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The syntati graph of a so� shiftis invariant under shift equivaleneMarie-Pierre B�eal� Franesa Fiorenzi�Dominique Perrin�AbstratWe de�ne a new invariant for shift equivalene of so� shifts. Thisinvariant, that we all the syntati graph of a so� shift, is the diretedayli graph of harateristi groups of the non null regular D-lasses ofthe syntati semigroup of the shift.Keywords: Automata and formal languages, symboli dynamis.1 IntrodutionSo� shifts [22℄ are sets of bi-in�nite labels in a labeled graph. If the graphan be hosen strongly onneted, the so� shift is said to be irreduible. Apartiular sublass of so� shifts is the lass of shifts of �nite type, de�ned by a�nite set of forbidden bloks. Two so� shifts X and Y are onjugate if there is abijetive blok map fromX onto Y . It is an open question to deide whether twoso� shifts are onjugate, even in the partiular ase of irreduible shifts of �nitetype. There is a notion weaker than onjugay, alled shift equivalene (see [18,Setion 7.3℄). Therefore, invariants for shift equivalene are also invariants foronjugay.There are many invariants for onjugay of shifts, algebrai or ombinatorial,see [18, Chapter 7℄, [7℄, [17℄, [3℄. For instane the entropy is a ombinatorialinvariant whih gives the omplexity of allowed bloks in a shift. The zetafuntion is another invariant whih ounts the number of periodi orbits in ashift.In this paper, we de�ne a new invariant for shift equivalene of irreduibleso� shifts. This invariant is based on the struture of the syntati semigroupof the language of �nite bloks of the shift. An irreduible so� shift has aunique (up to isomorphisms of automata) minimal deterministi presentation,alled its right Fisher over. The syntati semigroup S(X) of an irreduibleso� shift X is the transition semigroup of its right Fisher over.�Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, 77454 Marne-la-Vall�ee Cedex 2,Frane. fbeal,fiorenzi,perring�univ-mlv.fr1



In general, the struture of a �nite semigroup is determined by the Green'srelations (denoted R, L, H;D;J ) [20℄. Our invariant is the ayli diretedgraph whose nodes the non null regular D-lasses of S(X) labeled by their rankand their harateristi group. The edges orrespond to the partial order �Jbetween these D-lasses. We all it the syntati graph of the so� shift. Theresult an be extended to the ase of reduible so� shifts.We �rst prove the onjugay invariane of the syntati graph, and usingthis, we prove the shift equivalene invariane. The proof of the onjugayinvariane is based on Nasu's Classi�ation Theorem for so� shifts [19℄ thatextends William's one for shifts of �nite type. This theorem says that twoirreduible so� shifts X;Y are onjugate if and only if there is a sequene ofsymboli adjaeny matries of right Fisher oversA = A0; A1; : : : ; Al�1; Al =B, suh that Ai�1 and Ai are elementary strong shift equivalent for 1 � i � l,where A and B are the adjaeny matries of the right Fisher overs of X andY , respetively. This means that, for eah i, there are two symboli matriesUi and Vi suh that, after reoding the alphabets of Ai�1 and Ai, we haveAi�1 = UiVi and Ai = ViUi. A bipartite shift is assoiated in a natural way toa pair of elementary strong shift equivalent and irreduible so� shifts [19℄.The key point in our invariant is the fat that an elementary strong shiftequivalene relation between adjaeny matries implies some onjugay rela-tions between the idempotents in the syntati semigroup of the bipartite shift.We show that partiular lasses of irreduible so� shifts an be haraterizedwith this syntati invariant: the lass of irreduible shifts of �nite type and thelass of irreduible aperiodi so� shifts.A related invariant haraterizing reduible so� shifts and whih uses syn-tati properties has been presented in [11℄. It is a lattie whose verties rep-resent the sub-synhronizing subshifts of the shift. Some verties of this lattieorrespond to the verties of rank 1 in our syntati graph. Other invariantsof a so� shift, as the derived shift spaes and the depth of the shift, are givenin [21℄.Basi de�nitions related to symboli dynamis are given in Setion 2.1. Werefer to [18℄ or [14℄ for more details. See also [15℄, [16℄, [5℄ about so� shifts.Basi de�nitions and properties related to �nite semigroups and their strutureare given Setion 2.2. We refer to [20, Chapter 3℄ for a more omprehensiveexpository. Nasu's Classi�ation Theorem is realled in Setion 2.4. We provethe onjugay invariane of the syntati graph in Setion 3. A omparisonbetween this syntati invariant and some other ones whih are well known, isgiven in Setion 4. In Setion 3.1, we extend the result to the ase of reduibleso� shifts. In Setion 5, we reall the de�nition of shift equivalene betweenso� shifts and we prove that the syntati graph is also invariant under shiftequivalene. Part of this paper was presented at the onferene STACS'04 [4℄.
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2 De�nitions and bakground2.1 So� shifts and their presentationsLet A be a �nite alphabet, i.e. a �nite set of symbols. The shift map � : AZ!AZ is de�ned by �((ai)i2Z) = (ai+1)i2Z, for (ai)i2Z 2 AZ. If AZ is endowedwith the produt topology of the disrete topology on A, a shift is a losed�-invariant subset of AZ.If X is a shift of AZ and n a positive integer, the nth higher power of X isthe shift of (An)Z de�ned by Xn = f(ain; : : : ; ain+n�1)i2Z j (ai)i2Z2 Xg.A �nite automaton is a �nite multigraph labeled by A. It is denotedA = (Q;E), where Q is a �nite set of states, and E a �nite set of edges la-beled by A. It is equivalent to a symboli adjaeny (Q �Q)-matrix A, whereApq is the �nite formal sum of the labels of all the edges from p to q. A so�shift is the set of the labels of all the bi-in�nite paths on a �nite automaton. IfA is a �nite automaton, we denote by XA the so� shift de�ned by the automa-ton A. Several automata an de�ne the same so� shift. They are also alledpresentations or overs of the so� shift. We will assume that all presentationsare essential : all states have at least one outgoing edge and one inoming edge.An automaton is deterministi if for any given state and any given symbol,there is at most one outgoing edge labeled by this given symbol. A so� shift isirreduible if it has a presentation with a strongly onneted graph. Irreduibleso� shifts have a unique (up to isomorphisms of automata) minimal determin-isti presentation, that is a deterministi presentation having the fewest statesamong all deterministi presentations of the shift. This presentation is alledthe right Fisher over of the shift.Let A = (Q;E) be a �nite deterministi (essential) automaton on the al-phabet A. Eah �nite word w of A� de�nes a partial funtion from Q to Q.This funtion sends the state p to the state q, if w is the label of a path fromp to q. The semigroup generated by all these funtions is alled the transitionsemigroup of the automaton. When XA is not the full shift, the semigroup hasa null element, denoted 0, whih orresponds to words whih are not fators ofany bi-in�nite word of XA. The syntati semigroup of an irreduible so� shiftis de�ned as the transition semigroup of its right Fisher over.Example 1 The so� shift presented by the automaton of Figure 1 is alledthe even shift. Its syntati semigroup is de�ned by the table in the right partof the �gure.2.2 Struture of �nite semigroupsWe refer to [20℄ for more details about the notions de�ned in this setion.Given a semigroup S, we denote by S1 the following monoid: if S is amonoid, S1 = S. If S is not a monoid, S1 = S [ f1g together with the law �de�ned by x � y = xy if x; y 2 S and 1 � x = x � 1 = x for eah x 2 S1.3



