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Presentations of Constrained Systems with
Unconstrained Positions

Marie-Pierre Béal, Maxime Crochemore and Gabriele Fici

Abstract— We give a polynomial-time construction of the set
of sequences that satisfy a finite-memory constraint definedy
a finite list of forbidden blocks, with a specified set of bit
positions unconstrained. Such a construction can be used tild
modulation/error-correction codes (ECC codes) like the oas
defined by the Immink-Wijngaarden scheme in which certain
bit positions are reserved for ECC parity. We give a linear-
time construction of a finite-state presentation of a consained
system defined by a periodic list of forbidden blocks. These
systems, called periodic-finite-type systems, were intragted by
Moision and Siegel. Finally, we present a linear-time algathm
for constructing the minimal periodic forbidden blocks of a finite
sequence for a given period.

Index Terms— Directed acyclic word graph (DAWG), finite-
memory systems, finite-state encoders, forbidden blocks, awi-
mum transition run (MTR) codes, modulation codes, periodie
finite-type (PFT) systems, run-length limited (RLL) codes.

I. INTRODUCTION

U is a given subset of integers modulo some inte@er
We call this system th€U, T')-unconstrained subsystem of
S. The knowledge of this maximal subsystem enables the
computation of the maximal possible rate of a code that both
satisfies a given constraint and is unconstrained in a spdcifi
set of positions. Indeed, this maximal rate is the Shannon
capacity of the maximal subsystem. It also enables to apply
standard modulation code constructions to this subchannel
[4]. Since these code constructions work on a presentation
of the subchannel, it is worth to efficiently compute a small
presentation of this subchannel.

In this correspondence, we focus on the construction of
this maximal subsystem for a finite-state constrained ayste
with finite memory. Our goal is to reduce the time and space
complexities of the general solution proposed in [3]. We
consider a finite-memory constrained systéirdefined by a
finite list of forbidden blocks. Given such a system and a
subsetU of integers modulo some integéf, we construct

Recording systems often use combined modulation/errgs- 3 polynomial amount of time and space a finite-state
correction codes (ECC codes). While error-correction €odgraph that presents th@’, T)-unconstrained subsystem &f
enable the correction of a certain number of channel errofigye maximal subsystem appears to be a natural example of
modulation codes encode the sequences into a constraiggflodic-finite-type systen®FT) introduced by Moision and
channel that is supposed to reduce the likelihood of errokseqgel in [5]. This was already noticed in [3, pp. 869].

Well known examples of such channels are the maximum|n our process, we start with the construction of a periodic
transition run systems MTRY [1], where the maximum run jist of forbidden blocks that defines the maximal subsystem
of consecutive 1's ig, or the run length limited systems RLL from 4 finite list of forbidden blocks of the finite-memory

(d, k), where the maximum run of consecutive 0'skisand

system. More precisely, if the input data is a tfierepresent-

the minimum run of consecutive O's i&. Among various ng g finite prefix-free list of forbidden blocks, the algéoit
schemes proposed to construct both error-correction codgsrks in space and tim&(T x |A| x |T| x log |T]), where
and modulation codes, one of them, called the Wijngaardqq=| is the size (the number of states) of the trie afds
Immink scheme [2] (see also [3]), proposes to encode @ik alphabet. In a second step, we construct in linear time
unconstrained sequence of bits into a constrained sequencgpq space a finite-state presentation of a periodic-figjte-t
which certain bit positions are reserved for ECC parity. Thgnift defined by a periodic list of forbidden blocks. The wéol
bit values in these positions can be flipped (or not flippeglo-step process computes a finite-state presentationeof th

independently without violating the constraint. Theseijimss

maximal unconstrained subsystem. Moreover, our algorithm

are callgd unconstrgined po;itionsTherefore, ECC pari_t)_’ becomes linear if the input trie has itself a linear struetur
information can be inserted into the unconstrained passtioFor instance, it runs i () time for the MTR() constraint,
of the modulation-encoded sequences without making thgfRd inO(k) time for the RLL (d, k) constraint with the input

out of the constrained channel.

datad, k(d < k), if the periodT of the unconstrained positions

In [3], the authors study different approaches to build suG§ naturally assumed to be constant. We restrict oursetves t
codes, one of them being based on the construction of thpary systems, but the results carry over easily to coimsica

unigue maximal subsystem of a constrained systersuch

finite-memory systems over any finite set of symbols.

