Maxime Crochemore
email: maxime.crochemore@kcl.ac.uk

Costas S Iliopoulos

M Sohel Rahman

Optimal Prefix and Suffix Queries on Texts

In this paper, we study a restricted version of the position restricted pattern matching problem introduced and studied Mäkinen and Navarro [Position-Restricted Substring Searching, LATIN 2006]. In the problem handled in this paper, we are interested in those occurrences of the pattern that lies in a suffix or in a prefix of the given text. We achieve optimal query time for our problem against a data structure which is an extension of the classic suffix tree data structure. The time and space complexity of the data structure is dominated by that of the suffix tree. Notably, the (best) algorithm by Mäkinen and Navarro, if applied to our problem, gives sub-optimal query time and the corresponding data structure also requires more time and space.

Introduction

The classical pattern matching problem is to find all the occurrences of a given pattern P = P [1..m] of length m in a text T = T [1..n] of length n, both being sequences of characters drawn from a finite character set Σ. This problem, along with its numerous variants, has been the focus of extensive research in the field of computer science. Due to the need of various practical applications, most recent works in pattern matching have considered 'inexact matching'. Many types of differences have been defined and studied in the literature, namely, errors (Hamming distance, LCS [START_REF] Cole | Dictionary matching and indexing with errors and don't cares[END_REF][START_REF] Hirschberg | Algorithms for the longest common subsequence problem[END_REF], edit distance [START_REF] Cole | Dictionary matching and indexing with errors and don't cares[END_REF][START_REF] Levenshtein | Binary codes capable of correcting, deletions, insertions and reversals[END_REF]), wild cards or don't cares [START_REF] Cole | Dictionary matching and indexing with errors and don't cares[END_REF][START_REF] Cole | Verifying candidate matches in sparse and wildcard matching[END_REF][START_REF] Fischer | String matching and other products[END_REF][START_REF] Pinter | Efficient string matching with dont care patterns[END_REF][START_REF] Rahman | Finding patterns with variable length gaps or don't cares[END_REF], rotations [START_REF] Amir | Twodimensional pattern matching with rotations[END_REF][START_REF] Amir | Faster two dimensional pattern matching with rotations[END_REF][START_REF] Fredriksson | Optimal exact and fast approximate two dimensional pattern matching allowing rotations[END_REF], scaling [START_REF] Amir | Real scaled matching[END_REF][START_REF] Amir | Efficient pattern matching with scaling[END_REF][START_REF] Amir | Faster two dimensional scaled matching[END_REF], permutations [START_REF] Butman | Scaled and permuted string matching[END_REF] among others.

The indexing problem for pattern matching is to preprocess a given text T [1..n] over an alphabet Σ as efficiently as possible to build a data structure to support the following form of online queries: Given a pattern P [1..m] over Σ find the occurrences of P in T . The indexing problem and its many variants have been central in pattern matching [START_REF] Gu | An efficient algorithm for dynamic text indexing[END_REF][START_REF] Ferragina | Fast incremental text editing[END_REF][START_REF] Amir | Text indexing and dictionary matching with one error[END_REF][START_REF] Chan | Compressed index for a dynamic collection of texts[END_REF][START_REF] Maaß | Text indexing with errors[END_REF][START_REF] Mäkinen | Dynamic entropy-compressed sequences and full-text indexes[END_REF][START_REF] Navarro | Indexing text with approximate q-grams[END_REF][START_REF] Rahman | Finding patterns with variable length gaps or don't cares[END_REF][START_REF] Rahman | Indexing factors with gaps[END_REF][START_REF] Cole | Dictionary matching and indexing with errors and don't cares[END_REF]. Recently, Mäkinen and Navarro, in [START_REF] Mäkinen | Position-restricted substring searching[END_REF], considered an interesting variant of indexed pattern matching, where only the occurrences of a given pattern starting in a particular area, are of interest. In particular, in this variant, the query provides an interval [ℓ..r], 1 ≤ ℓ ≤ r ≤ n along with the pattern P and the occurrences of P in T [ℓ..r] are sought for. These queries, as is pointed out in [START_REF] Mäkinen | Position-restricted substring searching[END_REF], are fundamental in many text search situations where one wants to search only a part of the text. The authors in [START_REF] Mäkinen | Position-restricted substring searching[END_REF] presented a number of algorithms depending on different trade-offs between the time and space complexities. The best query time they achieved was O(m+log log n+K) (K is the output size) against a data structure exhibiting O(n log 1+ǫ n) space and time complexity, where 0 ≤ ǫ ≤ 1.

