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Abstract

Given m permutations π1, π2 . . . πm of {1, 2, . . . , n} and a distance function
d, the median problem is to find a permutation π∗ that is the “closest” of the m

given permutations. Here, we study the problem under the Kendall-τ distance
that counts the number of pairwise disagreements between permutations. This
problem is also known, in the context of rank aggregation, as the Kemeny Score
Problem and has been proved to be NP-hard when m ≥ 4. This article is an
extension of [4], where some nice combinatorial properties of the case m = 3
where stated without proof, to the general case m ≥ 3, m odd.

1 Introduction

The problem of finding the median of a set of m permutations of [n] under the Kendall-
τ distance is best known in the literature as the Kemeny Score Problem : given m
voters and a list of n candidates that they have to order according to their preference,
the problem consist in finding a Kemeny consensus. A Kemeny consensus is an order
of the candidates that agrees the most with the order of the m voters, i.e., that
minimizes the sum of the disagreements. This problem has been proved to be NP-
complete when m ≥ 4 [6] (the complexity is unknown for m = 3 and polynomial-time
solvable for m = 2) and some approximation algorithms have been derived. First, a
randomized algorithm with approximation factor 11/7 [1] and then a deterministic one
with approximation factor 8/5 [11] were designed. In 2007, a PTAS result has been
obtained [9] and a year later, some fixed-parameter algorithms have been described
[2]. In a previous article, we focused on the open case where m = 3 and derived some
nice combinatorial properties of the medians [4]. In this contribution, we generalize
those results and derive new ones for the general case of finding the medians of m
permutations, where m is odd.

∗partly supported by NSERC through an Individual Discovery Grant (Hamel)
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This article is organized as follow. After introducing the basic definitions and
notations (in Section 2), we provide, in Section 3, some combinatorial properties of
the medians which allow us to reduce the search space of the brute force algorithm.
Finally, in sections 4 and 5, we provide our heuristics, the results and some future
works respectively.

2 Definitions and notations

A permutation π is a bijection of [n] = {1, 2 . . . , n} onto itself. The set of all
permutations of [n] is denoted Sn. As usual, we denote a permutation π of [n] as
π = π1π2 . . . πn. The identity permutation corresponds to the identity bijection
of [n] and is denoted ı = 12 . . . n. The inverse permutation of π, denoted π−1 =
π−1

1 . . . π−1
n , is the permutation such that π ◦ π−1 = π−1 ◦ π = ı, where ◦ represents

the composition of functions (e.g. π = 25431, π−1 = 51432). In other words, π−1
i

denotes the position of integer i in the permutation π. The cardinality of a set S is
denoted #S. A pair (πi, πj) of elements of the permutation π is called an inversion

if πi > πj and i < j. The number of inversions of a permutation π is denoted
inv(π). Let us remark that, since the inversions are generators of Sn, we can view Sn

with these generators as a Coxeter group. In this context, the number of inversions
of a permutation π is called the length of π and is denoted by ℓ(π). See Chapter 5
of [8] for more details.
The Kendall-τ distance, denoted dKT , counts the number of pairwise disagreements
between two permutations and can be defined formally as follows: for permutations
π and σ of [n], we have that

dKT (π, σ) = #{(i, j) | i < j and [(π−1
i < π−1

j and σ−1
i > σ−1

j ) or

(π−1
i > π−1

j and σ−1
i < σ−1

j )]}.

Note that we can easily compute inv(π) as inv(π) = inv(π−1) = dKT (π, ı). Given any
set of permutations A ⊆ Sn and a permutation π, we have

dKT (π, A) =
∑

σ∈A

dKT (π, σ).

The problem of finding a median of a set of permutations under the Kendall-

τ distance can be stated formally as follow:

Given A ⊆ Sn, we want to find a permutation π∗ of [n] such that

dKT (π∗, A) ≤ dKT (π, A), for all π ∈ Sn.

In order to represent the disagreements between pairs of elements in a permutation
π with respect to the permutations in A ⊆ Sn, we introduce hereafter the notion of
disagreements graph.

