
HAL Id: hal-00619694
https://hal.science/hal-00619694

Submitted on 25 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reflection-based implementation of Java extensions: the
double-dispatch use-case

Rémi Forax, Étienne Duris, Gilles Roussel

To cite this version:
Rémi Forax, Étienne Duris, Gilles Roussel. Reflection-based implementation of Java exten-
sions: the double-dispatch use-case. The Journal of Object Technology, 2005, 4 (10), pp.49-69.
�10.5381/jot.2005.4.10.a3�. �hal-00619694�

https://hal.science/hal-00619694
https://hal.archives-ouvertes.fr

Vol. 4, No. 10, 2005

Reflection-based implementation of Java
extensions: the double-dispatch use-case

Rémi Forax, Institut Gaspard–Monge, Université de Marne-la-Vallée, France
Etienne Duris, Institut Gaspard–Monge, Université de Marne-la-Vallée, France
Gilles Roussel, Institut Gaspard–Monge, Université de Marne-la-Vallée, France

Reflection-based libraries may be used to extend the expressive power of Java without
modifying the language nor the virtual machine. In this paper, we present the advan-
tages of this approach together with general guidelines allowing such implementations
to be practicable. We show how these principles have been applied to develop an
efficient and general double-dispatch solution for Java, and we give the details of our
implementation.

1 INTRODUCTION

Java programmers sometimes realize that their programming language lacks some
feature. For instance, they could wish to have a double-dispatch mechanism to ease
implementations dealing with tree-like structures or binary methods [4, 17]. This
feature, which is a special case of multi-methods [11, 21, 8, 3, 22, 23, 10, 12, 1, 27,
2, 14], allows a method implementation to be chosen with respect to the dynamic
type (late-binding) of both the receiver and a single argument. It can be achieved
programmatically through the visitor design pattern [19, 15]. However, providing it
at language level improves genericity and reusability, easing the design, maintenance
and evolution of applications [25].

Several techniques could be used to implement such a Java extension. The
language could be modified, producing standard Java bytecode, e.g., introducing
new keywords [3, 10]. The Java Virtual Machine (JVM) could also be modified,
either to accept an extended bytecode or to modify its standard semantics [12]. An
alternative solution is to provide such an extension as a pure Java library, using the
Java Core Reflection mechanism and bytecode generation, leaving the language and
the virtual machine unchanged [13, 17]. This remark could be generalized to other
Java extensions where reflection-based approaches are applicable [28, 20, 26].

This paper aims to show the worth of pure Java solutions which are the most
flexible ones, although the least employed for efficiency reasons. First, section 2
argues their design advantages compared to environment-intrusive ones. In section 3,
general implementation-design guidelines are given to make them practicable. Based

Cite this document as follows: http://www.jot.fm/issue/issue200512/article3

http://www.jot.fm/issue/issue_2005_12/article3

REFLECTION-BASED IMPLEMENTATION OF JAVA EXTENSIONS: THE DOUBLE-DISPATCH USE-CASE

on related works, section 4 shows how we apply these principles to provide an efficient
double-dispatch implementation, the Sprintabout. Its implementation details are
discussed in section 5.

2 DESIGN CHOICES

The most classical approach to implement Java extensions is to modify the language
syntax and to provide the corresponding translator, pre-processor or compiler. This
approach has the advantage of being performed at compile time, allowing many
costly computations to be performed before execution. In particular, it allows the
compiler to perform some static type-checking that is known to enhance software
safety. It has the corresponding drawback: it can only use compile-time information.
Indeed, in the context of Java’s dynamic class loading, some essential information
such as type hierarchy may only be available at runtime. Furthermore, the result-
ing dedicated language is difficult to maintain, particularly when the underlying
language evolves.

A second approach, that may be complementary to the extension of the syn-
tax when runtime information is required, is to modify the Java virtual machine
or its semantics. It has the advantage of providing precise runtime information on
the executing application with a minimum overhead. However, it requires tricky
knowledge of the internal of a specific virtual machine. Furthermore, applications
implemented using such a modified virtual machine require a specific execution envi-
ronment which is difficult to maintain and that may not be compatible with existing
applications. Thus, this approach yields dedicated solutions whose portability is se-
riously restrained.

An alternative approach, already chosen to provide Java with runtime type in-
formation [28], multi-dispatch [13, 17] or aspect-oriented features [26], is to use
reflection to access JVM’s runtime internal structures. Like the second approach, it
benefits from dynamic information and, as a pure standard Java solution, it offers
optimal portability. Even if it could led to runtime type exception (just as type
casts), it has the advantage of being simple and directly accessible through the Java
Core Reflection API. Contrarily to previous approaches, it allows several specific
features to be used or combined, on demand, inside a single application. Moreover,
being provided as a simple Java extension library, a new feature deployment only
consists in adding a single JAR file to the ”classpath” of a standard Java environ-
ment. Unfortunately, reflection-based implementations are usually considered to be
inefficient in space and time.

All of these approaches present advantages and limitations, but this paper de-
liberately focuses on enhancements of reflection-based techniques.

72 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

3 USING REFLECTION

3 USING REFLECTION

This section points out problems of reflection-based implementations and gives
guidelines to make them practicable.

First, from the essence of the Java Core Reflection API, any reflection-based
implementation implies significant costs in space and time. Indeed, the reification
of JVM internal objects induces some performance overhead compared with direct
accesses available inside the JVM. Beyond object creations, this induces additional
indirections. For instance, the reflective invocation of a simple method without
argument is known to be slower than the corresponding classical call [6, 7]. Tests
performed on a 2.4GHz Pentium 4 with 512Gb of RAM using SUN jdk1.5.04 under
Linux (two firsts raws of Figure 1) show that reflective invocation is about 50 times
slower than classical one, and even worse in server mode1.

