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Abstract. In this paper, we study a restricted version of the position re-
stricted pattern matching problem introduced and studied Mäkinen and
Navarro [Position-Restricted Substring Searching, LATIN 2006]. In the
problem handled in this paper, we are interested in those occurrences of
the pattern that lies in a suffix or in a prefix of the given text. We achieve
optimal query time for our problem against a data structure which is an
extension of the classic suffix tree data structure. The time and space
complexity of the data structure is dominated by that of the suffix tree.
Notably, the (best) algorithm by Mäkinen and Navarro, if applied to
our problem, gives sub-optimal query time and the corresponding data
structure also requires more time and space.

1 Introduction

The classical pattern matching problem is to find all the occurrences of a given
pattern P = P[1..m] of length m in a text T = T [1..n] of length n, both
being sequences of characters drawn from a finite character set Σ. This problem,
along with its numerous variants, has been the focus of extensive research in
the field of computer science. Due to the need of various practical applications,
most recent works in pattern matching have considered ‘inexact matching’. Many
types of differences have been defined and studied in the literature, namely,
errors (Hamming distance, LCS [10, 19], edit distance [10, 20]), wild cards or
don’t cares [10, 11, 14, 27, 29], rotations [1, 4, 15], scaling [2, 6, 3], permutations [8]
among others.

The indexing problem for pattern matching is to preprocess a given text
T [1..n] over an alphabet Σ as efficiently as possible to build a data structure
to support the following form of online queries: Given a pattern P[1..m] over
Σ find the occurrences of P in T . The indexing problem and its many variants
have been central in pattern matching [17, 13, 5, 9, 22, 23, 26, 29, 28, 10]. Recently,
Mäkinen and Navarro, in [24], considered an interesting variant of indexed pat-
tern matching, where only the occurrences of a given pattern starting in a par-
ticular area, are of interest. In particular, in this variant, the query provides an



interval [ℓ..r], 1 ≤ ℓ ≤ r ≤ n along with the pattern P and the occurrences of P
in T [ℓ..r] are sought for. These queries, as is pointed out in [24], are fundamental
in many text search situations where one wants to search only a part of the text.
The authors in [24] presented a number of algorithms depending on different
trade-offs between the time and space complexities. The best query time they
achieved was O(m+log log n+K) (K is the output size) against a data structure
exhibiting O(n log1+ǫ n) space and time complexity, where 0 ≤ ǫ ≤ 1.

In this paper, we study a restricted version of the problem handled in [24].
In particular, we are interested in those occurrences of the pattern that lies in
a suffix or in a prefix of the given text. In other words, in our case, the query
interval [ℓ..r] is of special form: either ℓ = 1, i.e. prefix search, or r = n, i.e. suffix
search. This kind of queries seem to be interesting in many contexts as well. For
example, many of the queries in real life are restricted up to the table of contents
of a book or in the title and abstract of a scientific document. Another possible
application for this problem can be found in Biological Sequence Assembly where
the question is to build a kind of Shortest Super-string Common to a given set
of sequences. In the greedy strategy for sequence assembly, this is usually done
by finding markers close to the ends i.e. suffixes of the strings: these markers
witness possible overlaps between a suffix of a sequence and a prefix of another
sequence. Sequence having large overlaps are assembled in a longer sequence and
so on.

In this paper, we present an efficient data structure to handle such online
queries in the prefix or suffix of a given text in optimal time. Note that, the best
query time achieved in [24] (for the more general problem) is not optimal due to
the additional (mild) log log n term. As a result, if applied to our problem, their
algorithm exhibits sub-optimal query time and the corresponding data structure
also requires more time and space.

The rest of the paper is organized as follows. In Section 2, we present the
preliminary concepts. The main result of this paper is presented in Section 3.
We conclude briefly in Section 4.