Definition 1 We call the disagreements graph of π = π1π2 . . . πn with respect to
a set A ⊆ Sn, denoted G(π, A), the graph obtained from π by considering each πi as
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a node and by drawing weighted edges between each pair of nodes (πi, πj), with i < j.
The weight of an edge (πi, πj), denoted wG(π,A)(πi, πj), represents the number of
order disagreements of this pair of elements in π with the same pair in each permuta-
tion of the set A, i.e., the distance contribution of this pair in dKT (π, A). With this
definition, we have that

dKT (π, A) =
∑

(πi,πj)

i<j

wG(π,A)(πi, πj).

Example 1 Let π = 4213 and A = {π1, π2, π3}, where π1 = 2134, π2 = 2413 and
π3 = 4123. Then, the disagreements graph of π with respect to A, i.e. G(π, A) is given
in Figure 1.

4 2 1 3
2 1 0

1 0

1

Figure 1: Disagreements graph of π = 4213 with respect to A = {2134, 2413, 4123}.
Here dKT (4213, A) = 5.

3 Reducing the search space

When dealing with permutations, searching through the whole set of permutations
[n] quickly becomes impossible since there are n! such permutations. To be able to
compare our heuristics with the brute force algorithm for permutations of [n] where
n > 12, we need to reduce the search space so that the computation will take place
in a reasonable time. Here, given a set of permutations A ⊆ Sn, with #A = m, we
derive some combinatorial properties on medians which will considerably reduce the
search space by discarding unrelevant permutations.

In order to derive such properties for any median π∗ of a set A ⊆ Sn, let us consider
the properties of its disagreements graph G(π∗, A). We first provide boundaries on
the weight of edges of G(π∗, A) (Theorems 1 and 2).

Theorem 1 Let π∗ = π∗
1 . . . π∗

n be a median of a set of permutations A ⊆ Sn under
the Kendall-τ distance and let m = #A. Then, for 1 ≤ i ≤ n− 1,

wG(π∗,A)(π
∗
i , π∗

i+1) ≤ ⌊
m

2
⌋.

Proof. By contradiction, let us assume that, given π∗, there exist an 1 ≤ i ≤ n− 1
s.t. wG(π∗,A)(π

∗
i , π∗

i+1) = k > ⌊m
2 ⌋. Let π∗∗ = π∗

1 . . . π∗
i−1π

∗
i+1π

∗
i π∗

i+2 . . . π∗
n be the

resulting permutation of the transposition of the elements in positions i and i + 1
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in π∗. Considering π∗ and π∗∗, the order of any element of [n]\{π∗
i , π∗

i+1} and π∗
i

or π∗
i+1 is the same. The only difference concerns the relative order between π∗

i and
π∗

i+1. Thus, all the edges of G(π∗, A) have the same weights than those of G(π∗∗, A)
except the one between π∗

i and π∗
i+1.

More precisely, since wG(π∗,A)(π
∗
i , π∗

i+1) = k, there are k permutations over the m
permutations of A in which π∗

i+1 precedes π∗
i . Since in π∗∗, π∗

i and π∗
i+1 have been

transposed, wG(π∗∗,A)(π
∗∗
i , π∗∗

i+1) = m − k. Since, by hypothesis, k > ⌊m
2 ⌋, we have

that m− k < k and thus,

dKT (π∗∗, A) =
∑

(π∗∗

i
,π∗∗

j
)

i<j

wG(π∗∗,A)(π
∗∗
i , π∗∗

j ) < dKT (π∗, A)

In other words, π∗ is not, by definition, a median ; a contradiction.

Theorem 2 Let π∗ = π∗
1 . . . π∗

n be a median of a set of permutations A ⊆ Sn under
the Kendall-τ distance and let m = #A. Then the maximal weight of edges in G(π∗, A)
is m− 1.

Proof. By contradiction, let us assume that, given a median π∗ = π∗
1 . . . π∗

n of a set
A = {π1, . . . , πm} s.t. m = #A, there exist 1 ≤ i < j ≤ n s.t. wG(π∗,A)(π

∗
i , π∗

j ) = m.
Let π∗∗ be the resulting permutation of the exchange of the elements in positions i
and j in π∗. Considering the weights of the edges of G(π∗, A) and G(π∗∗, A), the only
differences concern the edges (π∗

i , π∗
k), i + 1 ≤ k ≤ j and (π∗

k, π∗
j ), i + 1 ≤ k ≤ j − 1

(See Figure 2).