Next, the genericity of reflective methods implies the construction of several
intermediate objects that impacts on performance. In particular, a single call to
the invoke() method usually requires the creation of an Object array to be filled
with arguments and, when dealing with primitive types, boxing/unboxing is also
necessary. Indeed, for any primitive-type argument or return value (int, double...),
its reflective manipulation must be done through the corresponding wrapper type
(Integer, Double...). Thus, to abstract a primitive value onto the reflection level,
its wrapper object has to be constructed (boxing). Moreover, return values have to
be cast to conform to the return-type of the method and sometimes, unwrapping
primitive types (unboxing) is also necessary. These remarks still hold with jdk 1.5
even if boxing/unboxing and array creation are now hidden to the programmer.
Figure 1 shows that performance of method calls with no argument and with one
int argument are comparable, even for reflective invocations. However, this is only
true if object and array creations are not taken into account2.

Finally, since Java does not allow modifications (extensions) to its internal struc-
tures through reflection, some data structures have to be duplicated outside the
JVM, in the application. For instance, in order to associate information with classes,
it is impossible to directly add a field to the class Class and it requires to rely on
external structures such as hashtables. Thus, using reflection may lead to important
performance penalties in terms of time and space if implementation is carried out
without caution.

We argue that general strategies, already used by other frameworks [28, 13, 17],
allow reflection-based implementations of language extensions to be improved. Our
goal is not to improve Java reflective calls [6, 7] in general but rather to give some
guidelines that allow to enhance the design and implementation of reflection-based
implementation in special contexts such as language extensions.

1Server mode corresponds to a special version of the Sun HotspotTM virtual machine that
performs aggressive optimizations [24].

2Figure 1 details subcases of reflective call with one argument, that measure distinct invocation
times taking or not taking into account array and Integer object creations.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 73

REFLECTION-BASED IMPLEMENTATION OF JAVA EXTENSIONS: THE DOUBLE-DISPATCH USE-CASE

int args Invocation type Object creations Client mode Server mode

normal 3373 ms 120 ms
Zero reflective 165810 ms 23295 ms

synchronized 18079 ms 13602 ms
RFX 21089 ms 118 ms

classical 3421 ms 120 ms
reflective no 171274 ms 24135 ms

One array 207749 ms 49670 ms
Integer 405753 ms 61753 ms
Integer and array 435332 ms 83736 ms

RFX 18319 ms 118 ms

Figure 1: Performance of one hundred million method calls

The first guideline to follow is to clearly identify two stages in the implementa-
tion: the creation time, when objects with reflective purpose are created, and the
invocation time, when such objects are actually used to perform multiple tasks. To
reduce time overhead, as many computations as possible have to be transfered from
invocation time (just in time) to creation time. Indeed, in Java, durations of many
computations remain negligible compared to class loading (disk access, class verifica-
tion) and thus may not be perceived by users. Nevertheless, these pre-computations
imply some states to be stored in order to be available just in time. This strategy
transfers most computations from invocation time to creation time but may produce
large data structures. Thus, programmers have to find the right balance between
invocation time, creation time and space. The choice of algorithms and data struc-
tures used during these two phases is essential to make reflective implementation
practicable.

The second guideline is to reduce space overhead, sharing as much data as pos-
sible. This can be achieved through specific algorithm implementations. However,
this sharing should also conform to classical object-oriented design principles. In-
deed, it is usually possible to share data between objects of the same class (e.g.
through static fields), between classes if they are related by inheritance, or between
threads. These data structures should support incremental modifications to ensure
that creation-time information are reusable when some new information is discov-
ered at invocation time. Developers must also take into account multi-threading
since this worry is usually contradictory with time and space performance. Indeed,
to maintain data coherence, synchronization is usually required and induces extra
duration for method calls. More precisely, a method call is slower if synchronized
(see Figure 1), even without delay induced by mutual exclusion. One way to avoid
synchronization is to relax coherence and duplicate data but this leads to space
overhead.

74 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

3 USING REFLECTION

The third guideline is to try to minimize the use of expensive reflective mecha-
nisms for the invocation-time part3 of the implementation. The first objective is to
eliminate as many reified JVM’s internal objects as possible, in order to save space
and to minimize indirections. Another goal is to minimize generic reflective calls,
replacing them with dedicated calls in order to avoid intermediate object creations,
casts and boxing/unboxing. This can be achieved by generating, at creation time,
dedicated bytecode [17] according to a precise method signature specified by the
developer instead of relying on the generic signature of the reflective API. More
precisely, many JVM’s internal reified objects like Method or Class do not neces-
sarily require to refer to the internal state of the JVM. Thus they may be partially
simulated by user-defined objects which can be more efficient than reflective API
ones. In particular, a Method object that refer to a public4 method may be efficiently
simulated by generating and instantiating a class implementing the corresponding
method call. Moreover, in order to reduce intermediate object and array creations
required by the generic invoke() method call, we propose to let the developer spec-
ify precisely the method signature as an abstract method in an abstract class. Code
generation is then used at creation time to implement this abstract method by a
call to the method with a corresponding signature on a specific receiver.

In order to illustrate this approach and its worth, we developed a class RFX. This
class provides reflective-like method invocations that are more efficient than those
of the generic reflective API. Suppose that you have to call a method with name
m and two int parameters on a receiver whose class is unknown at compile time.
With RFX, instead of using the generic class Method, you declare an abstract class5

containing at least an abstract method m() with a first parameter of type Object,
corresponding to the receiver, and two other int parameters, as follows:

abstract class MethodM {

public abstract int m(Object receiver, int arg1, int arg2);

}

According to the receiver’s class c (dynamically provided in the following example
by retreiveClass()), a call to RFX.bind() generates6 the bytecode of a concrete
subclass of MethodM and returns an instance of it, mm. Then, given an object o of
class c, invocation of o.m(1,2) is performed through the call mm.m(o,1,2).