1 2bba 1 2a 1 �b 2 1ab 2 �ba � 1bb 1 2bab � 2aba � � :
Figure 1: The right Fisher over of the even shift and its syntati semigroup. Sineaa and a de�ne the same partial funtion from Q to Q, we have aa = a in the syntatisemigroup. We also have aba = 0 and, in general, ab2k+1a = 0 for any nonnegativeinteger k. The word bb is the identity in this semigroup.We reall the Green's relations whih are fundamental equivalene relationsde�ned in a semigroup S. The four equivalene relationsR, L, H, J are de�nedas follows. Let x; y 2 S, xRy , xS1 = yS1;xLy , S1x = S1y;xJ y , S1xS1 = S1yS1;xHy , xRy and xLy:Another relation D is de�ned by:xDy , 9z 2 S xRz and zLy:In a �nite semigroup J = D. We reall the de�nition of the quasi-order �J :x �J y , S1xS1 � S1yS1:AnR-lass is an equivalene lass for a relationR (similar notations hold for theother Green's relations). An idempotent is an element e 2 S suh that ee = e.A regular lass is a lass ontaining an idempotent. In a regular D-lass, anyH-lass ontaining an idempotent is a maximal subgroup of the semigroup.Moreover, two regular H-lasses ontained in a same D-lass are isomorphi (asgroups), see for instane [20, Chapter 3 Proposition 1.8℄. This group is alledthe harateristi group of the regular D-lass. The quasi-order �J indues apartial order between the D-lasses (still denoted �J ). The struture of thetransition semigroup S is often desribed by the so alled \egg-box" pitures ofthe D-lasses.We say that two elements x; y 2 S are onjugate if there are elements u; v 2S1 suh that x = uv and y = vu. Two idempotents belong to a same regular D-lass if and only if they are onjugate, see for instane [20, Chapter 3 Proposition1.12℄. 4