that any position moduld” in U is unconstrained, where \yhjle our algorithm is polynomial and the algorithm given
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in [3] is exponential in the general case, they cannot be
compared directly for the following reasons. The algorithm
described in [3] works in an exponential amount of space
and time for all finite-state systems given by a finite-state
presentation, and in quadratic space and time for finite-
memory systems with an additional condition called the gap



condition. The gap condition limits the number of uncon- 0

strained positions relatively to the memory of the system. A

efficient algorithm is also proposed in [3] for the speciatea 0-”
of MTR systems. We point out that, although our algorithm v
has a better complexity for finite-memory systems, and no 1

restriction similar to the gap condition, it works with difent

input data. Indeed, it is possible to compute in polynomi&l9: 1. An automaton presenting a periodic-finite-type tshit The shift.X

. : . : mits the following list of periodic forbidden words, faf = 2, F(0) =

time an automaton accepting a list of forbidden blocks Qhy, £ — g,

a finite-memory system given by a deterministic automaton

with a single initial state [6]. But it is not possible to do it

in polynomial time from a presentation where all states are An automaton isdeterministicif for any given state and

initial ones. Thus our algorithm runs faster if the inputalatany given symbol, there is at most one outgoing edge labelled

are a list of forbidden blocks while the one presented in §3] by a given symbol. A sofic shift isrreducible if it has a

more efficient if both the input data are a presentation of thesentation with a strongly connected graph. Ineasential

constraint and the gap condition is satisfied. presentatiorall states have at least one outgoing edge and one
Our correspondence is organized as follows. In Section lhcoming edge. An automaton héisite memoryM (or also

we recall some background regarding constrained systeims\/-local or M-definite if whenever any two paths of the

with unconstrained positions, which are introduced in [3hutomaton of length\/ have the same label sequence, they

In Section Il we give a linear construction of a finite-statend at the same stat€inite-memory systemsr finite-type

presentation of a periodic-finite-type shift defined by aqeic  systemsor shifts of finite type(SFT) have a finite-memory

list of forbidden blocks. In Section IV, we combine thepresentation. Examples of such systems include the RLL and

algorithm given in Section Ill to a preliminary treatment oMTR constraints.

the input trie presenting a list of forbidden blocks of the Finite-type shifts are characterized by a finite collectadn

constrained channel. Although it is not directly related téorbidden blocksIf F is a finite subset ofA*, we denote by

modulation/error-correction codes construction, we adaléi- X the shift of finite type defined by the set of forbidden words

nal section which provides a linear space and time commutatiZ. A bi-infinite word = belongs toX if and only if w <;

of minimal periodic forbidden blocks of a finite sequencedor x, for some index:, impliesw ¢ F. Any irreducible sofic

given period. This algorithm extends a known algorithm frorshift has a unique minimal deterministic presentationechll

[7] for computing the minimal forbidden blocks of a finitethe right Shannon coveof the shift.

word, which is used in a lossless data compression scheme [8]Periodic-finite-type shifts are constrained systems with a

We also believe that the notion of periodic list of forbiddetime-varying constraint. They have been introduced by Moi-

blocks introduced by Moision and Siegel can be used in masipn and Siegel in [5]. They provide suitable representetio

areas other than modulation/error-correction codes. of constrained systems that forbid the appearance of oertai
patterns in a periodic manner.
Il. BACKGROUND AND BASIC DEFINITIONS Let 7' be a positive integer, called the period. L&t be
We recall definitions that can be found in [9]. Let = a finite collection of finite words oved, where eachw; €