Class<?> c = retreiveClass();

MethodM mm = RFX.bind(MethodM.class,c);

3They may also be minimized for creation-time part but this is less crucial.
4This is not the case for other method kinds, like private ones, that require access to the JVM’s

internal in order to pass security checks.
5An interface may also be used but with some performance penalty.
6The class is generated only once thanks to the classloader’s cache.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 75

REFLECTION-BASED IMPLEMENTATION OF JAVA EXTENSIONS: THE DOUBLE-DISPATCH USE-CASE

Object o = c.newInstance();

int i = mm.m(o,1,2);

The generated subclass implements the abstract method m() of MethodM by a
direct call to the method m() on the receiver (see appendix A). Thanks to the object
mm, the invocation of the method m is efficient, avoiding object or array creation.
Figure 1 shows that the RFX method call is only 7 times slower than a classical
method and 8 times faster than a standard reflective method call. Performance is
even better in server mode where a RFX call is as fast as a classical one.

4 VISITORS: WALK, RUN AND SPRINT

We now deal with several solutions proposed to provide Java with double-dispatch.
We first recall the interest of this mechanism and we argue the worth of offering it
through a simple specific feature, freeing the programmer from its implementation
details. Next, we present several existing frameworks providing improvements in
this direction. Then, we detail the Sprintabout, a new framework allowing double-
dispatch we have designed and implemented with respect to previous guidelines for
reflection-based extensions. Finally, we present experimental results that show its
efficiency compared with other approaches, including ad-hoc hard-to-maintain ones.

Motivation

The classical late-binding mechanism provided by Java allows a method implemen-
tation to be chosen dynamically, according to the type of the receiving object. This
simplifies code reusability since, when new classes implementing the method are
introduced, programmers do not have to implement complex selection mechanism
nor modify the code.

Nevertheless, adding a new functionality for each class of an existing hierarchy
is less straightforward. For instance, as proposed in [17], consider the following type
hierarchy.

interface A { }

class A0 implements A { }

class A1 implements A { }

class A2 implements A { }

Imagine that, given an array of type A[], we want to compute
∑

a∈array value(a)
where value(a) = i if a is of type Ai . In other words, we want a method int

sum(A... array) such that, for instance, sum(new A0(),new A1(),new A2())

returns 3 (0+1+2).

76 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

4 VISITORS: WALK, RUN AND SPRINT

A first solution is to test, with the Java instanceof statement, the actual dy-
namic type of each array element that is statically typed A. The corresponding code,
based on successive and nested tests could become very intricate if the type hierarchy
concerns interfaces with multiple inheritance. Anyway, it is tedious to implement,
error prone and hard to maintain if the hierarchy or the semantics evolves.

A more object-oriented, but naive and dedicated solution, would be to add in
each class a method int value() that returns the right number. To be simply used
with an array of type A[], this not only requires modification of all classes, but also
of the interface. Nevertheless, nowadays, most applications are built using classes
or objects provided by third-party libraries (Java standard API, or off-the-shelf
libraries). Even if their sources are available, they usually should not be modified.
Thus, programmers cannot simply add methods to such classes7.

Two classical object-oriented techniques allow this difficulty to be worked around:
class inheritance and delegation. However, on the one hand, inheritance is not
always applicable: the case of final classes apart, some libraries use factory methods
to create objects and prevent constructor access. On the other hand, if delegation
could always be used by defining new wrapping classes for each data type, this leads
to data structure duplications and to burdensome hard-to-maintain code.

A better design is to specify a set of methods int value (T t) in a separate
class, one for each ”interesting” type (e.g. A0, A1 and A2 in our example), and to
provide a general mechanism allowing the right one to be chosen with respect to the
dynamic type of t. This late-binding mechanism on the argument of a method call,
known as double-dispatch, would actually allow behaviors (methods) to be specified
outside classes, separating algorithms from data. Unfortunately, this mechanism is
not available in Java.

To face this lack programmatically, the programmer could design his code follow-
ing the visitor design pattern [19, 15]. It simulates late-binding on the argument of a
visitor method visit(a) using the classical late-binding on an a.accept (Visitor

v) method provided by data classes. If this technically solves the problem of adding
new functionality to a given class without modifying it, this design pattern has sev-
eral limitations. First, it requires data classes to be engineered to accept visitors,
i.e., to implement an accept() method. Second, the behavior is strongly tied to
the existing type hierarchy: it must implement a special Visitor interface which,
for full generality, must include one visit() method for each accessible type. This
has two drawbacks. The programmer must implement every visit() method even
if some of them could have been captured by a widening reference conversion of the
argument type. Moreover, any extension of the type hierarchy requires the Visitor
interface to be extended; then, all existing visitor implementations have to be mod-
ified since they must implement the new visitor interface to be accepted by existing
classes.

7This may be done through Aspect Oriented Programming features without class modifica-
tion [18].