π∗

1 π∗

i
π∗

i+1 π∗

j−1 π∗

j π∗

n
w(π∗

i
, π∗

i+1) w(π∗

j−1, π∗

j )

m

· · · · · · · · ·

G(π∗, A):

w(π∗

i
, π∗

j−1) w(π∗

i+1, π∗

j
)

π∗

1
π∗

j π∗

i+1 π∗

j−1 π∗

i π∗

n
w(π∗

j
, π∗

i+1) w(π∗

j−1, π∗

i
)

0

· · · · · · · · ·

G(π∗∗, A):

w(π∗

j
, π∗

j−1) w(π∗

i+1, π∗

i
)

Figure 2: Disagreements graphs of π∗ and π∗∗

Let us first prove a nice property on G(π∗, A) : namely that ∀i + 1 ≤ k ≤ j − 1,
wG(π∗,A)(π

∗
k, π∗

j ) ≥ m−wG(π∗,A)(π
∗
i , π∗

k). First, note that, since wG(π∗,A)(π
∗
i , π∗

j ) = m,
in all the permutations of A π∗

j precedes π∗
i . Consider now any ∀i + 1 ≤ k ≤ j − 1.
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By definition, there are m−wG(π∗,A)(π
∗
i , π∗

k) permutations of A in which π∗
k appears

after π∗
i and thus after π∗

j . Consequently, wG(π∗,A)(π
∗
k, π∗

j ) ≥ m− wG(π∗,A)(π
∗
i , π∗

k).
Let us now compare dKT (π∗, A) and dKT (π∗∗, A). By construction, as mentionned

above, dKT (π∗, A)−dKT (π∗∗, A) = (m+
∑j−1

k=i+1 wG(π∗,A)(π
∗
i , π∗

k)+wG(π∗,A)(π
∗
k, π∗

j ))−

(0 +
∑j−1

k=i+1 wG(π∗∗,A)(π
∗∗
j , π∗∗

k ) + wG(π∗∗,A)(π
∗∗
k , π∗∗

i )).

Note that, since
∑j−1

k=i+1 wG(π∗∗,A)(π
∗∗
j , π∗∗

k )+wG(π∗∗,A)(π
∗∗
k , π∗∗

i )) =
∑j−1

k=i+1(m−
wG(π∗,A)(π

∗
i , π∗

k)) + (m − wG(π∗,A)(π
∗
k, π∗

j )), one may conclude that dKT (π∗, A) −
dKT (π∗∗, A) > 0 and thus that π∗ is not a median; a contradiction.

Theorem 2 states that there are no edges of weight m in G(π∗, A), where m = #A.
This means that if a pair of integers appears in the same order in all permutations
of A then they have to appear in that order in any median π∗ of A. Note that this
theorem, in an other form, has already been stated and proved in the area of applied
finance and uses what they called an Extended Condorcet Criterion [10].

For A ⊆ Sn, let

inv(A) =
∑

σ∈A

inv(σ).

The triangle inequality gives us a bound on the number of inversions in a median π∗

of A.

Theorem 3

inv(A) − dKT (π, A)

m
≤ inv(π∗) ≤

inv(A) + dKT (π, A)

m

where m = #A and where π is considered, w.l.o.g., to be the permutation in A that
minimizes dKT (π, A).

Proof. It is easy to show that the Kendall-τ distance is indeed a distance in the
mathematical sense of the term. That means, in particular, that it needs to satisfy the
triangle inequality (∀x, y, z, permutations of [n], dKT (x, z) ≤ dKT (x, y) + dKT (y, z)).
Let A = {π1, . . . , πm}. By the triangle inequality we have that for all 1 ≤ i ≤ m,

inv(π∗) = dKT (π∗, ı) ≤ dKT (π∗, πi) + dKT (πi, ı) = dKT (π∗, πi) + inv(πi),

Summing these inequalities we get

m inv(π∗) ≤
m
∑

i=1

dKT (π∗, πi) + inv(πi) = dKT (π∗, A) + inv(A).