{0,1,...,k} be a finite alphabet, witlk > 1. We denote by F is associated with an integet; in the set{0,1...7 —
A* the set of finite words oM, by AZ the set of bi-infinite 1}, called the set ophases The collectionF is denoted by
SeqUeNces: = -+ T_3r_oT_1Z0T1%2x3 -+ drawn fromA, F = {(wi,n1),...,(wz,n7)} and called a collection of
and by AN the set of right-infinite ones. The shift map periodic forbidden wordsFor 0 < k < T, F*) denotes the
transforms a sequende;)icz into the sequencér;,1);cz. subset ofF associated with the phaseWe denote byK ~ 1}
If ¢ < j are integers, we denote hyi..j] the factor or the shift defined as the set of bi-infinite sequences having a
subblockz; . . . z; of a finite or infinite wordz. A finite word  shifted sequence that does not contain a waog, n;) € F
w is a subblock of a finite or infinite word: at positioni starting at any index = n; mod T. More precisely, a bi-
if w = x[i..i+ |w| — 1], where|w]| is the length ofw. We infinite word 2 belongs toX;# 1 if and only if there is an
denote this fact byv <; z. Note thatw = w[0. . |w| — 1]. integerk such thatr*(x) = y and, for each integei;, one has
An automaton is a finite labelled multigraph (or simply av <; y = w ¢ F@™edT) A periodic-finite-type shift for a
graph). ltis a tupld@, A, E), whereQ is a finite set of states, periodT (PFT(I')) is a constrained systeisuch that there is
A is the labeling alphabet, anl is a finite set of edges la- a collection of periodic forbidden wordg with S = X;x 3.
belled with elements in the alphahét An automatoraccepts A periodic-finite-type shiftPFT) is a PFT{") for some period
a set of finite words when initial and final states are specifiedf. An example is given in Figure 1.
A finite word is then accepted if it is the label of a finite path Note that a shift of finite type is of periodic-finite-type for
from an initial state to a final one. The set of bi-infinite l&Ebe any period.
of paths in an automaton is calledcanstrained systenor Constrained systems with unconstrained positians de-
also asofic shiftin the symbolic dynamics terminology. Thefined in [3] as follows. LetS be a constrained systerif, a
automaton is then called presentationof the shift. In that positive period, and/ C {0,...,7 — 1}, called the set of
case, the initial and final states may not be specified sifce @hconstrained positions. For any finite (resp. right-inénbi-
states are supposed to be both initial and final. infinite) word =, a U-flip of z is a finite (resp. right-infinite,



bi-infinite) word y such thaty; = x; wheneveri mod T' ¢ U. (U — k)-closure of 7, w’ does not belong either. It follows

If A is the two-letter alphabef0, 1}, a U-flip is obtained by thatw’ ¢ F. Thus anyU-flip of y belongs toS. Hencey

flipping (or not) the bit values in the unconstrained posisio belongs to thd/-closure ofSy,r, andX;g: 7y C SU—T‘r ]

The set of allU-flips of words of a setX is called theU- Note that the result of the previous proposition extends as

closureof X. follows if S is a periodic-finite-type system for a period that
We denote bySy 1 the set of all infinite (right-infinite or is a multiple ofT.

bi-infinite according to the context) sequencef S such Proposition 2: Let S be a PFT{) shift, andU a set of

that unconstrained positions. The shifis 7~ andSg - are unions
« all U-flips of z belong toS, of PFT(") shifts.
« z; = 1 for all positionsi such thati mod 7" € U. Proof: SupposeS = Xz r). We first fix ky €

The unconstrained positions are forced to be 1 in order to fix{&, 1, ..., 7 — 1}, and define the two collections of periodic
leader in eacl/-flip class of a word. The important fact is thatforbidden onrdﬂko andg'y, as follows. Ifk € {0,...,T -
one can independently change the values in the unconglrain, theng’\*) is the (U — k)-closure of F(+ko med 7) Hence
tphostitlgns \;]v_i]:tth%ut violating tk:(e constrainté?gfined By Nto:)e SU,TU = UkoE{O,l,...,T—l} XG4T}

at the shifted sequence of a sequencéiny may not be 1< — 17 thenc™® — 100U ™® 1 k € {0 T\
in Syr (i.e. Syr is not a shift). We denote the set of all o Gry = {0}UG, - TR €40, N,
these shifted sequences 5@7T. We also denote b)SU,TU
the set of all bi-infinite shifted sequences $f; . Note that
Sgr CSur .

An algorithm to compute a presentation 8f;r from a

k k o
then gl(co) = gl](CU)' HenceSy r = Ukoe{(),l ,,,,, T-1} K{Gyy T}

Let F be a list of periodic forbidden words of a shiff
for a given positive period’. We say thatF is periodic anti-

; o ) ) o ial i ; _ @ impli
presentation of5 is given in [3]. The result is a determlnlstlcfacmr'al ifforany 0 <i<T—1,we 7" implies that, for

L . X i . (i4j mod T')
automatonGy, whose graph has a period that is a multlplgny. proper fa.ctolu of w with u <J. w,u ¢ F . ’ ., The
of T with the following properties: notion of periodic anti-factorial list generalizes the ioot of