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 77

REFLECTION-BASED IMPLEMENTATION OF JAVA EXTENSIONS: THE DOUBLE-DISPATCH USE-CASE

Double-dispatch implementations

Several research works proposed to implement the double-dispatch as a reflection-
based extension. Based on the Walkabout of Palsberg and Barry Jay [25], Grothoff
proposed the Runabout [17] that allows a new functionality to be specified over data
without modifying their class nor requiring them to implement accept(Visitor v)

methods. The programmer specifies behaviors through visit() methods (one for
each interesting parameter type) in a class that extends the provided general class
Runabout. This class contains a method visitAppropriate(Object o) that is able
to dispatch the invocation to the right method visit() with respect to its (dynamic)
argument type.

public class SumRunabout extends Runabout {

int sum=0;

public void visit(A0 a) { sum+=0; }

public void visit(A1 a) { sum+=1; }

public void visit(A2 a) { sum+=2; }

public static int sum(A... array) {

SumRunabout v=new SumRunabout();

for(A a:array)

v.visitAppropriate(a);

return v.sum;

}

}

Compared with the Walkabout, the Runabout minimizes the use of the Java Core
Reflection API to improve its performance. When an instance of the Runabout is
created, reflection is used to find all available visit() methods. For each parameter
type, a class is generated and loaded on-the-fly. It contains a method dedicated to
invoke the visit() method corresponding to this parameter type. An instance
of each of these classes is created and stored in a dynamic code map. Thus, at
invocation time, the visitAppropriate() method simply uses its argument class
and the dynamic code map to dispatch the invocation to the appropriate code.
This technique avoids the use of the generic invoke() method, known to be time
consuming.

At the same time this work was performed, Forax et al. developed a reflective
framework to provide full multi-polymorphism in Java [13], i.e. late-binding on all
method arguments. With the Java Multi-Method Framework (JMMF), the pro-
grammer constructs a MultiMethod object that represents all methods with a given
name and a given number of parameters that are accessible in a given class. To
perform a multi-polymorphic invocation with an array of arguments, it suffices to
call the invoke() method of the multi-method object. JMMF dispatches the call
to the most specific method, according to dynamic types of arguments.

78 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

4 VISITORS: WALK, RUN AND SPRINT

public class SumJMMF {

public int value(A0 a) { return 0; }

public int value(A1 a) { return 1; }

public int value(A2 a) { return 2; }

public static int sum(A... array) throws Exception {

SumJMMF v=new SumJMMF();

int sum=0;

MultiMethod mm=MultiMethod.create(SumJMMF.class, "value", 1);

for(A a:array)

sum+=mm.invoke(v,a);

return sum;

}

}

The aim of JMMF is more general than the simple double-dispatch and more
generic than the Runabout. It does not require inheritance from any class, allowing
another inheritance. Furthermore, it does not constraint the name of the method
to be visit and allows several distinct multi-methods to be defined in a same
class. Nevertheless, even if it computes data-structure at creation time in order
to minimize invocation-time overhead (and even allows them to be shared between
multi-methods), its implementation efficiency suffers from relying on the Java Core
Reflection API.

The Sprintabout

Inspired by previous related works, we have designed and implemented the Sprint-
about, following the guidelines we drew in section 3. The code below illustrates how
it can be used on our running example.

public abstract class SumSprintabout {

public int value(A0 a) { return 0; }

public int value(A1 a) { return 1; }

public int value(A2 a) { return 2; }

public abstract int valueAppropriate(A a);

public static int sum(A... array) {

SumSprintabout v=

VisitorGenerator.createVisitor(SumSprintabout.class);

int sum=0;

for(A a:array) sum+=v.valueAppropriate(a);

return sum;

}

}

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 79

REFLECTION-BASED IMPLEMENTATION OF JAVA EXTENSIONS: THE DOUBLE-DISPATCH USE-CASE

In this example, the abstract method whose name ends with Appropriate is
used to identify the methods to be considered for multi-dispatch, i.e. value(). The
createVisitor() method collects these methods through reflection on its argument
class. It returns a visitor object, standing for all methods value() belonging to the
class and in charge of dispatching invocations according to the dynamic type of the
argument provided to valueAppropriate() calls.

The Sprintabout implementation respects guidelines outlined in section 3. At
creation time, a hashtable is created to be used at invocation time. Initially filled
by the method createVisitor(), it associates types with integers that index the
method to call for this type of argument. It could be completed dynamically, when
new argument types are discovered, in order to cache the method identifier resolved
for this type. As a static field, this hashtable is shared between all instances of the
same class.

The implementation bytecode for the abstract “appropriate” method is gener-
ated at creation time. At invocation time, when this concrete generated method is
called, it performs a lookup in the hashtable to retrieve the method index associated
with the type of its argument; if the type is not found, the method’s index for the
closest type must be determined and their association is cached into the hashtable.
Then, the dispatch is performed using this index in a simple switch/case state-
ment to call the right method. The source code obtained by decompiling the byte-
code generated for the method valueAppropriate() of our example is given in
Appendix B. The classloader caching mechanism ensures that the bytecode genera-
tion is only performed once. This implementation technique allows Sprintabout to
become completely independent of reflective method call at invocation time. Com-
pared with the Runabout that reifies one dedicated code object (generated class)
for each visit() method, the Sprintabout only builds a single visitor class for all
methods. This minimizes memory footprint and delegation overhead.

Moreover, compared to other approaches, the specification of the abstract “ap-
propriate” method allows the user to give a signature as precise as possible. Indeed,
this method does not have to be generic since it is specifically generated for each
particular visitor class. This feature allows the compiler to perform some static
type-checking on argument types, e.g. it is possible to constraint argument type.
For instance, in previous example, the declaration of valueAppropriate() imposes
the argument to implement the interface A. Finally, the “appropriate” method sig-
nature may return values of any type, including primitive types, without requiring
cast or boxing/unboxing. As JMMF and contrarily to the Runabout, the Sprint-
about does not require the implementation class to inherit from some special class
(i.e. Runabout) and thus allows any other class extension.

Sprintabout implementation relies on jdk 1.5 generics, on JSR133 for concurrency
and uses ASM [5] for code generation. It is freely available on the Web 8 and its
implementation is detailed in section 5.