Let S be a transition semigroup of an automaton A = (Q;E) and x 2 S.The rank of x is the ardinal of the image of x as a partial funtion from Q toQ. The kernel of x is the partition indued by the equivalene relation � overthe domain of x where p � q if and only p; q have the same image by x. Thekernel of x is thus a partition of the domain of x. In Figure 2, we desribe theegg-box pitures for the even shift of Example 1.121=2 b�b2 1 21 �a ab2 ba �bab �� �0Figure 2: The syntati semigroup of the even shift is omposed of three D-lassesD1, D2, D3, of rank 2, 1 and 0, respetively, represented by the above tables fromleft to right. Eah square in a table represents an H-lass. Eah row represents anR-lass and eah olumn an L-lass. The ommon kernel of the elements in eah rowis written on the left of the row. The ommon image of the elements in eah olumn iswritten above the olumn. Idempotents are marked with the symbol �. Eah D-lassof this semigroup is regular. The harateristi groups of D1, D2, D3 are Z=2Z, thetrivial group Z=Zand Z=Z, respetively.2.3 The syntati graph of a so� shiftLet X be an irreduible so� shift and S(X) its syntati semigroup. It is knownthat S(X) has a unique D-lass of rank 1 whih is regular (see [5℄ or [6℄, see also[11℄).We de�ne a �nite direted ayli graph assoiated with X as follows. Theset of verties of this graph is the set of non null regular D-lasses of S(X),but the regular D-lass of null rank, if there is one. Eah vertex is labeled bythe rank of the D-lass and its harateristi group. There is an edge from thevertex assoiated with a D-lass D to the vertex assoiated with a D-lass D0 ifand only if D0 �J D. We all this ayli graph the syntati graph of X (seeFigure 3 for an example). Note that the regular D-lass of null rank, if there isone, is not taken into aount in a syntati graph. This is linked to the fatthat a full shift (i.e. the set of all bi-in�nite words on a �nite alphabet) an beonjugate to a non full shift.2.4 Nasu's Classi�ation Theorem for so� shiftsIn this setion, we reall Nasu's Classi�ation Theorem for so� shifts [19℄ (seealso [18, Theorem 7.2.12℄), whih extends William's Classi�ation Theorem forshifts of �nite type (see [18, Theorem 7.2.7℄).Let X � AZ; Y � BZ be two shifts and m; a be nonnegative integers. Amap � : X ! Y is a (m; a)-blok map (or (m; a)-fator map) if there is amap Æ : Am+a+1 ! B suh that �((ai)i2Z) = (bi)i2Z where Æ(ai�m : : : ai�1aiai+1 : : : ai+a) = bi. A blok map is a (m; a)-blok map for some nonnegative in-tegers m; a (respetively alled its memory and antiipation). The well known5



rank 2, Z=2Zrank 1, Z=ZFigure 3: The syntati graph of the even shift X of Example 1. We have D2 �J D1sine, for instane, S(X)1abS(X)1 � S(X)1bS(X)1.theorem of Curtis, Hedlund and Lyndon [10℄ asserts that ontinuous maps om-muting with the shift map �, are exatly blok maps. A onjugay is a one-to-one and onto blok map (then, being a shift ompat, also its inverse is a blokmap).We now de�ne the notion of strong shift equivalene between two symboliadjaeny matries. A symboli monomial is a formal produt of several non-ommuting variables. In partiular, the entries of a symboli adjaeny matrixare integral ombinations of symboli monomials. In this ategory of matries,we write A $ B if A = B modulo a bijetion of their underlying symbolimonomials. For example we an write� 0 bb+  2a�$ � 0 aa+ d 2e�$ � 0 bbbb+  2b� :Two symboli matries A and B with entries in A and B respetively, areelementary strong shift equivalent if there is a pair symboli matries (U; V )with entries in disjoint alphabets U and V respetively, suh that A$ UV andB $ V U .Another equivalent formulation of this de�nition is the following. Let A andB be two �nite alphabets. We denote by AB the set of words ab with a 2 Aand b 2 B. Let f be a map from A to B. The map f is extended to a morphismfrom �nite formal sums of elements of A to �nite formal sums of elements of B.We say that f transforms a symboli (Q�Q)-matrix A into a symboli (Q�Q)-matrix B if Bpq = f(Apq) for eah p; q 2 Q. Two symboli matries A and Bwith entries in A and B respetively, are elementary strong shift equivalent ifthere is a pair of symboli matries (U; V ) with entries in disjoint alphabets Uand V respetively, suh that there is a one-to-one map from A to UV whihtransforms A into UV , and there is a one-to-one map from B to VU whihtransforms B into V U .Two symboli adjaeny matries A and B are strong shift equivalent withinright Fisher overs if there is a sequene of symboli adjaeny matries ofright Fisher overs A = A0; A1; : : : ; Al�1; Al = B6



suh that for 1 � i � l the matries Ai�1 and Ai are elementary strong shiftequivalent.Theorem 2 (Nasu) Let X and Y be irreduible so� shifts and let A and Bbe the symboli adjaeny matries of the right Fisher overs of X and Y ,respetively. Then X and Y are onjugate if and only if A and B are strongshift equivalent within right Fisher overs.Example 3 Let us onsider the two (onjugate) irreduible so� shifts X andY de�ned by the right Fisher overs in Figure 4.
1 2bba 20 3010a0b0b0 d00

Figure 4: Two onjugate shifts X and Y .The symboli adjaeny matries of these automata are respetivelyA = �a bb 0� ; B = 24a0 0 d00 0 b00 b0 035 :Then A and B are elementary strong shift equivalent withU = �u1 0 u20 u2 0 � ; V = 24v1 0v2 00 v235 :Indeed, UV = �u1v1 u2v2u2v2 0 � ; V U = 24v1u1 0 v1u2v2u1 0 v2u20 v2u2 0 35 :The one-to-one maps from A = fa; bg to UV and from B = fa0; b0; 0; d0g to VU7