In this paper, we study a restricted version of the problem handled in [START_REF] Mäkinen | Position-restricted substring searching[END_REF]. In particular, we are interested in those occurrences of the pattern that lies in a suffix or in a prefix of the given text. In other words, in our case, the query interval [ℓ..r] is of special form: either ℓ = 1, i.e. prefix search, or r = n, i.e. suffix search. This kind of queries seem to be interesting in many contexts as well. For example, many of the queries in real life are restricted up to the table of contents of a book or in the title and abstract of a scientific document. Another possible application for this problem can be found in Biological Sequence Assembly where the question is to build a kind of Shortest Super-string Common to a given set of sequences. In the greedy strategy for sequence assembly, this is usually done by finding markers close to the ends i.e. suffixes of the strings: these markers witness possible overlaps between a suffix of a sequence and a prefix of another sequence. Sequence having large overlaps are assembled in a longer sequence and so on.

In this paper, we present an efficient data structure to handle such online queries in the prefix or suffix of a given text in optimal time. Note that, the best query time achieved in [START_REF] Mäkinen | Position-restricted substring searching[END_REF] (for the more general problem) is not optimal due to the additional (mild) log log n term. As a result, if applied to our problem, their algorithm exhibits sub-optimal query time and the corresponding data structure also requires more time and space.

The rest of the paper is organized as follows. In Section 2, we present the preliminary concepts. The main result of this paper is presented in Section 3. We conclude briefly in Section 4.

Preliminaries

A text, also called a string, is a sequence of zero or more symbols from an alphabet

Σ. A text T of length n is denoted by T [1..n] = T 1 T 2 . . . T n , where T i ∈ Σ for 1 ≤ i ≤ n. The length of T is denoted by |T | = n. A string w is a factor or substring of T if T = uwv for u, v ∈ Σ * ; in this case, the string w occurs at position |u| + 1 in T . The factor w is denoted by T [|u| + 1..|u| + |w|]. A prefix (suffix) of T is a factor T [x..y] such that x = 1 (y = n), 1 ≤ y ≤ n (1 ≤ x ≤ n).
We define ith prefix to be the prefix ending at position i i.e. T [1..i], 1 ≤ i ≤ n. On the other hand, ith suffix is the suffix starting at position i i.e.

T [i..n], 1 ≤ i ≤ n.
In traditional pattern matching problem, we want to find the occurrences of a given pattern P

[1..m] in a text T [1..n]. The pattern P is said to occur at position i ∈ [1..n] of T if and only if P = T [i..i + m -1]
. We use Occ P T to denote the set of occurrences of P in T .

The problem we handled in this paper can be defined formally as follows.

Problem "PMP/S" (Pattern Matching in a Prefix/Suffix). We are given a text T of length n. Preprocess T to answer the following form of queries. Query: Given a pattern P and a query interval [ℓ..r], with 1 ≤ ℓ ≤ r ≤ n, where either ℓ = 1 (prefix query) or r = n (suffix query), construct the set

Occ P T [ℓ..r] = {i | i ∈ Occ P T and i ∈ [ℓ..r]}.
It is easy to realize that Problem PMP/S is a special case of the problem handled in [START_REF] Mäkinen | Position-restricted substring searching[END_REF]. Apart from being interesting from pure combinatorial point if view, Problem PMP/S is motivated by practical applications as follows. In real life pattern matching applications, many of the queries are restricted to table of contents of a book or in the title and abstract of a scientific document. As a result, it is interesting to see whether the solution of [START_REF] Mäkinen | Position-restricted substring searching[END_REF] can be improved to optimal for this special case.

In traditional indexing problem one of the basic data structures used is the suffix tree data structure. In our indexing problem, we make use of this suffix tree data structure. A complete description of a suffix tree is beyond the scope of this paper, and can be found in [START_REF] Mccreight | A space-economical suffix tree construction algorithm[END_REF][START_REF] Ukkonen | On-line construction of suffix trees[END_REF] or in any textbook on stringology (e.g. [START_REF] Crochemore | Jewels of Stringology[END_REF][START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences -Computer Science and Computational Biology[END_REF]). However, for the sake of completeness, we define the suffix tree data structure as follows. Given a string T of length n over an alphabet Σ, the suffix tree ST T of T is the compacted trie of all suffixes of T $, where $ / ∈ Σ. Each leaf in ST T represents a suffix T [i..n] of T and is labeled with the index i. We refer to the list (in left-to-right order) of indices of the leaves of the subtree rooted at node v as the leaf-list of v; it is denoted by LL(v). Each edge in ST T is labeled with a nonempty substring of T such that the path from the root to the leaf labeled with index i spells the suffix T [i..n]. For any node v, we let ℓ v denote the string obtained by concatenating the substrings labeling the edges on the path from the root to v in the order they appear. Several algorithms exist that can construct the suffix tree ST T in O(n log Σ) time5 [START_REF] Mccreight | A space-economical suffix tree construction algorithm[END_REF][START_REF] Ukkonen | On-line construction of suffix trees[END_REF]. Given the suffix tree ST T of a text T we define the "locus" µ P of a pattern P as the node in ST T such that ℓ µ P has the prefix P and |ℓ µ P | is the smallest of all such nodes. Note that the locus of P does not exist, if P is not a substring of T . Therefore, given P, finding µ P suffices to determine whether P occurs in T . Given a suffix tree of a text T , a pattern P, one can find its locus and hence the fact whether T has an occurrence of P in optimal O(|P|) time [START_REF] Mccreight | A space-economical suffix tree construction algorithm[END_REF][START_REF] Ukkonen | On-line construction of suffix trees[END_REF]. In addition to that, all such occurrences can be reported in constant time per occurrence.