8http://igm.univ-mlv.fr/~forax/works/sprintabout/

80 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

http://igm.univ-mlv.fr/~forax/works/sprintabout/

4 VISITORS: WALK, RUN AND SPRINT

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0 5 10 15 20

tim
e

(n
s)

number of visit methods (client mode deep hierarchy)

JMMF
Runabout

Sprintabout
Dedicated

Visitors
Instanceof

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0 5 10 15 20

tim
e

(n
s)

number of visit methods (client mode flat hierarchy)

JMMF
Runabout

Sprintabout
Dedicated

Visitors
Instanceof

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 0 5 10 15 20

tim
e

(n
s)

number of visit methods (server mode deep hierarchy)

JMMF
Runabout
Dedicated

Visitors
Sprintabout

Instanceof

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 0 5 10 15 20

tim
e

(n
s)

number of visit methods (server mode flat hierarchy)

JMMF
Runabout
Dedicated

Visitors
Sprintabout

Instanceof

Figure 2: Dispatch time in client and server mode, with deep and flat type hierarchy

Experimental results

In this section, we present an evaluation of invocation performance of Sprintabout
compared with other double-dispatch solutions. We compare it with six techniques:
Instanceof, implementing filtering using instanceof tests, Dedicated, where a dedi-
cated method is added inside each data class, Visitors, that implements the visitor
design pattern, Runabout, implementing double-dispatch using inheritance of the
class Runabout, JMMF, implementing double-dispatch as a special case of multi-
dispatch provided by the library JMMF and finally Sprintabout.

Our tests present the evolution of the time required by one million method
invocations when the number of methods increases. In these tests, we use two
distinct type hierarchies to provide the argument values of method calls. In the
deep hierarchy, all types are related by inheritance whereas in the flat one, they
are unrelated. Figure 2 presents results of these tests in both standard “client”
execution environment and with a virtual machine started in server mode. All the
tests of this section have been performed on a 2.4GHz Pentium 4 with 512Gb of
RAM using SUN jdk1.5.04 under Linux, but results on the same architecture using
Windows XP are comparable.

These tests show that Visitors and Dedicated techniques (whose graphs overlap)
have the best performance on average. Instanceof technique has the best perfor-
mance for the flat hierarchy. However, for the deep one, its performance strongly
decreases when the number of visit increases; it seems that Instanceof implementa-
tion relies on some caching techniques that fails when hierarchy becomes to large.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 81

REFLECTION-BASED IMPLEMENTATION OF JAVA EXTENSIONS: THE DOUBLE-DISPATCH USE-CASE

Considering the reflection-based implementations, we see that the Spintabout is
about three times faster than the generic JMMF and one fourth faster than the
Runabout, which also uses a code generation technique. This shows that avoiding
the use of Java Core Reflection mechanism allows Runabout and Sprintabout in-
vocation time perfomance to be improved. This also proves that the Sprintabout,
which eliminates JVM’s internal object reification and genericity of method calls,
has better performance than Runabout.

Tests performed in server mode give comparable results. Nevertheless, Sprint-
about has now better performance than Visitor and Dedicated techniques. This
behavior comes from the execution performance of optimized code [9] that is better
for switch statements produced by Sprintabout than for virtual calls used by other
techniques.

5 SPRINTABOUT IMPLEMENTATION

This section describes more precisely some Sprintabout implementation details. Our
aim is not to give burdensome technical details, but rather to point out some prob-
lems and the way they are addressed. First, we briefly describe the process overview,
and its two main steps: creation time and invocation time. Next, we detail partic-
ular contexts, determined at creation time, where specific algorithms may be used
at invocation time. These algorithms, given an argument type at invocation time,
select the right method to invoke. Finally, we describe our specific implementation
of hashtable that, given our particular context, deals efficiently with concurrency.

Overview and general principle

The Sprintabout implementation respects guidelines outlined in section 3. At cre-
ation time, all declared parameter types of concerned methods are considered in
order to prepare the invocation time process.

First of all, at creation time, the method createVisitor() of the Visitor-

Generator is called with a class as argument. In this class, given a method method -

Appropriate(), a reflective retrieval of all methods named method () with one pa-
rameter is performed. Parameter types of these methods are collected and associated
with indexes9 (non-negative integers). If n is the number of parameter types, a preci-
sion matrix PM of size n × n is constructed. In this binary matrix, PM[i][j] = 1 if
and only if i is the index of a type Ti that is more precise than the type Tj indexed
by j. The precision relation defined by this matrix, noted Ti ≤ Tj, intuitively
means that a method declaring a parameter of type Tj accepts arguments of type
Ti. This precision relation is usually provided by the method isAssignableFrom()

of java.lang.Class or, for special cases such as primitive types or arrays, by spe-
cific treatments according to the Java Language Specification, chapter 5 [16]. This

9An index identifies both a type and the method that declares a parameter of this type.

82 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

5 SPRINTABOUT IMPLEMENTATION

matrix is widely used at creation time, in order to determine the definition context
of the set of methods considered. The definition context depends on the partic-
ularities of the parameter types hierarchy and induces the choice of a dedicated
algorithm that selects the right method to call at invocation-time. In addition to
the choice of the algorithm, the creation-time step builds the main data-structure
used at invocation time: a hashtable whose keys are types and values are indexes.
This hashtable is initially filled at creation time with the declared parameter types
and their indexes.

At invocation time, given the type Arg of an actual argument arg of a call to
method Appropriate(), the invocation-time algorithm uses the hashtable to find the
index identifying the method to invoke. If the type Arg is found in the hashtable,
this directly yields the index. Otherwise, the algorithm has to inspect all less precise
types (usually supertypes) of Arg in order to find the closest type registered in the
hashtable; this process may require the use of the precision matrix. Sometimes,
several less precise types are not comparable and it is not possible to determine a
closest type. In this case, a runtime exception is thrown. The result of this process
is cached, by inserting in the hashtable the association between the argument type
Arg and the index found.