are desribed in the tables belowa u1v1b u2v2 ; a0 v1u1b0 v2u20 v2u1d0 v1u2 :An elementary strong shift equivalene between A = (Q;E) and B = (Q0; E0),enables the onstrution of an irreduible so� shift Z on the alphabet U [V asfollows. The so� shift Z is de�ned by the automaton C = (Q [ Q0; F ), wherethe symboli adjaeny matrix C of C isQ Q0QQ0 �0 UV 0� :The shift Z is alled the bipartite shift de�ned by U; V (see Figure 5). An edgeof C labeled by U goes from a state in Q to a state in Q0. An edge of C labeledby V goes from a state in Q0 to a state in Q. Hene, a path of C goes from astate in Q [ Q0 to a state in Q [ Q0, its domain is inluded either in Q or inQ0, and its image is inluded either in Q or in Q0. If a path of C has domaininluded in P and the image inluded in P 0, we say that it has type (P; P 0).Remark that the seond higher power of Z is the disjoint union of X and Ysine C2 = �UV 00 V U� :Note also that C is a right Fisher over (i.e. is minimal).
110 23020u2 v2u2v2u1v1Figure 5: The bipartite shift Z of the shifts X and Y in Figure 4. The word u1v1 hastype (Q;Q) and orresponds to the word a in X.3 A syntati invariant for onjugayIn this setion, we prove that the syntati graph is an invariant for the onju-gay of irreduible so� shifts. 8



Theorem 4 Let X and Y be two irreduible so� shifts. If X and Y are onju-gate, then their syntati graphs are isomorphi and the isomorphism preservesthe labels.We give a few lemmas before proving Theorem 4.Let X (respetively Y ) be an irreduible so� shift whose symboli adjaenymatrix of its right Fisher over is a (Q � Q)-matrix (respetively (Q0 � Q0)-matrix) denoted by A (respetively by B). We assume that A and B are elemen-tary strong shift equivalent through a pair of matries (U; V ). The orrespondingalphabets are denoted A, B, U , and V as before. We denote by f a one-to-onemap from A to UV whih transforms A into UV and by g a one-to-one mapfrom B to VU whih transforms B into V U . Let Z be the bipartite irreduibleso� shift assoiated to U; V . We denote by S(X) (respetively S(Y ), S(Z))the syntati semigroup of X (respetively Y , Z).Remark that w 2 S(Z) has type (Q;Q) if and only if w 6= 0 and w 2 (f(A))�,and w has type (Q0; Q0) if and only if w 6= 0 and w 2 (g(B))�.Lemma 5 Elements of S(Z) in a same non null H-lass have the same type.Proof We show the property for the (Q;Q)-type. Let w 2 H and w of type(Q;Q). If w = w0v with w0; v 2 S(Z), then w0 has type (Q; �). If w = zw0 withz; w0 2 S(Z), then w0 has type (�; Q). Thus, wHw0 implies that w0 has type(Q;Q). �The H-lasses of S(Z) ontaining elements of type (Q;Q) (respetively (Q0; Q0))are alled (Q;Q)-H-lasses (respetively (Q0; Q0)-H-lasses).Let w = a1 : : : an be an element of S(X), we de�ne the element f(w) as f(a1): : : f(an). Note that this de�nition is onsistent sine if a1 : : : an = a01 : : : a0m inS(X), then f(a1) : : : f(an) = f(a01) : : : f(a0m) in S(Z). Similarly we de�ne anelement g(w) for any element w of S(Y ).Conversely, let w be an element of S(Z) belonging to f(A)� (� (UV)�). Thenw = f(a1) : : : f(an), with ai 2 A. We de�ne f�1(w) as a1 : : : an. Similarly wede�ne g�1(w). Again these de�nitions and notations are onsistent. Thus f isa semigroup isomorphism from S(X) to the subsemigroup of S(Z) of transitionfuntions de�ned by the words in (f(A))�. Notie that f(0) = 0 if 0 2 S(X).Analogously, g is a semigroup isomorphism from S(Y ) to the subsemigroup ofS(Z) of transition funtions de�ned by the words in (g(B))�.Lemma 6 Let w;w0 2 S(Z) of type (Q;Q). Then wHw0 in S(Z) if and only iff�1(w)Hf�1(w0) in S(X).Proof Let w = f(a1) : : : f(an) and w0 = f(a01) : : : f(a0m), with ai; a0j 2 A. Wehave w = w0v with v 2 S(Z) if and only if v = f(�a1) : : : f(�ar) with �ai 2 A andf(a1) : : : f(an) = f(a01) : : : f(a0m)f(�a1) : : : f(�ar). This is equivalent to a1 : : : an =a01 : : : a0m�a1 : : : �ar, that is f�1(w)S(Z)1 � f�1(w0)S(Z)1. Analogously, we havew0 = wv0 with v0 2 S(Z), if and only if f�1(w0)S(Z)1 � f�1(w)S(Z)1. Thisproves that wRw0 in S(Z) if and only if f�1(w)Rf�1(w0) in S(X). In the same9