Problem PMP/S

In this section, we handle Problem PMP/S. Our basic idea is to build an index data structure that would solve the problem in two steps. At first, it will (implicitly) give us the set Occ P T . Then, the index would 'select' some of the occurrences to provide us with our desired set Occ P T [ℓ..r],π , where either ℓ = 1 or r = n.

The idea we employ is as follows. We first construct a suffix tree ST T . According to the definition of suffix tree, each leaf in ST T is labeled by the starting location of its suffix. We do some preprocessing on ST T as follows. We maintain a linked list of all leaves in a left-to-right order. In other words, we realize the list LL(R) in the form of a linked list, where R is the root of the suffix tree. In addition to that, we set pointers v.lef t and v.right from each tree node v to its leftmost leaf v ℓ and rightmost leaf v r (considering the subtree rooted at v) in the linked list. It is easy to realize that, with these set of pointers at our disposal, we can indicate the set of occurrences of a pattern P by the two leaves µ P ℓ and µ P r because all the leaves between and including µ P ℓ and µ P r in LL(R) correspond to the occurrences of P in T . In what follows, we define the term ℓ T and r T such that LL(R)[ℓ T] = µ P ℓ and LL(R)[r T] = µ P r , where R is the root of ST T . Now recall that our data structure has to be able to somehow "select" and report only those occurrences that lies in the query interval. To solve this we use a solution to the following much studied problem.

Problem "RMIN/MAX" (Range Minima/Maxima Query Problem). We are given an array A[1..n] of numbers. We need to preprocess A to answer the following form of queries: Problem RMIN/MAX has received much attention in the literature and the best solution can build a data structure in O(n) time and space and can answer subsequent queries in O(1) time per query [START_REF] Gabow | Scaling and related techniques for geometry problems[END_REF][START_REF] Bender | The lca problem revisited[END_REF]. Now, to complete the construction of the data structure we simply preprocess the array data structure LL(R) for both range minima and range maxima queries. Algorithm 1 formally states the steps to build our data structure. In the rest of this paper, we refer to this data structure as IDS PMP/S.

Query: Given an interval I = [i s ..i e], 1 ≤ i s ≤ i e ≤ n,

Algorithm 1 Algorithm to build IDS PMP/S

1: Build a suffix tree STT of T . Let the root of STT is R. 2: Label each leaf of STT by the starting location of its suffix. 3: Construct a linked list L realizing LL(R). Each element in L is the label of the corresponding leaf in LL(R). 4: for each node v in STT do 5:

Store v.lef t = i and v.right = j such that L[i] and L[j] corresponds to, respectively, (leftmost leaf) v ℓ and (rightmost leaf) vr of v. 6: end for 7: Preprocess L for both Range Minima and Range Maxima Queries.

Analysis

Let us analyze the the running time of Algorithm 1. Step 1 builds the traditional suffix tree requiring O(n log Σ) time. Note that, for bounded alphabet the time required is reduced to O(n). Step 2 can be done easily while building the suffix tree.

Step 3 and Step 4 can be done together in O(n) by traversing ST T using a breadth first or in order traversal. Finally, the preprocessing for range minima and range maxima queries require O(n) time and space [START_REF] Gabow | Scaling and related techniques for geometry problems[END_REF][START_REF] Bender | The lca problem revisited[END_REF]. So IDS PMP/S can be constructed in O(n) and O(n log Σ) time and space, respectively for bounded and general alphabet.