The case of null argument

Since this process uses the type of the argument, the case where the argument is null
must be treated separately. In such a situation, the method to be called is the most
precise one, if it exists, i.e., the method whose parameter type is more precise than
every other declared parameter types. The existence of such a most precise method
is determined at creation time using the precision matrix. Indeed, if a type of index
i is the most precise then Σj∈1..nPM[i][j] = n. If a most precise method exists, its
index is associated in the hashtable with an unused type (e.g. void.class). At
invocation time, when the value null is encountered, the algorithm artificially looks
for this type in the hashtable. If a most precise method does not exist, then a
predefined index (e.g., -1) is associated in the hashtable with void.class and, at
invocation time, when this index is found, a runtime exception is thrown.

Definition contexts and algorithms

The particular treatment of a null argument does not depend on the definition
context. In the same way, whatever is the definition context, if the argument is
not null, its type Arg is looked for in the hashtable. If an index is found, the
corresponding method is invoked, otherwise, invocation-time process depends on
the definition context determined at creation time. This section describes these
different contexts, how they are determined at creation time, and their corresponding
invocation-time algorithms.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 83

REFLECTION-BASED IMPLEMENTATION OF JAVA EXTENSIONS: THE DOUBLE-DISPATCH USE-CASE

Only classes in parameter types

The simplest definition context is when all declared parameter types are classes like
in Figure 3 (a). Since Java does not allow multiple inheritance of classes, looking step
by step in the hashtable for direct superclass of any argument type yields a single
index, if one exists. At creation time, in order to determine this definition context,
we simply use the method isInterface() of java.lang.Class over each declared
parameter type. This particular context allows us to discard the precision matrix.
The corresponding invocation-time algorithm simply retrieves the superclass of Arg,
using the method getSuperclass() of java.lang.Class, and looks for it in the
hashtable. This is done step by step until either it finds an index (the method to
invoke) or reaches the root class Object (in this case a runtime exception is thrown).
The association between Arg and its index is cached in the hashtable for further use.

Totally ordered parameter types

Another definition context allows the precision matrix to be discarded. It occurs
when all declared parameter types are totally ordered by the precision relation. In
other words, the hierarchy is linear: each declared parameter type is either more
precise or less precise than any other declared parameter types like in Figure 3 (b).
This context is determined from the precision matrix verifying that, for all i ∈ 1..n:

Σj∈1..nPM[i][j] + Σj∈1..nPM[j][i] = n + 1

In this case, several declared parameter types less precise than an argument type
may exist but, since they are totally ordered, one of them is the most precise. To
ease to selection of the most precise method and to avoid the use of the precision
matrix at invocation time, the indexes of declared parameter types are reordered in
the precision order10. Then, to retrieve the most precise type it suffices to retain
the type with the greatest index. This renumbering is realized at creation time, and
the algorithm used at invocation time only uses the hashtable. More precisely, it
traverses recursively all types less precise than Arg (supertypes) in order to find,
if it exists, the type with greatest index. During this traversal through the type
hierarchy, for each type found in the cache the branch leading to less precise types is
pruned since they will never yield a greater index. If a greatest index is found, the
result is cached in the hashtable and the corresponding method is invoked; otherwise,
a runtime exception is thrown.

Precision relation and bad fork

The difference between the last two definition contexts relies on the notion of fork
between parameter types. We say that there is a fork in the hierarchy of parameter

10In this particular case, a well-ordered numbering should respect, ∀i, k ∈ 1..n, i ≤ k ⇔
Σj∈1..nPM[i][j] ≤ Σj∈1..nPM[k][j]

84 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

5 SPRINTABOUT IMPLEMENTATION

C

B

C D Arg

E

A

A

B Arg

I

J

A B Arg

C

I I

A

Arg

J I

K

Arg

J

Arg implements
I extendsrepresents a parameter class

represents an example of invocation argument type

represents a parameter interface

(a) (b) (d) (e)(c)
only classes totally ordered without bad fork with bad forkwithout fork

Figure 3: Examples of parameter type hierarchies for different definition contexts

types if a given type is more precise than at least two other parameter types that
are not comparable, as in examples (d) and (e) of Figure 3.

Generally, looking for less precise types of a given argument type leads to several
parameter types and the most precise one must be determined, if it exists. Suppose
that two incomparable parameter types less precise than the argument type are
found. If there is no fork, then it is possible to conclude that no most precise method
exists, like in Figure 3 (c). Otherwise, if a fork exists, a most precise method may
exist. Indeed, a third parameter type may exist that is more precise than the two
incomparable ones, and thus, further comparisons are required.

In order to minimize comparisons, we propose to retrieve types the most precise
first. This ensures that when two types are found in this order then either one
is more precise than the other, or a most precise does not exist. This property
can sometimes be ensured by the traversal of the type hierarchy. More precisely, if
one of the three types involved in a fork is a class, then the most precise type is
necessarily a class, as in Figure 3 (d); a traversal that performs getSuperclass()

before getInterfaces() will encounter this most precise class first. Otherwise, the
fork, called “bad fork”, only involves interfaces, as in Figure 3 (e), and the hierarchy
traversal cannot guarantee retrieval of types in order. In this case, parameter type
indexes need to be renumbered at creation time, like in the totally ordered context,
to allow the invocation-time algorithm to test them in order.

To be able to characterize the definition context at creation time, after collect-
ing all declared parameter types, we look for an interface definition that explicitly
extends two other parameter interfaces. If such a bad fork is found, the definition
context is said to be “with bad fork”, else “without bad fork”.

In a definition context without bad fork, at invocation time, given an argument
type Arg not found in the cache, the algorithm begins like for totally ordered types.
It traverses the hierarchy of less precise types (supertypes) of Arg, looking for classes
prior to interfaces, and if none or only one index is found, it respectively throws an

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 85

REFLECTION-BASED IMPLEMENTATION OF JAVA EXTENSIONS: THE DOUBLE-DISPATCH USE-CASE

exception or invoke the corresponding method. Otherwise, as soon as two distinct
indexes are found, their types must be compared. If they are comparable, the most
precise is retained and the process continues. If they are not comparable, the context
allows us to stop the traversal and to conclude that there is no most precise method
and an exception is thrown.