way, one an prove the same statement for the relation L and hene for therelation H. �A similar statement holds for (Q0; Q0)-H-lasses.Lemma 7 Let w;w0 2 S(Z) of type (Q;Q). Then w �J w0 in S(Z) if and onlyif f�1(w) �J f�1(w0) in S(X). This implies that wJw0 in S(Z) if and only iff�1(w) J f�1(w0) in S(X).Proof The �rst statement an be prooved as in the previous lemma. �Similar results hold between S(Y ) and S(Z). As a onsequene we get thefollowing lemma.Lemma 8 The bijetion f between S(X) and the elements of S(Z) in (f(A))�,indues a bijetion between the non null H-lasses of S(X) and the (Q;Q)-H-lasses of S(Z). Moreover this bijetion keeps the relations J , �J and the rankof the H-lasses.A similar statement holds for the bijetion g.We now ome to the main lemma, whih shows the link between the ele-mentary strong shift equivalene of the symboli adjaeny matries and theonjugay of some idempotents in the semigroup of the bipartite shift. Thislink is the key point of the invariant.Lemma 9 Let H be a regular (Q;Q)-H-lass of S(Z). Then there is a regular(Q0; Q0)-H-lass in the same D-lass as H.Proof Let e 2 S(Z) be an idempotent element of type (Q;Q). Let u1v1 : : : unvnin (UV)� suh that e = u1v1 : : : unvn. We de�ne �e = v1 : : : unvnu1. Thuseu1 = u1�e in S(Z). Remark that �e depends on the hoie of the word u1v1 : : :unvn representing e in S(Z).If w denotes v1 : : : unvn and v denotes u1, we have e = vw and �e = wv. Itfollows that e and �e are onjugate, thus e2 = e and �e2 are onjugate. Moreover�e3 = wvwvwv = weev = wev = wvwv = �e2:Thus �e2 is an idempotent onjugate to the idempotent e. As a onsequene eand �e2 belong to a same D-lass of S(Z) (see Setion 2), and �e2 6= 0. The resultfollows sine �e2 is of type (Q0; Q0). �Note that the number of regular (Q;Q)-H-lasses and the number of regular(Q0; Q0)-H-lasses in a same D-lass of S(Z), may be di�erent in general.We now prove Theorem 4.Proof[of Theorem 4℄ By Nasu's Theorem [19℄ we an assume, without loss ofgenerality, that the symboli adjaeny matries of the right Fisher overs of10



X and Y are elementary strong shift equivalent. We de�ne the bipartite shiftZ as above.Let D be a non null regular D-lass of S(X). Let H be a regular H-lassof S(X) ontained in D. Let H 00 = f(H). By Lemma 8, the groups H andH 00 are isomorphi. Let D00 the D-lass of S(Z) ontaining H 00. By Lemma 9,there is at least one regular (Q0; Q0)-H-lass K 00 in D00, whih is isomorphi toH 00. Let H 0 = g�1(K 00) and let D0 be the D-lass of S(Y ) ontaining H 0. ByLemma 8, the groups H 0 and K 00 are isomorphi. Hene the groups H and H 0are isomorphi.By Lemmas 8 and 9, we have that the above onstrution of D0 from Dis a bijetive funtion ' from the non null regular D-lasses of S(X) onto thenon null regular D-lasses of S(Y ). Moreover the harateristi group of D isisomorphi to the harateristi group of '(D) and, by Lemma 8, the rank ofD is equal to the rank of '(D).We now onsider two non null regular D-lasses D1 and D2 of S(X). ByLemma 8 and Lemma 9, D1 �J D2 if and only if '(D1) �J '(D2). It followsthat the syntati graphs of S(X) and S(Y ) are isomorphi through the bijetion'. �3.1 The reduible aseNasu's Classi�ation Theorem holds for reduible so� shifts by the use of rightKrieger overs instead of right Fisher overs [19℄. This enables the extensionof our result to the ase of reduible so� shifts.Let X � AZ be a shift. We de�neX� = fx� j x 2 Xg;where for x 2 AZ, we denote by x� the left in�nite word : : : x�2x�1x0. Theequivalene relation � on X� is de�ned as follows. Let x; y 2 X�,x � y , fu 2 A+ j xu 2 X�g = fu 2 A+ j yu 2 X�g:If X is a so� shift, the equivalene lasses of � are �nitely many [15℄. The rightKrieger over of X is de�ned as the automaton labeled by A in whih the statesare the �-lasses [x℄ with x 2 X�, and there is a an edge labeled a from [x℄to [xa℄ if xa 2 X�. The analogous of Theorem 2 for (possibly) reduible so�shifts is the following.Theorem 10 [19, Theorem 3.3℄ Let X and Y be so� shifts and let A andB be the symboli adjaeny matries of the right Krieger overs of X and Y ,respetively. Then X and Y are onjugate if and only if A and B are strongshift equivalent within right Krieger overs.Hene we an de�ne the syntati graph of a reduible shift X as the graph ofthe regular D-lasses of the transition semigroup of its right Krieger over. Theresult of Theorem 4 is extended as follows for reduible so� shifts.11