2 Preliminaries

A text, also called a string, is a sequence of zero or more symbols from an alphabet
Σ. A text T of length n is denoted by T [1..n] = T1T2 . . . Tn, where Ti ∈ Σ for
1 ≤ i ≤ n. The length of T is denoted by |T | = n. A string w is a factor or
substring of T if T = uwv for u, v ∈ Σ∗; in this case, the string w occurs at
position |u| + 1 in T . The factor w is denoted by T [|u| + 1..|u| + |w|]. A prefix
(suffix ) of T is a factor T [x..y] such that x = 1 (y = n), 1 ≤ y ≤ n (1 ≤ x ≤ n).
We define ith prefix to be the prefix ending at position i i.e. T [1..i], 1 ≤ i ≤ n. On
the other hand, ith suffix is the suffix starting at position i i.e. T [i..n], 1 ≤ i ≤ n.

In traditional pattern matching problem, we want to find the occurrences
of a given pattern P[1..m] in a text T [1..n]. The pattern P is said to occur at
position i ∈ [1..n] of T if and only if P = T [i..i+m−1]. We use OccP

T
to denote

the set of occurrences of P in T .



The problem we handled in this paper can be defined formally as follows.

Problem “PMP/S” (Pattern Matching in a Prefix/Suffix). We are given
a text T of length n. Preprocess T to answer the following form of queries.
Query: Given a pattern P and a query interval [ℓ..r], with 1 ≤ ℓ ≤ r ≤ n, where
either ℓ = 1 (prefix query) or r = n (suffix query), construct the set

OccP
T [ℓ..r] = {i | i ∈ OccPT and i ∈ [ℓ..r]}.

It is easy to realize that Problem PMP/S is a special case of the problem
handled in [24]. Apart from being interesting from pure combinatorial point if
view, Problem PMP/S is motivated by practical applications as follows. In real
life pattern matching applications, many of the queries are restricted to table
of contents of a book or in the title and abstract of a scientific document. As
a result, it is interesting to see whether the solution of [24] can be improved to
optimal for this special case.

In traditional indexing problem one of the basic data structures used is the
suffix tree data structure. In our indexing problem, we make use of this suffix
tree data structure. A complete description of a suffix tree is beyond the scope
of this paper, and can be found in [25, 31] or in any textbook on stringology
(e.g. [12, 18]). However, for the sake of completeness, we define the suffix tree
data structure as follows. Given a string T of length n over an alphabet Σ, the
suffix tree STT of T is the compacted trie of all suffixes of T $, where $ /∈ Σ.
Each leaf in STT represents a suffix T [i..n] of T and is labeled with the index i.
We refer to the list (in left-to-right order) of indices of the leaves of the subtree
rooted at node v as the leaf-list of v; it is denoted by LL(v). Each edge in STT

is labeled with a nonempty substring of T such that the path from the root to
the leaf labeled with index i spells the suffix T [i..n]. For any node v, we let ℓv

denote the string obtained by concatenating the substrings labeling the edges on
the path from the root to v in the order they appear. Several algorithms exist
that can construct the suffix tree STT in O(n log Σ) time5 [25, 31]. Given the
suffix tree STT of a text T we define the “locus” µP of a pattern P as the node
in STT such that ℓµP has the prefix P and |ℓµP | is the smallest of all such nodes.
Note that the locus of P does not exist, if P is not a substring of T . Therefore,
given P, finding µP suffices to determine whether P occurs in T . Given a suffix
tree of a text T , a pattern P, one can find its locus and hence the fact whether
T has an occurrence of P in optimal O(|P|) time [25, 31]. In addition to that,
all such occurrences can be reported in constant time per occurrence.

3 Problem PMP/S

In this section, we handle Problem PMP/S. Our basic idea is to build an in-
dex data structure that would solve the problem in two steps. At first, it will
(implicitly) give us the set OccP

T
. Then, the index would ‘select’ some of the

5 For bounded alphabet the running time remains linear, i.e. O(n).



occurrences to provide us with our desired set OccP
T [ℓ..r],π, where either ℓ = 1 or

r = n.

