
1

Slack Time Computation for Temporal
Robustness in Embedded Systems

Serge Midonnet, Damien Masson and Rémi Lassalle

Abstract—We propose to handle execution duration overruns (temporal faults) in real-time embedded systems. When a temporal fault

occurs, the slack time can be dynamically determined and assigned to the faulty task in order to complete its treatment. This mechanism

improves the temporal robustness of real-time systems. We demonstrate that an approximate slack stealer algorithm like the MASS

algorithm is a good solution for real-time embedded systems. We validate the feasibility of this approach by an implementation on the

Lego Mindstorm NXT platform.

Index Terms—Slack Time, Robustness, LejosRT.

✦

1 PROBLEM DESCRIPTION

The constraints in a hard real-time system are defined
such that no deadlines of any task are missed. Moreover,
the worst case execution time (WCET) of a task is
estimated or computed in order to ensure that the task
never runs for a duration longer than its WCET. But this
determination is very difficult to achieve.

If a task overruns its WCET, the system may fail unless
this WCET overrun does not cause any deadline misses.
We need to detect and isolate temporal faults to protect
the system against faulty tasks.

Without this protection, known as fault isolation, it
is impossible to build robust real-time applications. The
problem is to know how long a periodic real-time task
can exceed its WCET without violation of the fault
isolation property.

In section 3 we briefly present a static solution which
consists of the determination of the allowance, a value
we can add to the WCET of each task.

The drawback of this approach is that it provides a
very pessimistic value because it is calculated in the
worst case. The approach we propose in section 4 is to
use a dynamic value called the slack time. This approach
also has the advantage to collect gain time, ie the time
freed in the system by a task completing before its
WCET.

The rest of this paper is organized as follows: Section
2 presents our task model and assumptions. Section 3
introduces the concept of allowance to increase robust-
ness in real-time systems and related works. Section 4
explains the slack time computation algorithms used
in this work. Section 5 describes the target platform

• D. Masson and S. Midonnet are with the Paris-Est university and the
“Laboratoire d’informatique Gaspard-Monge” (UMR CNRS 8049 LIGM).

• D. Masson is also affiliated to ESIEE Paris.
• Rémi Lassalle is Capitaine in the french Nationale Gendarmerie and a

second year student of the Ecole Nationale Supérieure de Techniques
Avancées (ENSTA).

we used. We expose in Section 6 experimental results
on comparative overhead measurement for DASS and
MASS implementations on lejosRT. Finally we propose
in Section 7 a proof of the concept based on three
scenarios executed.

2 ASSUMPTIONS AND TASK MODEL

In this paper, we consider an application built from a set
of n periodic real-time tasks {τ1, τ2, . . . , τn}. Each task τi
is characterized by a period Ti, a worst-case execution
time Ci and a relative deadline Di. We consider a static-
priority scheduling on a single processor. We assume
that tasks are indexed by decreasing priority.

3 STATIC ALLOWANCE FOR ROBUSTNESS

One of the available approaches to increase the WCET
of a task with respect of the fault isolation property is
to compute a value denoted Allowance by Bougueroua
et al. [1]. The Allowance is the duration which can be
added to the WCET of a task such that all tasks meet
their deadlines.

A first approach is to compute the Allowance from the
WCRT. For a given value of allowance Ai, this method
consists of checking that the system remains schedulable
when the execution duration of task τi is equal to C ′

i =
Ci +Ai. The maximal value for Ai is found by a binary
search.

Another approach to compute the allowance on the
execution duration is the sensitivity analysis. This ap-
proach has been introduced by Bini et al. [2]. It is
interesting as it is non recursive feasibility condition.
The authors propose to consider the system only at
time corresponding to the activation time of the highest
priority tasks.

Both approaches provide the optimal value of the
allowance value but their complexities are too high to
be used [3] online.



2

4 SLACK STEALING FOR ROBUSTNESS

Slack stealer algorithms was introduced in [4] in order to
address the problem of jointly scheduling hard periodic
tasks and soft aperiodic events. The general idea is to
compute at a time instant t where there is an aperiodic
pending request, for each hard real-time task, a value,
called the slack. This value corresponds to the amount of
time the task can suspend its execution without missing
its deadline. Then a time interval equal to the minimum
among these values can be used to handle aperiodic
traffic, or in our work to let a task commit a temporal
fault.