Theorem 11 Let X and Y be two so� shifts. If X and Y are onjugate, thentheir syntati graphs are isomorphi and the isomorphism preserves the labels.An e�etive proedure to onstrut the right Krieger over of a so� shift isdesribed in [19℄. First, one onstruts the (unique) minimal deterministi au-tomaton with one initial state reognizing the language of �nite bloks of theshift. Next, one erases all the states whih are not the end of any left-in�nitepath. This automaton turns out to be the right Krieger over of the shift. Forinstane, the right Krieger over of the even shift in Figure 1, is illustrated inFigure 6.
2 31bbbaaFigure 6: The right Krieger over of the even shift X desribed in Figure 1. Notiethat, although the shift X is irreduible, the right Fisher over of X does not oinidewith its right Krieger over.4 How dynami is this invariant?In this setion, we briey ompare the syntati invariant with other lassialonjugay invariants. We refer to [18℄ for their de�nitions and properties.First, one an remark that the syntati invariant does not apture all thedynamis. Two so� shifts an have the same syntati graph and a di�erententropy, as shown in the example of Figure 7.The omparison with the zeta funtion is more interesting. Reall that thezeta funtion of a shift X is �(X) = expPn�1 pn znn , where pn is the number ofbi-in�nite words x 2 X suh that �n(x) = x. We give in Figure 8 an exampleof two irreduible so� shifts whih have the same zeta funtion and di�erentsyntati graphs.The following haraterization of irreduible shifts of �nite type �ts naturallyin our framework. It is of ourse well-known and an be obtained for instanefrom the haraterization of syntati semigroups of loal languages (see [9℄), andthe haraterization of syntati semigroups of irreduible so� shifts (see [5℄),or also from [11℄. 12



1 2bba 1 2a bbFigure 7: The two above so� shifts X;Y have the same syntati graph and di�erententropies. Indeed, we have b =  in the syntati semigroup of Y . Hene the shifts Xand Y have the same syntati semigroup.
1 2aab bx y 1 2adb x yFigure 8: Two so� shifts X;Y whih have the same zeta funtion 11�4z+z2 (seefor instane [18, Theorem 6.4.8℄, or [2℄ for the omputation of the zeta funtion ofa so� shift), and di�erent syntati graphs. Indeed the syntati graph of X is(rank 2;Z=2Z) ! (rank 1;Z=Z) while the syntati graph of Y has only one node(rank 1;Z=Z). Thus they are not onjugate. Notie that Y is a shift of �nite type.Proposition 12 An irreduible so� shifts is of �nite type if and only its syn-tati graph is redued to one node of rank 1 representing the trivial group.Proof Let X be an irreduible shift of �nite type. It is well known that X isonjugate to an edge shift, that is a so� shift with a presentation in whih thelabels of the edges are all di�erent (or, in other words, a �nite multigraph whihis not labeled). Hene, by Theorem 4, we an suppose that X is an edge shift.Let S(X) be the syntati semigroup of X . Eah non null element of S(X) hasrank 1 beause it determines an initial state and a terminal state. Moreover itan be easily seen that for x; y 2 S(X)nf0g we have xRy if and only if x and yhave the same domain, and xLy if and only if they have the same image. Thismeans that S(X) ontains only one D-lass of rank 1 and that the H-lassesontain exatly one element.For the onverse, suppose that the syntati graph of an irreduible so�shift X is redued to one node of rank 1 representing the trivial group. By[18, Theorem 3.4.17℄, it suÆes to prove that all suÆiently long and non nullwords in the syntati semigroup S(X) of X have rank 1. By [20, Chapter 3Proposition 1.12℄, we have that all suÆiently long words in S(X) are of the13



form uvw, where v is an idempotent of S(X). Being eah idempotent of rank1, we have that eah non null word of the form uvw has rank 1. �Another interesting lass of irreduible so� shifts an be haraterized withthe syntati invariant. It is the lass of aperiodi so� shifts [1℄.Let x 2 X , we denote by period(x) the least positive integer n suh that�n(x) = x if suh an integer exists. It is equal to 1 otherwise.Let X;Y be two shifts and let � : X ! Y be a blok map. The map is saidaperiodi if period(x) = period(�(x)) for any x 2 X with �nite period. Roughlyspeaking, suh a fator map � does not make periods derease.A so� shift is aperiodi if it is the image of a shift of �nite type under anaperiodi blok map. An aperiodi presentation is a presentation in whih forevery u 2 A+, whenever there is a yling path labeled unp1 u�! p2 u�! : : : u�! pn u�! p1;one has pi = p1 for eah i = 2; : : : ; n.Proposition 13 A so� shift is aperiodi if and only if it has an aperiodipresentation.Proof Let X be an aperiodi so� shift. Hene X = �(Y ), where � is anaperiodi blok map and Y a shift of �nite type. Notie that we an alwayssuppose that Y is an edge shift and that � has no memory nor antiipation.Hene a presentation A of X is given by the not labeled presentation G of Y inwhih the label of an edge e is the letter �(e) (we identify the blok map � withthe loal rule Æ de�ning it). Moreover, we an always suppose that there is atmost one edge from a given state p to a given state q in G. We have that thepresentation A is aperiodi. Indeed, letp1 u�! p2 u�! : : : u�! pn u�! p1be a path in A. Notie that we an always suppose that the on�guration u1 2X , obtained by repeating in�nitely many times the word u in both diretions,has period h = juj. Moreover, in G there is a path vp1 e(1)1 :::e(1)h������! p2 e(2)1 :::e(2)h������! : : : e(n�1)1 :::e(n�1)h���������! pn e(n)1 :::e(n)h������! p1;suh that �(e(i)1 : : : e(i)h ) = u, for eah i = 1; : : : ; n. Being �(v1) = u1, theon�guration v1 2 Y must have period h. This implies e(i)1 : : : e(i)h = e(1)1 : : : e(1)hfor eah i = 2; : : : ; n. In partiular we have pi = p1 for eah i = 2; : : : ; n.For the onverse, suppose that X is a so� shift with an aperiodi presenta-tion A. Let Y be the edge shift whose presentation is the underlying graph G ofA. Let � : Y �! X be the labeling map. We have that � is aperiodi. Indeedlet x be a on�guration of Y with period n. Hene in G there is the pathp1 e1�! p2 e2�! : : : en�1���! pn en�! p1;14