The idea we employ is as follows. We first construct a suffix tree STT . Ac-
cording to the definition of suffix tree, each leaf in STT is labeled by the starting
location of its suffix. We do some preprocessing on STT as follows. We maintain
a linked list of all leaves in a left-to-right order. In other words, we realize the
list LL(R) in the form of a linked list, where R is the root of the suffix tree.
In addition to that, we set pointers v.left and v.right from each tree node v
to its leftmost leaf vℓ and rightmost leaf vr (considering the subtree rooted at
v) in the linked list. It is easy to realize that, with these set of pointers at our
disposal, we can indicate the set of occurrences of a pattern P by the two leaves
µP

ℓ and µP
r because all the leaves between and including µP

ℓ and µP
r in LL(R)

correspond to the occurrences of P in T . In what follows, we define the term ℓT

and rT such that LL(R)[ℓT ] = µP
ℓ and LL(R)[rT ] = µP

r , where R is the root
of STT . Now recall that our data structure has to be able to somehow “select”
and report only those occurrences that lies in the query interval. To solve this
we use a solution to the following much studied problem.

Problem “RMIN/MAX” (Range Minima/Maxima Query Problem).
We are given an array A[1..n] of numbers. We need to preprocess A to answer
the following form of queries:
Query: Given an interval I = [is..ie], 1 ≤ is ≤ ie ≤ n, the goal is to find the
index k (or the value A[k] itself) with minimum (maximum, in the case of Range
Maxima Query) value A[k] for k ∈ I.

Problem RMIN/MAX has received much attention in the literature and the
best solution can build a data structure in O(n) time and space and can answer
subsequent queries in O(1) time per query [16, 7].

Now, to complete the construction of the data structure we simply prepro-
cess the array data structure LL(R) for both range minima and range maxima
queries. Algorithm 1 formally states the steps to build our data structure. In the
rest of this paper, we refer to this data structure as IDS PMP/S.

Algorithm 1 Algorithm to build IDS PMP/S

1: Build a suffix tree STT of T . Let the root of STT is R.
2: Label each leaf of STT by the starting location of its suffix.
3: Construct a linked list L realizing LL(R). Each element in L is the label of the

corresponding leaf in LL(R).
4: for each node v in STT do

5: Store v.left = i and v.right = j such that L[i] and L[j] corresponds to, respec-
tively, (leftmost leaf) vℓ and (rightmost leaf) vr of v.

6: end for

7: Preprocess L for both Range Minima and Range Maxima Queries.



3.1 Analysis

Let us analyze the the running time of Algorithm 1. Step 1 builds the traditional
suffix tree requiring O(n log Σ) time. Note that, for bounded alphabet the time
required is reduced to O(n). Step 2 can be done easily while building the suffix
tree. Step 3 and Step 4 can be done together in O(n) by traversing STT using a
breadth first or in order traversal. Finally, the preprocessing for range minima
and range maxima queries require O(n) time and space [16, 7]. So IDS PMP/S
can be constructed in O(n) and O(n log Σ) time and space, respectively for
bounded and general alphabet.

Algorithm 2 Algorithm for Query Processing

1: Find µP in STT .
2: Set i = µP .left, j = µP .right.
3: OccPT [ℓ..r] = ǫ

4: if ℓ = 1{This is a prefix query} then

5: FindPrefixOccurrence(L, r, i, j){See Algorithm 3}
6: else

7: if r = 1{This is a suffix query} then

8: FindSuffixOccurrence(L, ℓ, i, j){See Algorithm 4}
9: end if

10: end if

Algorithm 3 Procedure FindPrefixOccurrence(L, r, i, j)

1: k = RangeMinimaQuery(L, i, j)
2: if L[k] < r then

3: Set OccPT [ℓ..r] = OccPT [ℓ..r]