The first proposed approach to compute slack time
was based on a table generated off line. This solution
suffers to a big memory complexity issue due to the
static table storage. So a dynamic exact approach (DSS)
was proposed in [5], and a dynamic approximate one to
address the time complexity issue of the exact approach
was proposed in [6]. This dynamic approximation relies
on the computation of a lower bound on the slack values
and is called Dynamic Approximate Slack Stealer (DASS).

We proposed in [7] the Minimal Approximate Slack
Stealer (MASS) algorithm. This algorithm also computes
a lower bound on the slack values. The time complexity
and the overhead of this algorithm are lower than the
DASS ones, but this is at the expense of losing precision
on the computed lower bound. However we demon-
strated through extensive simulations that the loss of
precision against DASS was negligible.

4.1 Dynamic Slack Stealing (DSS)

The algorithm relies on the determination at time t

and for each priority level of the available slack time,
Si(t), also denoted as the i-level laxity. It represents the
maximum amount of time the task τi can be delayed
without missing its deadline. This value is equal to the
number of unused time units at priorities higher or equal
to i between t and the next τi deadline. The length of
this interval is noted di(t).

The number of “stealable” time units in the system, the
system laxity, is the minimum value among the i-level
laxities : S(t) = min∀i Si(t).

To compute the Si(t) values, the interval between t

and the next τi deadline that we denote [t, t + di(t)) is
viewed as a succession of i-level busy periods1 and i-
level idle periods2. Then, Si(t) is the sum of the i-level
idle period lengths.

Equations to compute respectively the end of a busy
period starting at time t and the length of an idle period
starting at time t can be derived from the feasibility anal-
ysis theory [8]. These two equations are then recursively
applied until the reach of the next deadline to determine
Si(t).

1. periods where the processor is servicing priorities higher or equal
to i

2. processor idle periods or periods where processor serves priorities
lower than i

Assuming that there is a time t where the Si(t) was
up to date for all tasks, it is possible to compute Si(t

′)
as follow:

1) if none of the periodic hard real-time tasks ends in
[t, t′)

a) if the processor is idle or executing soft aperi-
odic requests

∀j : Sj(t
′) = Sj(t)− (t− t′) (1)

b) if the processor is executing hard periodic task
τi

∀j < i : Sj(t
′) = Sj(t)− (t− t′) (2)

2) if hard real-time task τi ends at time t′′ ∈ [t, t′),
Si(t

′′) has to be computed using the recursive
analysis described at the beginning of this section.

This algorithm is not directly usable because of the
time complexity of the recursive computation of the Si(t)
to perform at each task ends. However, this part can be
replaced by the computation of a lower bound.

4.2 Dynamic Approximate Slack Stealer (DASS)

Since Si(t) is the sum of the i-level idle period lengths
in the interval [t, t + di(t)), [6] proposes to estimate
this quantity by computing a bound on the maximal
interference the task τi can suffer in this interval. A
bound on this interference is given by the sum of the
interferences from each task with a higher priority than
τi. Then Equation 33 gives the interference suffered by a
task τj from a task τi in an interval [a, b].

I
j
i (a, b) = ci(t)+fi(a, b)Ci+min(Ci, (b− xi(a)− fi(a, b)Ti)0)

(3)
Where ci(t) is the remaining cost of current instance

of task τi at time t.
The function fi(a, b) returns the τi instance number

which can begins and completes in [a, b]. It is given by
Equation 4.

fi(a, b) =

⌊

b− xi(a)

Ti

⌋

0

(4)

The function xi(t) represents the first activation of τi
which follows t. Then the interference is composed by
the remaining computation time needed to complete the
current pending request, by a number of entire invoca-
tions given by fi(a, b), and by a last partial request.

A lower bound on the Si(t) value is given by the
length of the interval minus the sum of the interferences
from each task with a higher or equal priority than τi. It
is recapitulated by Equation 5.