where x = (e1e2 : : : en)1: Hene �(x) = (a1a2 : : : an)1, where ai is the label ofthe edge ei. Suppose that a1 : : : an = (a1 : : : ah)k, with hk = n. Hene in A wehave the pathpi ai:::aha1:::ai�1����������! ph+i ai:::aha1:::ai�1����������! : : : p(k�1)h+i ai:::aha1:::ai�1����������! pi;for eah i = 1; : : : ; h. Being the presentation of X aperiodi, one has pi =ph+i = � � � = p(k�1)h+i for eah i = 1; : : : ; h. This means that the edgespi ei�! pi+1ph+i eh+i���! ph+i+1...p(k�1)h+i e(k�1)h+i������! p(k�1)h+i+1;have same initial state, same �nal state and same label (where the state pn+1is de�ned as p1). Thus they oinide and this implies h = n and k = 1. Heneperiod(�(x)) = n. �Proposition 14 The right Fisher over of an irreduible aperiodi so� shiftis an aperiodi presentation.Proof Let A be an aperiodi presentation of a so� shift X . Let us assumethat A is not deterministi. We ompute from A a deterministi presentation Bby the well known subset onstrution (see for instane [18, Setion 3.3℄). Weshow that B is an aperiodi presentation.Suppose that in B there is a yling path labeled by unP1 u�! P2 u�! : : : u�! Pn u�! P1;where u is a word and eah Pi is a state of B identi�ed with a subset of the statesof A. Let P and Q be two subsets of the states of A. Reall that in B there is aunique path from P to Q labeled u, if and only if Q is the set of all states q in Afor whih there is at least one state p in P and a path in A from p to q labeledu. If suh a path exists, the state Q is denoted by P �u. It follows that, for eahstate pj 2 P1, there is a left in�nite path (qj;1�(i+1) u�! qj;1�i)i�0 labeled by !u(that is the left in�nite word obtained by repeating in�nitely many times theword u on the left), where qj;1 = pj and qj;i 2 Pi mod n for eah i � 0. Sine thenumber of states is �nite, there are two positive integerm and l and a �nite pathin A suh that qj;1�(m+l) ul�! qj;1�m um��! qj;1 = pj with qj;1�(m+l) = qj;1�m.Sine A is aperiodi, one an set l = 1. Moreover, one an always suppose thatm does not depend on j. Let k = (1�m) mod n. We denote by Qk the set of
15



all states qj;1�m. Thus Qk � um = P1. Moreover, we haveQk � Qk � u � Qk � u2 � � � � Qk � um = P1� Qk � um+1 = P2� Qk � um+2 = P3: : :� Qk � um+n+1 = P1:It follows that P1 � P2 � P3 � � � � Pn � P1, and �nally P1 = P2 = � � � = Pn.The right Fisher over of the shift is obtained by state merging of statesof B having the same future. Thus, if B is an aperiodi presentation, its rightFisher over also. It is known that the right Fisher over of an irreduibleshift has a strongly onneted graph. �A haraterization of irreduible aperiodi so� shifts is the following.Proposition 15 An irreduible so� shift is aperiodi if and only if its synta-ti graph ontains only trivial groups.Proof Let X be an irreduible aperiodi so� shift and let S(X) be the syn-tati semigroup of X . If e is an idempotent of S(X) and u 2 S(X) is suhthat uHe, there exists n � 1 suh that un = e. Being the right Fisher over ofX aperiodi, the funtion u oinides with e at eah state p suh that e(p) = p.If e(p) 6= p and u(p) = q, we have that q is in the image of e beause thislatter oinides with the image of u. Hene e(q) = q and then u(q) = q. Thisimplies e(p) = un(p) = un�1(q) = q = u(p). Thus u = e. Hene all the regularH-lasses of S(X) are trivial.For the onverse, suppose that the syntati graph of an irreduible so�shift X has only trivial groups. Let un be the label of a ylep1 u�! p2 u�! : : : u�! pn u�! p1:Without loss of generality, we an assume that un is idempotent (indeed there isalways a power of un whih is idempotent). Being un+1; : : : ; u2n�1 in the sameH-lass of un, they must oinide. From un+i = un we dedue pi+1 = p1 foreah i = 1; : : : ; n� 1. �Sh�utzenberger's haraterization of aperiodi languages (see for instane[20, Chapter 4 Theorem 2.1℄) asserts that the set of bloks of an aperiodi so�shift is a regular star free language.5 An invariant for shift equivaleneWe now prove that our invariant for strong shift equivalene is also an invari-ant of shift equivalene. Although shift equivalene is deidable, even for so�16