S

L[k]
4: FindPrefixOccurrence(L, r, i, k − 1)
5: FindPrefixOccurrence(L, r, k + 1, j)
6: end if

Algorithm 4 Procedure FindSuffixOccurrence(L, ℓ, i, j)

1: k = RangeMaximaQuery(L, i, j)
2: if L[k] > ℓ then

3: Set OccPT [ℓ..r] = OccPT [ℓ..r]

S

L[k]
4: FindSuffixOccurrence(L, ℓ, i, k − 1)
5: FindSuffixOccurrence(L, ℓ, k + 1, j)
6: end if



3.2 Query processing

Now we discuss the query processing. Suppose we are given a query pattern
P along with a query interval [ℓ..r]. We first find the locus µP in STT . Let
i = µP .left and j = µP .right. This means, we get the set OccP

T
in the form of

L[i..j] spending O(m) time. Now, suppose we are performing a prefix query, i.e.
ℓ = 1. So we want to compute the set OccP

T [1..r]. It is easy to see that

OccP
T [1..r] = {L[k] | i ≤ k ≤ j,L[k] ≤ r}.

To compute OccP
T [1..r], we apply a divide and conquer approach as follows. We

perform a Range Minima Query on L on the interval [i..j]. Suppose the query
returns the index k. If L[k] ≤ r then L[k] ∈ OccP

T [1..r] and then we perform the

range minima query on the intervals [i..k − 1] and [k + 1..j] and continue as
before. If any of the queries returns k such that L[k] > r we stop. It is easy to
verify that this would give us the set OccP

T [1..r]. Note that, in this way, for each

found entry in OccP
T [1..r], we have at most 2 intervals to perform range minima

queries further. So, in total the time spent is O(|OccP
T [1..r]|).

On the other hand, for a suffix query, i.e. when r = n, we want to compute:

OccP
T [ℓ..n] = {L[k] | i ≤ k ≤ j,L[k] ≥ ℓ}.

So, in this case, in the above procedure, we just need to perform a Range Maxima
(instead of Minima) Query and instead of checking whether L[k] ≤ r, we need
to check whether L[k] ≥ ℓ. The query steps are formally stated in Algorithm 2, 3
and 4. In light of the above discussion, it is straightforward to see that the total
query time is O(m + |OccP

T [ℓ..r]|). The result of this paper is formally presented
in the form of following theorem.

Theorem 1. For Problem PMP/S, we can construct the IDS PMP/S data struc-
ture in O(n) time and space for bounded alphabet and O(n log Σ) time for general
alphabet. We can then answer the relevant queries in optimal O(m+ |OccP

T [ℓ..r]|)
time per query.

4 Conclusion

In this paper, we have studied Problem PMP/S, a restricted version of the
position restricted pattern matching problem (Problem PRPM) introduced and
studied in [24]. In Problem PRPM, the query provides an interval [ℓ..r], 1 ≤ ℓ ≤
r ≤ n along with the pattern P and the occurrences of P in T [ℓ..r] are sought for.
In Problem PMP/S, on the other hand, we are interested in those occurrences
of the pattern that lies in a suffix or in a prefix of the given text. In other words,
in our case, the query interval [ℓ..r] is of special form: either ℓ = 1, i.e. prefix
search, or r = n, i.e. suffix search. We have presented an efficient data structure,
IDS PMP/S, which is an extension of the classic suffix tree data structure. The
time and space complexity of IDS PMP/S is dominated by that of the suffix tree



and hence is O(n) for bounded alphabet and O(n log Σ) for the general case. The
query time we achieve is O(m + |OccP

T [ℓ..r]|) time per query, which is optimal.

Notably, the (best) algorithm in [24], if applied to Problem PMP/S, gives sub-
optimal query time and the corresponding data structure also requires more time
and space. One final remark is that, we can use the suffix array instead of suffix
tree as well with some standard modifications in the corresponding algorithms
to solve Problem PMP/S.
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