Now, since π∗ is the median of A with respect to the Kendall-τ distance we need to
have that

dKT (π∗, A) ≤ dKT (πi, A),

for all 1 ≤ i ≤ m. Choosing π to be the πi ∈ A that minimizes dKT (π, A), we have

m inv(π∗) ≤ dKT (π, A) + inv(A),
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which gives us the first inequality. The second inequality is easily derived in the same
manner from the following triangle inequalities, 1 ≤ i ≤ m:

inv(πi) = dKT (πi, ı) ≤ dKT (πi, π∗) + dKT (π∗, ı) = dKT (πi, π∗) + inv(π∗).

Theorem 3 gives upper and lower bounds (but not optimal ones) on the number of
inversion in a median π∗. This is interesting since there exist a CAT-algorithm that
computes all the permutations of [n] having exactly k inversions [7]. This Theorem
thus reduces the search space for a median while Theorem 1 and 2 gives us a set of
constraints that a median should satisfy.
Table 1 compares the computation time needed to find the medians of 3 permutations
of [n], for 4 ≤ n ≤ 11, using 1) the brute force algorithm and 2) the brute force
algorithm optimized by the results of Theorem 1 to 3.

n 4 5 6 7 8 9 10 11
time BF 0 0.0002 0.0005 0.0042 0.04 0.425 5.03 63.33

time BFopt. 0 0 0.0002 0.0012 0.0064 0.0238 0.1496 1.0052

Table 1: Running time, in seconds, of the brute force algorithm with and without the
optimizations

4 Our heuristics

The idea of our heuristics is to apply a series of “good” cyclic movements on the
permutations in A, in order to make them closer to a median. Our heuristics only
works with sets of permutations of odd cardinality (see Theorem 4). Formally we
have the following definitions and algorithm.

Definition 2 Given π = π1 . . . πn, we call cyclic movement of a segment π[i..j] of
π, denoted c[i, j](π), the cycling shifting of one position to the right (cr[i, j]) or to the
left (cℓ[i, j]) of the segment inside the permutation π:

cr[i, j](π) = π1 . . . πi−1πjπi . . . πj−1πj+1 . . . πn,

cℓ[i, j](π) = π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn

When j = i + 1, a cyclic movement corresponds to a transposition.

Definition 3 Given a set of permutations A ⊆ Sn, we will say that a cyclic movement
is a k-move if

dKT (c[i, j](π), A) = dKT (π, A) + k.

Definition 4 A good cyclic movement c[i, j] is a k-move, where k < 0.
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This means that if we apply a good cyclic movement to π we obtain a permutation that
is closer to a median than π, i.e., we have dKT (c[i, j](π), A) < dKT (π, A). Theorem 4
gives us a way to easily find these good moves (in fact any k-move) on a starting
permutation π.

Theorem 4 Let A ⊆ Sn, be a set of permutations, with #A = m, m odd. Let π be
a permutation from which we want to derive π∗, a median of A with respect to the
Kendall-τ distance. We have that cr[i, j](π) (resp. cℓ[i, j](π)) is a k-move, k ∈ Z, iff
j − i ≡ k mod 2 and

j−1
∑

t=i

wG(π,A)(πt, πj)

(

resp.

j
∑

t=i+1

wG(π,A)(πi, πt)

)

=
m(j − i)− k

2
.

Proof. (⇒) If c[i, j](π) is a k-move (to the right or left) then, by definition

dKT (c[i, j](π), A) = dKT (π, A) + k. (1)

Between the two disagreements graphs G(π, A) and G(cr[i, j](π), A) (resp. G(π, A) and
G(cℓ[i, j](π), A)) only the edges (πt, πj), i ≤ t ≤ j − 1 (resp. (πi, πt), i + 1 ≤ t ≤ j)
change weights. So, there are j − i edges that change weights and their new weights
are equals to m minus their old weights. Let xp be the number of those edges that
have weight p in G(π, A), we have

m
∑

p=0

xp = j − i (2)

and Equation 1 gives us that

m
∑

p=0

(m− p)xp =

[

m
∑

p=0

p xp

]

+ k (3)

that can be written has
m
∑

p=0

(m− 2p)xp = k (4)

Subtracting Equation 2 from Equation 4 we finally get

m
∑

p=0

(m− 2p− 1)xp = k − (j − i) (5)

which gives us that k− (j− i) has to be even (since m is odd) and so j− i ≡ k mod 2.
Now to prove the second part of this implication, we have
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j−1
∑

t=i

wG(π,A)(πt, πj)

(

resp.

j
∑

t=i+1

wG(π,A)(πi, πt)

)

=

m
∑

p=0

p xp

=

m
m
∑

p=0

xp −
m
∑

p=0

(m− 2p)xp

2

(2)
=

m(j − i)−

m
∑

p=0

(m− 2p)xp

2
(4)
=

m(j − i)− k

2
.