Si(t) =



di(t)− t−
∑

∀j≤i

Iij(t, di(t))





0

(5)

3. the notation (x)0 means max(x, 0)



3

We can then implement DASS by adding in the sched-
uler the following operations at the start and end of each
periodic instance (dt refers to the elapsed time since the
last start or end of a periodic task):

• Beginning of periodic task τk: let l be the priority
level of the system before the activation of τk. We
have

∀i < l, Si(t) = Si(t
′)− dt (6)

• End of periodic task τk:

∀i < k, Si(t) = Si(t
′)− dt (7)

Sk(t) =



dk(t)− t−
∑

∀j≤k

Ikj (t, dk(t))





0

(8)

4.3 Minimal Approximate Slack Stealer (MASS)

In order to reduce the complexity and the overhead
of the added operations, we decompose the maximum
available slack per task (Si(t)) into two different pieces of
data: first w̄i(t), the maximum possible work at priority i

regardless of lower priority processes ; second c̄i(t), the
effective hard real-time work to process at the instant
t at priority i, ie task τi remaining cost. We then have
Si(t) = w̄i(t)− c̄i(t).

Then, w̄i value only have to be updated at the end of
periodic instances. Moreover, they are not recomputed
from scratch, but the computation is incremental. This
permits to always compute the interferences on a time
interval equal to the task period, which can be performed
in constant time. However, we still have to maintain
the c̄i values at each preemption. We denote the time
between two periodic task ends by dtf and then time
between two periodic task begins by dtb.

1) End of periodic task τk.

∀i < k, w̄i(t) = w̄i(tf )− dtf
∀i > k, w̄i(t) = w̄i(tf )− dtf + c̄i

i = k,

{

w̄i(t) = w̄i(tf )− dtf + Ti − Ii(t)
c̄i(t) = Ci

(9)
2) Beginning of a periodic task preempting τk.

c̄k(t) = c̄k(max(tf , td))−min(dtf , dtd) (10)

5 LEJOSRT

Lego Mindstorms NXT is a programmable robotics kit
released by Lego in late July 2006. The main component
in the kit is a brick-shaped computer called the NXT
Intelligent Brick. It can take input from up to four
sensors and control up to three motors. In addition, a
lot of custom sensors e.g. gyro, compass, color detector,
movement detector, temperature detector, using a wide
range of technologies, analog, digital can be used.

LeJOS NXJ is an open source alternative firmware
for the brick that implements a Java Virtual Machine.
We forked the Lejos Project to the LejosRT project to

introduce a subset of the Real-Time Specification for Java
(RTSJ) [9]. We use this platform available on-line on
sourceforge as a validation target for this work.

6 COMPARATIVE OVERHEADS DASS/MASS
ON LEJOSRT

We present in this section an overhead comparison of
DASS and MASS implementations on lejosRT.

A main issue is to obtain an accurate time measure on
the system. We chose to modify the virtual machine in
order to perform a time measure when the first thread
starts and another one when a thread ends a periodic
instance.

6.1 Experience description

We consider a program with n real-time threads with
the same release parameters (period and deadline) but
with n different priorities. Moreover we shift start times
in order to start first the thread with the lowest priority
and last the one with the highest priority. That permits
to maximize the number of preemptions. The period of
the thread with the lowest priority is set shorter than
the other one in order to have this thread preempted
twice be each other ones. We measure the needed time
to execute two instances for each thread. The system load
is then maximal (100%).

6.2 Experimental results

Fig. 1. System overheads with DASS and MASS depend-

ing on task number (in ms)

Figure 1 presents the results obtained for a range of
thread number from 2 to 25. Each test was performed ten
times and the values reported in Y axis are the average
differences between the time execution of the program
on LejosRT without any slack computation and with the
concerned algorithm (respectively DASS and MASS). On
the X axis is reported the number of thread.

We can note that the MASS overhead is always
lower than the DASS one. This was the expected result,
that this experiment confirmed on real implementations.
Moreover, the more threads we have, the higher the
measured difference is. There is an exception with 5
and 10 tasks where the MASS overhead is negligible in
regards to the overheads of the scheduling algorithm on
the virtual machine.



4

7 PROOF OF CONCEPT : EXECUTIONS TRACES

Three scenarios are presented here. On the following
figures, the gray zones represent cost overruns. The
times are in milliseconds.