shifts [12℄, the algorithm is quite intriate. Hene invariants for shift equiva-lene of so� shifts, whih is equivalent to eventual onjugay, may be useful.Most known onjugay invariants are also invariants for shift equivalene.Two symboli adjaeny matries A and B with entries in A and B respe-tively, are shift equivalent with lag l, where l is a positive integer, if there is apair of symboli adjaeny matries (U; V ) with entries in disjoint alphabets Uand V respetively, suh that (see [8℄)Al $ UV; Bl $ V U;AU $ UB; V A$ BV:Two matries are shift equivalent if there is a positive integer l suh that theyare shift equivalent with lag l. Strong shift equivalene implies shift equivalenebut the onverse is false [13℄.In the following theorem we prove that our invariant is also invariant undershift equivalene.Theorem 16 Let X and Y be two so� shifts. If X and Y are shift equivalent,then their syntati graphs are isomorphi and the isomorphism preserves thelabels.Proof Let A (respetively B), be the symboli adjaeny matrix of the rightFisher over of X (respetively of Y ) if X and Y are irreduible, or of the rightKrieger over of X (respetively of Y ) if X and Y are reduible. Suppose that Aand B are shift equivalent with lag �l. Notie that A and B are shift equivalentwith lag l for eah l � �l. Moreover, being Al elementary strong shift equivalentto Bl, they have the same syntati graph by Theorem 4.Hene it suÆes to prove that for eah symboli adjaeny matries A andB, there is a big enough integer l, suh that A and Al have the same syntatigraph, and B and Bl have the same syntati graph.Let S(X) be the syntati semigroup of X . For eah idempotent e 2 S(X),let we 2 A� be a word representing e. For eah x 2 S(X) suh that xHe, thereis a positive integer hx;e suh that uhx;e = e (reall that a regular H-lass is a�nite group). We do the same for eah idempotent e0 2 S(Y ) and eah y 2 S(Y )suh that yHe0 in S(Y ). LethX = Ye2S(X)e2=e jwej � Yx;e2S(X)e2=e; xHehx;e:Let h = hX � hY � �l and l = h+ 1. Note that l � �l.We prove that A and Al have the same syntati graph. The same proofholds for B and Bl. Let S(Al) be the syntati semigroup of Al. First, notiethat the words representing elements of S(Al) are words labelled in Al. ThusS(Al) is a isomorphi to a subsemigroup of S(X) and a Green's relation in S(Al)is still a Green's relation in S(X).Let e be an idempotent of S(X) and let D be its regular D-lass in S(X).Sine el = e, the idempotent e is also an idempotent of S(Al), and the regular17



D-lass of S(Al) ontaining e is ontained in D. Moreover, if two idempotents eand �e are ontained in the same D-lass of S(X), then they are also ontainedin the same D-lass of S(Al). Indeed let x; y 2 S(X) suh that �e = xey. Letu (resp. v) a word in A� representing x (resp. y). We have, sine e and �e areidempotents, �e = uwe(juj+jwej) hjwej+1 e vw�e(jvj+jw�ej) hjw�ej+1;and juwe(juj+jwej) hjwej+1j = juj+ (juj+ jwej)h+ jwej = (juj+ jwej)l:In the same way one has that l also divides jvw�e(jvj+jw�ej) hjw�ej+1j. Hene e and �eare in the same D-lass of S(Al).Hene to eah regular D-lass in S(X) orresponds exatly one regular D-lass in S(Al) and the partial order relation �J is kept.It remains to prove that for eah idempotent e, the regular H-lasses H �S(X) and �H � S(Al) ontaining e, oinide. Clearly �H � H . For the onverse,if x 2 H , we have that xh = e (reall that hx;e divides h), and hene xh+1 =xl = x. Sine xl 2 S(Al), we have that x 2 �H . �Referenes[1℄ M.-P. B�eal, Codage Symbolique, Masson, 1993.[2℄ M.-P. B�eal, Puissane ext�erieure d'un automate d�eterministe, appliationau alul de la fontion zêta d'un syst�eme so�que, RAIRO Inform. Th�eor.Appl., 29 (1995), pp. 85{103.[3℄ M.-P. B�eal, F. Fiorenzi, and F. Mignosi, Minimal forbidden patternsof multi-dimensional shifts. To appear in Internat. J. Algebra Comput.,2004.[4℄ M.-P. B�eal, F. Fiorenzi, and D. Perrin, The syntati graph of a so�shift, in STACS 2004, vol. 2996 of Leture Notes in Comput. Si., Springer,Berlin, 2004, pp. 282{293.[5℄ D. Beauquier, Minimal automaton for a fatorial transitive rational lan-guage, Theoret. Comput. Si., 67 (1989), pp. 65{73.[6℄ J. Berstel and D. Perrin, Theory of Codes, Aademi Press, New York,1985.[7℄ M. Boyle, Algebrai aspets of symboli dynamis, in Topis in symbolidynamis and appliations (Temuo 97), vol. 279 of London Math. So.Leture Notes Ser., Cambridge University Press, Cambridge, 2000, pp. 57{88. 18
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