(⇐) We have to prove that if a) j − i ≡ k mod 2 and b)
∑j−1

t=i wG(π,A)(πt, πj)
(

resp.
∑j

t=i+1 wG(π,A)(πi, πt)
)

= m(j−i)−k

2 then cr[i, j](π) (resp. cℓ[i, j](π)) is a k-

move, k ∈ Z (i.e. Equation 3 holds). Taking the same notation as before for xp,
0 ≤ p ≤ m, b) implies that

m
∑

p=0

p xp =
m(j − i)− k

2
(6)

We want to show that Equation 3 holds i.e that both parts of the equation are equals.
The right part of Equation 3 is

[

m
∑

p=0

p xp

]

+ k
(6)
=

m(j − i)− k

2
+ k =

m(j − i) + k

2

We show now that the left part of Equation 3 is also equals to m(j−i)+k

2 :

m
∑

p=0

(m− p)xp = m

m
∑

p=0

xp −

m
∑

p=0

p xp

(2)et(6)
= m(j − i)−

[

m(j − i)− k

2

]

=
m(j − i) + k

2

It is now time to present our heuristics whose pseudo-code is depicted in Figure 3.
The idea is to begin our search for the median in any permutation πℓ ∈ A, 1 ≤ ℓ ≤ m,
and to apply good cyclic movements to this starting point till there is no more possible
good movement. We apply m times our pseudo-code, with π = πℓ, 1 ≤ ℓ ≤ m and
our “median” is the best result we obtain from these m runs.
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Algorithm FindMedian (π, A)
n ← length(π)
bool ← 0 (will be changed to 1 if there is no more possible “good” movement)
chang ← 0 (will tell us if some movements were made)
WHILE bool <> 1 DO

FOR i from 1 to n− 1 DO
FOR j from i + 1 to n DO

IF cr[i, j](π) or cℓ[i, j](π) is a good movement THEN
π ← cgood[i, j](π)
chang ← chang +1

END IF
END FOR

END FOR
IF chang = 0 THEN

bool ← 1
END IF

END WHILE
RETURN π

Figure 3: Pseudo-code of our heuristics FindMedian

We tested this heuristics on 2000 random sets A of permutations of [n] for 6 ≤ n ≤ 11,
for the different cardinalities #A = 3, 5, 7 and 9 (For bigger n, it was too long to get
the real medians with the brute force algorithm). Table 4 shows the percentage of
errors of our heuristics on these runs. This percentage decreases when the cardinality
of A increases from 3 to 9, since a bigger cardinality means more starting points for
our heuristics. It is worth to mention that when our heuristics could not find the
real median π∗ in these runs, the difference between the Kendall-τ distance of the
permutation found by our heuristics and π∗ was always one.

n 6 7 8 9 10 11
#A = 3 0 0.1 0.23 0.4 0.5 1
#A = 5 0 0.01 0.05 0.12 0.1 0
#A = 7 0 0.01 0.01 0.03 0 0
#A = 9 0 0 0 0.01 0 0

Table 2: Percentage of errors of our heuristics on 2000 sets A of permutations of [n],
6 ≤ n ≤ 12, where #A = m, m = 3, 5, 7, 9.

Considering 0-moves

When our heuristics does not find the median π∗, it means that we are stuck in a local
minimum and there is no more possible good cyclic movement that we can make. We
decided in this case to apply a fixed number of 0-moves in hope that these moves
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will help us go out of the local minimum. Given a permutation π, we can easily find
these 0-moves with Theorem 4. Among these 0-moves, if at least one has the property
described in Theorem 5 we are guaranteed to move out of the local minimum. So,
the 0-moves with this properties will be call “good”.