In a context definition with a bad fork, at invocation time, the algorithm starts
similarly, but must collect all indexes of types less precise than Arg before performing
any comparison. Then, while at least two indexes remain, the two largest i and j are
considered. If the corresponding types are not comparable, the type renumbering
performed at creation time ensures that there is no more precise type, and thus
no most precise method: a runtime exception is thrown. Otherwise, if one of the
corresponding types is more precise than the other, its index is retained and the
comparison process continues with remaining indexes. When the process succeeds
with a single index, the corresponding method is invoked.

In both contexts, successful index retrievals are cached.

Then, in better cases, complexity of method retrieval at invocation time has the
same complexity as a dynamically-sized hashtable access (roughly O(1)). The worst
case requires to traverse the hierarchy of the argument type in order to retrieve all
its supertypes and then to identify the most precise one. In the worst case, this
process is linear (O(n)) in the number, n, of types in the hierarchy. Linearity is
ensured by the creation-time pre-processing which requires d2 calls to the method
isAssignableFrom(), where d is the number of declared parameter types. Com-
plexity of isAssignableFrom() is, in the worst case, linear in the size of the type
hierarchy. Since complexity of other pre-processing steps are less than O(d2), the
general worst-case complexity of creation-time process is O(d2 × n).

Data-structure implementation and concurrency

The cache used in our implementation allows to retrieve, given a class object, the
index (integer) corresponding to a visit method. This cache is implemented by a
dedicated hashtable. Indeed, compared to the generic implementation available in
the Java API, our implementation can avoid boxing/unboxing of the index value
into Integer. It is also possible to use reference equality == instead of equals() on
Class objects since uniqueness is ensured by the virtual machine. Another optimiza-
tion concerns concurrency. Compared with java.util.concurrent.Concurrent-

HashMap, our implementation may be simplified since we never need to remove an
entry from the cache. The cache only supports insert() and get() operations. To
improve performance of the cache, we have chosen to completely relax the synchro-
nization on the get() operation. This is possible since all hashtable modifications
are atomic. Freshness of values is ensured by volatile variable accesses according
to the causality of the Java Memory Model (JSR 133). We use mutual exclusion on
the insert() operation for data coherence, however, we allow multiple instances of
a same entry to be present in the hashtable to improve time performance.

86 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

B SPRINTABOUT GENERATED CODE

6 CONCLUSION

This paper promotes the use of reflection based implementations to extends the Java
environment. It proposes several guidelines to make such implementations practi-
cable. First, as many computations as possible have to be performed at creation
time to reduce invocation-time overhead. Next, as many data as possible have to be
shared to reduce space overhead, taking into account concurrency issues. Finally,
code generation may be used to minimize the invocation-time use of reified objects
and of the generic methods of the Java Core Reflection API. This latter point is
illustrated by a simple class RFX that improves reflective method invocations.

To illustrate this approach, we describe a reflection-based implementation of
double-dispatch for Java that conforms to these guidelines. Experimental results
compare this implementation with other techniques and validate the usability of our
approach.

A RFX GENERATED CODE

The following Java class corresponds to the bytecode generated by the RFX.bind()

method if, in the example of section 3, the class c provided by the method retreive-

Class() has name Test.

public class MethodM$+$Test$ extends MethodM {

public MethodM$+$Test$() {

super();

}

public int m(Object target,int arg1,int arg2) {

return ((Test)target).m(arg1,arg2);

}

}

B SPRINTABOUT GENERATED CODE

The following Java source code has been obtained by decompiling the bytecode
generated by Sprintabout for the example of section 4.

import fr.umlv.sprintabout.*;

public class SumSprintabout$+$Visitor extends SumSprintabout {

public int valueAppropriate(A a) {

return $dispatch$value1(VisitorGenerator

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 87

REFLECTION-BASED IMPLEMENTATION OF JAVA EXTENSIONS: THE DOUBLE-DISPATCH USE-CASE

.getFromMap(mapvalue$1$0, a), a);

}

private int $dispatch$value1(int i, A a) {

switch(i) {

case 1: return value((A0)a);

case 2: return value((A1)a);

case 3: return value((A2)a);

default:

throw new RuntimeException("No such method");

}

}

private static final ConcurrentIntMap mapvalue$1$0;

static {

ConcurrentIntMap concurrentintmap=new ConcurrentIntMap(6);

concurrentintmap.insert(A0.class, 1);

concurrentintmap.insert(A1.class, 2);

concurrentintmap.insert(A2.class, 3);

mapvalue$1$0=concurrentintmap;

}

}

REFERENCES

[1] G. Baumgartner, M. Jansche, and K. Lufer. Half & half: Multiple dispatch and
retroactive abstraction for Java. Technical Report OSU-CISRC-5/01-TR08,
Dept. of Computer and Information Science, Ohio State University, Mar. 2002.

[2] L. Bettini, S. Capecchi, and B. Venneri. Translating double-dispatch into single-
dispatch. In Proc. of WOOD’04, ENTCS. Elsevier, 2004.

[3] J. Boyland and G. Castagna. Parasitic methods: An implementation of multi-
methods for Java. In OOPSLA’97, number 32–10 in SIGPLAN Notices, pages
66–76, Atlanta, Georgia, Oct. 1997. ACM Press.

[4] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. T. Leavens,
and B. Pierce. On binary methods. Theory and Practice of Object Systems,
1(3):221–242, 1996.

[5] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code manipulation tool to
implement adaptable systems. In Adaptable and extensible component systems,
Grenoble, France, Nov. 2002.