Algorithm 2 Algorithm for Query Processing

1: Find µ P in STT . 2: Set i = µ P .lef t, j = µ P .right. 3: Occ P T [ℓ..r] = ǫ 4: if ℓ = 1{This is a prefix query} then 5:
F indP ref ixOccurrence(L, r, i, j){See Algorithm 3} 6: else 7:

if r = 1{This is a suffix query} then 8:

F indSuf f ixOccurrence(L, ℓ, i, j){See Algorithm 4} 9:

end if 10: end if Algorithm 3 Procedure F indP ref ixOccurrence(L, r, i, j) F indP ref ixOccurrence(L, r, k + 1, j) 6: end if Algorithm 4 Procedure F indSuf f ixOccurrence(L, ℓ, i, j)

1: k = RangeM inimaQuery(L, i, j) 2: if L[k] <
1: k = RangeM aximaQuery(L, i, j) 2: if L[k] > ℓ then 3: Set Occ P T [ℓ..r] = Occ P T [ℓ..r] S L[k] 4:
F indSuf f ixOccurrence(L, ℓ, i, k -1) 5:

F indSuf f ixOccurrence(L, ℓ, k + 1, j) 6: end if

Query processing

Now we discuss the query processing. Suppose we are given a query pattern P along with a query interval [ℓ..r]. We first find the locus µ P in ST T . Let i = µ P .lef t and j = µ P .right. This means, we get the set Occ P T in the form of L[i..j] spending O(m) time. Now, suppose we are performing a prefix query, i.e. ℓ = 1. So we want to compute the set Occ P T [1..r] . It is easy to see that

Occ P T [1..r] = {L[k] | i ≤ k ≤ j, L[k] ≤ r}.
To compute Occ P T [1.

.r] , we apply a divide and conquer approach as follows. We perform a Range Minima Query on L on the interval [i..j]. Suppose the query returns the index k.

If L[k] ≤ r then L[k] ∈ Occ P T [1.
.r] and then we perform the range minima query on the intervals [i..k -1] and [k + 1..j] and continue as before. If any of the queries returns k such that L[k] > r we stop. It is easy to verify that this would give us the set Occ P T [1..r] . Note that, in this way, for each found entry in Occ P T [1.

.r] , we have at most 2 intervals to perform range minima queries further. So, in total the time spent is O(|Occ P T [1..r] |). On the other hand, for a suffix query, i.e. when r = n, we want to compute:

Occ P T [ℓ..n] = {L[k] | i ≤ k ≤ j, L[k] ≥ ℓ}.
So, in this case, in the above procedure, we just need to perform a Range Maxima

Conclusion

In this paper, we have studied Problem PMP/S, a restricted version of the position restricted pattern matching problem (Problem PRPM) introduced and studied in [START_REF] Mäkinen | Position-restricted substring searching[END_REF]. In Problem PRPM, the query provides an interval [ℓ..r], 1 ≤ ℓ ≤ r ≤ n along with the pattern P and the occurrences of P in T [ℓ..r] are sought for. In Problem PMP/S, on the other hand, we are interested in those occurrences of the pattern that lies in a suffix or in a prefix of the given text. In other words, in our case, the query interval [ℓ..r] is of special form: either ℓ = 1, i.e. prefix search, or r = n, i.e. suffix search. We have presented an efficient data structure, IDS PMP/S, which is an extension of the classic suffix tree data structure. The time and space complexity of IDS PMP/S is dominated by that of the suffix tree and hence is O(n) for bounded alphabet and O(n log Σ) for the general case. The query time we achieve is O(m + |Occ P T [ℓ..r] |) time per query, which is optimal. Notably, the (best) algorithm in [START_REF] Mäkinen | Position-restricted substring searching[END_REF], if applied to Problem PMP/S, gives suboptimal query time and the corresponding data structure also requires more time and space. One final remark is that, we can use the suffix array instead of suffix tree as well with some standard modifications in the corresponding algorithms to solve Problem PMP/S.

 the goal is to find the index k (or the value A[k] itself) with minimum (maximum, in the case of Range Maxima Query) value A[k] for k ∈ I.

r then 3 :

 3 Set Occ P T [ℓ..r] = Occ P T [ℓ..r] S L[k] 4: F indP ref ixOccurrence(L, r, i, k -1) 5:

 (instead of Minima) Query and instead of checking whether L[k] ≤ r, we need to check whether L[k] ≥ ℓ. The query steps are formally stated in Algorithm 2, 3 and 4. In light of the above discussion, it is straightforward to see that the total query time is O(m + |Occ P T [ℓ..r] |). The result of this paper is formally presented in the form of following theorem. Theorem 1. For Problem PMP/S, we can construct the IDS PMP/S data structure in O(n) time and space for bounded alphabet and O(n log Σ) time for general alphabet. We can then answer the relevant queries in optimal O(m + |Occ P T [ℓ..r] |) time per query.

For bounded alphabet the running time remains linear, i.e. O(n).