7.1 One task commits a cost overrun

20000 1000 4000 5000 6000

τ1

τ2

τ3

3000

Stopped

Fig. 2. Consumption of all the available laxity by one

thread

The system is composed by 3 periodic tasks which
are synchronously activated. The task with the higher
priority performs an infinite loop, and so will obviously
overrun its cost. We can see that the mechanism succeed
in letting it execute as long as possible. The two other
tasks respect their deadlines.

7.2 Two tasks commit cost overrun

20000 1000 4000 5000 6000

τ1

τ2

τ3

3000

Stopped

Fig. 3. Consumption of the available laxity by two threads

This time, both task τ1 and τ3 overrun their cost.
Moreover, we shifted the task activations to observe a
preemption during the slack time utilization. So τ3 starts
first, overruns its cost, but continue its execution since
there is laxity in the system. It is preempted by τ2 which
is preempted in turn by τ1. τ1 overruns its cost and
consumes a part of the system laxity. Finally τ1 ends its
execution, τ2 can resume and complete, and τ3 consumes
the rest of the laxity.

7.3 Gain time collection

This last experiment is quite the same as the previous,
except we make τ2 finish before its WCET.

20000 1000 4000 5000 6000

τ1

τ2

τ3

3000

Fig. 4. Example with gain time

We can see that the gain time generated is auto-
matically collected by MASS in the system laxity. That
permits τ3 to ends before its deadline.

8 CONCLUSION

We have proposed an approximate slack stealing algo-
rithm (MASS) and we prove in this paper its usability to
enforce the robustness of real-time systems. We demon-
strate that this mechanism has a lower overhead than
the other existing algorithm: DASS, which is a researched
quality since we want to deal with cost overruns. Indeed,
the lower computation time the mechanism takes, the
more time to handle the cost overrun we have. Finally,
we implemented it and evaluated its behavior in the
presence of temporal faults on a real embedded platform
(LejosRT).

REFERENCES

[1] L. Bougueroua, L. George, and S. Midonnet, “Temporal robustness
of real-time architectures specified by estimated wcets,” Interna-
tional Journal on Advances in Software, vol. 2, no. 4, pp. 359–371,
Dec. 2009.

[2] E. Bini, M. Di Natale, and G. C. Buttazzo, “Sensitivity analysis
for fixed-priority real-time systems,” in Proceedings of the 18th
Euromicro Conference on Real-time Systems (ECRTS). IEEE Computer
Society, 2006, pp. 13–22. [Online]. Available: papers/Bini2006.pdf

[3] F. Fauberteau, S. Midonnet, and L. George, “A robust partitioned
scheduling for real-time multiprocessor systems,” in Proceedings of
IFIP Conference on Distributed and Parallel Embedded Systems (DIPES).
Springer Science and Business Media, 2010, p. (to appear).

[4] J. P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for
scheduling soft-aperiodic tasks fixed priority preemptive sys-
tems,” in proceedings of the 13th IEEE Real-Time Systems Symposium,
Phoenix, Arizona, Dec. 1992, pp. 110–123.

[5] R. I. Davis, K. Tindell, and A. Burns, “Scheduling slack time in
fixed priority pre-emptive systems,” in Proceedings of the 14th IEEE
Real-Time Systems Symposium (RTSS ’93), 1993, pp. 222–231.

[6] R. I. Davis, “On exploiting spare capacity in hard real-time sys-
tems,” Ph.D. dissertation, University of York, 1995.

[7] D. Masson and S. Midonnet, “Userland Approximate Slack Stealer
with Low Time Complexity,” in 16th Real-Time and Network Systems
(RTNS’08), Rennes, France, Oct. 2008, pp. 29–38, (10 pp.).

[8] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings,
“Applying new scheduling theory to static priority pre-emptive
scheduling,” Software Engineering Journal, vol. 8, pp. 284–292, 1993.
[Online]. Available: citeseer.ist.psu.edu/audsley93applying.html

[9] http://www.rtsj.org, “The real-time specification for java (RTSJ),”
http://www.rtsj.org. [Online]. Available: http://www.rtsj.org