[6] W. Cazzola. SmartMethod: an Efficient Replacement for Method. In SAC’04,
pages 1305–1309, Nicosia, Cyprus, Mar. 2004. ACM Press.

88 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

B SPRINTABOUT GENERATED CODE

[7] W. Cazzola. Smartreflection: Efficient introspection in java. Journal of Object
Technology, 3(11):117–132, Dec. 2004.

[8] C. Chambers. Object-oriented multi-methods in Cecil. In ECOOP’92 proceed-
ings, LNCS, Utrecht, The Netherlands, July 1992. Springer.

[9] C. Click. Java technology performance myths exposed, 2005. http:

//developers.sun.com/learning/javaoneonline/2005/coreplatform/

TS-3268.pdf.

[10] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular
open classes and symmetric multiple dispatch. In OOPSLA’00 proceedings,
ACM SIGPLAN Notices, Minneapolis, USA, Oct. 2000.

[11] L. G. DeMichiel and R. P. Gabriel. The Common Lisp Object System: An
overview. In ECOOP’87 Proceedings, LNCS, pages 151–170, Paris, France,
June 1987. Springer.

[12] C. Dutchyn, P. Lu, D. Szafron, S. Bromling, and W. Holst. Multi-dispatch in the
Java Virtual Machine design and implementation. In COOTS’01 proceedings,
San Antonio, USA, Jan. 2001.

[13] R. Forax, E. Duris, and G. Roussel. Java multi-method framework. In TOOLS
Pacific’00 Proceedings, Sidney, Australia, Nov. 2000. IEEE Computer.

[14] R. Forax, E. Duris, and G. Roussel. A reflective implementation of java multi-
methods. IEEE Transactions on Software Engineering (TSE), 30(12):1055–
1071, 2004.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[16] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Javatm Language Specification
– Second Edition. Addison-Wesley, 2000.

[17] C. Grothoff. Walkabout revisited: The runabout. In ECOOP’03 proceedings,
LNCS, pages 103–125. Springer, 2003.

[18] J. Hannemann and G. Kiczales. Design pattern implementation in java and
aspectj. In Proc. of OOPSLA’02, pages 161–173, Seattle, USA, Nov. 2002.
ACM SIGPLAN.

[19] D. H. H. Ingalls. A simple technique for handling multiple polymorphism. In
Proceedings of OOPSLA’86, pages 347–349, Portland, Oregon, Nov. 1986.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold.
Getting started with AspectJ. Communications of the ACM, 44(10):59–65,
2001.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 89

http://developers.sun.com/learning/javaoneonline/2005/coreplatform/TS-3268.pdf
http://developers.sun.com/learning/javaoneonline/2005/coreplatform/TS-3268.pdf
http://developers.sun.com/learning/javaoneonline/2005/coreplatform/TS-3268.pdf

REFLECTION-BASED IMPLEMENTATION OF JAVA EXTENSIONS: THE DOUBLE-DISPATCH USE-CASE

[21] G. Kiczales, J. D. Rivieres, and D. Bobrow. The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA, 1991.

[22] M. Kizub. Kiev language specification. An extension of Java
language that inherits Pizza features and provides multi-methods
(http://forestro.com/kiev/), July 1998.

[23] T. Millstein and C. Chambers. Modular statically typed multimethods. In
ECOOP’99 proceedings, number 1628 in LNCS, pages 279–303, Lisbon, Portu-
gal, June 1999.

[24] M. Paleczny, C. Vick, and C. Click. The Java HotSpotTM server compiler. In
Proc. of JVM-01, pages 1–12, Monterey, California, USA, Apr. 2001. USENIX
Association.

[25] J. Palsberg and C. B. Jay. The essence of the visitor pattern. In COMPSAC’98
proceedings, pages 9–15. IEEE Computer Society, 1998.

[26] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A flexible solution for
aspect-oriented programming in java. In Proceedings of Reflection’01, number
2192 in LNCS, Kyoto, Japan, Sept. 2001. Springer-Verlag.

[27] J. Smith. Draft proposal for adding multimethods to c++, Sept. 2003. http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1529.html.

[28] M. Viroli and A. Natali. Parametric polymorphism in java: an approach to
translation based on reflective features. In Proceedings of OOPSLA’00, pages
146 – 165, Minneapolis, Minnesota, United States, 2000.

ABOUT THE AUTHORS

Rémi Forax is Mâıtre de Conférences at University of Marne-la-
Vallée since 2003. His main research areas concern the use of reflec-
tion and of bytecode generation to enhance the Java programming
and executing environment. He can be reached at remi.forax@univ-
mlv.fr. See also http://igm.univ-mlv.fr/˜forax.

Etienne Duris is Mâıtre de Conférences at University of Marne-
la-Vallée since 2000. His research focuses on program transforma-
tions and on the use of reflection to extend the expressive power of
programming languages. He can be reached at etienne.duris@univ-
mlv.fr. See also http://igm.univ-mlv.fr/˜duris.

90 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1529.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1529.html
mailto:remi.forax@univ-mlv.fr
mailto:remi.forax@univ-mlv.fr
http://igm.univ-mlv.fr/~forax
mailto:etienne.duris@univ-mlv.fr
mailto:etienne.duris@univ-mlv.fr
http://igm.univ-mlv.fr/~duris

B SPRINTABOUT GENERATED CODE

Gilles Roussel is Professor at University of Marne-la-Vallée since
2004. His research works cover program transformations, lan-
guage processing enhancements, genericity and routing. He can
be reached at gilles.roussel@univ-mlv.fr. See also http://igm.univ-
mlv.fr/˜roussel.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 91

mailto:gilles.roussel@univ-mlv.fr
http://igm.univ-mlv.fr/~roussel
http://igm.univ-mlv.fr/~roussel

