies upon-tech
nigues from enumerative combinatorics and that appears to b
very effective when the size of the periodic forbidden bkck

alphabet: = {0, 1} for a periodT = 2 with

Fo = {111},
Fi=0.
The |F| x |F| matrices G(z),

{(111,0),1} are
[8 203] P(z) = [202 202}'

®(z) and P(z), with £ =

S 2
G(z):{o 0}, D(z) =

The seriedD(z) is

(3]

D) = —4 222 — 323 —2 4l
32242741

5

The capacity ofX is log1/p, wherep is the positive root Bl

of minimal modulus of3z% + 2z* — 1 We getp = @‘3 [6]
This PFT shift has the same capacity as the PFT shift of Ex-
ample 13. See [9] for a classification of the capacities of the
TMTR(m) constraints wheren is a positive integral vector 7]
up to a size four.

Example 15 We consider the PFT shifK = X over the
alphabetz = {0,1} for a periodT = 2 with (8]

Fo = {101}, (9]
Fi = {010}.
®(z) and P(z), with F =

3 3 [10]
The |F| x |F| matrices G(z),
{(101,0), (010,1)} are

RN Y
The seriesD(z) is

D(z) =

[11]
12

[13]
—27-272_2
z+224+28 -1 [14]

lobtained with a MuPAD computation.

is large compared to the number of blocks in the list.
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