Theorem 5 Let π be the permutation found by our heuristics FindMedian as a can-
didate for a median π∗ of a set of permutations A with #A = m, m odd. If cr[i, j](π)
(resp. cℓ[i, j](π)) is a 0-move and wG(π)(πi−1, πj) or wG(π)(πj−1, πj+1) ≥ ⌈

m
2 ⌉ (resp.

wG(π)(πi−1, πi+1) or wG(π)(πi, πj+1) ≥ ⌈
m
2 ⌉ ), then there exist a good move (i.e a

k-move, k < 0) in cr[i, j](π) (resp. cℓ[i, j](π)).

Proof. This is easy to see since in cr[i, j](π) (resp. cℓ[i, j](π)) the elements πi−1, πj

and πj−1, πj+1 (resp. πi−1, πi+1 and πi, πj+1) will become consecutive elements. Since
the edges between these elements have weights ≥ ⌈m

2 ⌉ and m is odd, the transposi-
tion (πi−1, πj) or (πj−1, πj+1) in G(cr[i, j](π), A) (resp. (πi−1, πi+1) or (πi, πj+1) in
G(cℓ[i, j](π), A)) will then become a good move, i.e. a k-move, k < 0

n 6 7 8 9 10
error % 0 0 0 0 0

% of cases with 0 0-move 100 99.8 99.7 99.5 99.2
% of cases with 1 0-move 0 0.15 0.2 0.4 0.5
% of cases with 2 0-moves 0 0.05 0.1 0.1 0.2
% of cases with3 0-moves 0 0 0 0 0.1

Table 3: Percentage of errors of the heuristics FindMedianZeroMoves on 20 000 sets
A of triplets of permutations of [n], 6 ≤ n ≤ 10 and percentages of cases where k
0-moves were needed to get the median, 0 ≤ k ≤ 3.

We implemented a new heuristics “FindMedianZeroMoves(π,A)” that add to our pre-
vious heuristics the possibility to do a fixed number of 0-moves (good 0-moves or
random ones). We tested this new heuristics on 20 000 randoms sets A of triplets of
permutations of [n], 6 ≤ n ≤ 10, with 3 has the maximal number of 0-moves permit-
ted. Table 3 shows our results. We see that on these examples we always got to a
median of A and that in most of the cases, no 0-moves where needed to get to this
median.

5 Future works

Since this article is a work in progress, there is still a lot of questions we need to
answer. Stating only a few, we have the following ones: Can we find combinatorial
properties that will completely describe the set of 0-moves that can make us move out
of a local minimum? Are 0-moves enough to ensure that in all the cases, we can get
out of local minimum? If not, a Monte Carlo approach could be a good probabilistic
way to attack the problem.
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We are also interested to investigate the number of medians of different sets A ⊆ Sn.
Some prelimary tests on sets of triplets of permutations show (see Table 4) that this
number varies a lot (from 1 to 33 in our 2000 triplets of permutations of [10].) Can we
find some combinatorial properties of A that indicates a small (resp. larger) number
of medians? Also, it seems to be more probable for a set of permutations A to have
a odd number of medians than an even one. Can we understand why? A possible
direction to answer these questions could be to consider the Bruhat ordering of per-
mutations; Maybe the position of the permutations of A in the Bruhat poset can help
us understand the variation in the number of medians.

n 3 4 5 6 7 8 9 10
# sets considered 20 2024 280840 2000 2000 2000 2000 2000

% of triplets with:
1 median: 90% 87,6% 80,6% 75,1% 68,2% 60,5% 55,6% 50%

2 medians: 0% 0% 1% 2,7% 4,15% 5,1% 6,3% 7,9%

3 medians: 10% 12,4% 16,7% 18,4% 20,9% 23,9% 22,2% 22,1%

4 medians: 0% 0% 0% 0,1% 0,5% 1,4% 2,5% 2,9%

5 medians: 0% 0% 1.7% 3,3% 5% 5,6% 7,4% 7,5%

6 medians: 0% 0% 0% 0% 0,1% 0.5% 1% 1,8%

7 medians: 0% 0% 0% 0% 0,3% 1% 1,2% 1,6%

8 medians: 0% 0% 0% 0% 0,05% 0,15% 0,3% 0,5%

9 medians: 0% 0% 0% 0,4% 0,7% 1,35% 2,3% 3%

≥ 10 medians: 0% 0% 0% 0% 0,2% 0,5% 1,2% 2,7%

Table 4: Percentages of medians for triplets of permutations of [n], 3 ≤ n ≤ 10
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