N . anti-factorial language (see for instance [7]). In the apbc
- states ofGy,r are partitioned according td’ phases c4se an anti-factorial language means a language where no
{0,...,T =1} in such a way that if a state has phdse \yqrq is the factor of another one, while a factorial language
its successors have phase- 1 mod T _ is a language where each factor of a word of the language also
« the transitions beginning in a state of a phasd/irare belongs to the language (see [7]). In particular, the $&étsof
labelled by1. o an anti-factorial listF of periodic forbidden words are prefix-
« Su,r is the set of right-infinite sequences Giyr that  free codesi.e. sets of words where no word is a proper prefix
are labels of a path starting in a state of phase of another word of the set. The empty word never belongs to
The link between constrained systems with unconstrainagdy (.
positions and periodic-finite-type shifts is given in thepo- Example 1 The list 7 = {00,11}, F® = {00, 11,010}
sition below which is stated in [3, p. 869] without proof. Weyith T = 2 is periodic anti-factorial while the listF(®) =
use the following notation: i/ is a subset of0,..., T —1}, {00,11,010}, F = {00, 10} with T = 2 is not. Indeed, in
andk is an integer, we denote iy +k the se{u+k mod T' |  the latter list,10 € 1), 010 € F©, and10 =<, 010.
ueU}. -~ . _ . Proposition 3: Let F be a list of periodic forbidden words
Proposition 1: Let S be a finite-type shift]” a period and of 3 PFT() shift X. Then there is an anti-factorial list of
U a set of unconstrained positions. The shiftsr andSg - periodic forbidden words™ of X with the same period, such

are PFT() shifts. that 7/ € F® forany0<i < T — 1.
Proof: Let F be a finite collection of finite forbidden Proof: We define the listF’ by

words such thas = X . We define two collections of periodic
forbidden wordsG and g’ as follows. Ifk € {0,...,T — 1}, i ; ; T D A
theng’*) is the(U — k)-closure ofF andSu.r” = X(g 71 FO = j:(T) ?]'—( AT —(AT)TF0A
If ke U, theng® = {0yug'™. If ke {0,....,T—1}\U, ATy A FH mod T) g
theng® = ¢'™ and Sg ;. = X(g.1y. ’
Let us detail for instance the equali§y 7’ = Xigr 1}
Let 2 be a bi-infinite word ofSy; 7”. Thus, there is an integerwhere A* denotes the set of all finite words overand A+
i with o%(z) = y, andy belongs to thel/-closure of Sy 7. the set of all non-empty ones. Note that” is obtained
Thusy has aU-flip z in S. Let w be a finite block with from F(®) by removing all words that contain a strict factor
w <y y. There is AU — k)-flip of w that is not inF. Thusw in position k belonging toF(++i med T) ' By constructionF’
do_esanot belong to th@/ — k)-closure of 7. This proves that is periodic and anti-factorial, and = Xz 3. ]
Sur € Xigr13. Conversely, letz be a bi-infinite word of  The notion of anti-factorial list is weaker than the notidn o
X¢g',ry- There is an integei with ¢'(x) = y, and, for each minimal list of periodic forbidden words (see [5] for a natio
integerk, one hasw <;, y = w ¢ ¢'*™7) Let > be a of minimality, where minimal periodic forbidden words are
U-flip of y. Let w’ be the block obtained fromw with the called periodic first offendefs This notion is however a key
sameU-flip. Thenw’ <y z. Sincew does not belong to the point in the algorithms described in Section Il

j=1



[1l. COMPUTATION OF THE SHIFT DEFINED BY PERIODIC Lemma 1:Let w be a finite word. Ifé(i,w) is defined,
FORBIDDEN WORDS then §(i,w) = (v,7 mod T'), wherew is the longest suffix
In this section, we describe an algorithm that computes t#é" - - [w| — 1] of w such that(v, 7 mod T') is a state ofQ.
shift Xz 7y from a finite list of periodic forbidden word# Proof: We prove the lemma by induction on the length
with period 7. This algorithm extends to the periodic case afif w- If w is the empty word, the claim is trivially satisfied.
algorithm of Crochemoret al. [7] that computes the languageOtherwisew = ua, wherea is a letter. Henceg(i, w) =
avoiding the blocks defined by an anti-factorial language. W(0(i, ), a). By inductive hypothesisg(i,u) = (u’, k mod

first assume that the periodic forbidden list is anti-faietior
and show later how to remove this restriction.

We denote byB°(F,T) the set of finite blocksv such
that, for any integed < i < |wl|, u <; w = u ¢ FEmedT),
The set of finite blocks or factors o~ r, is denoted by
B(X(#,ry). Note thatB°(F,T) C B(Xy#ry). The inclusion
is strict in general. For instance, () = {010}, F(!)
{101} and T = 2, 010 ¢ B%(F,T) since010 € F©, and
010 € B(X{]:j}).

Moreover, ifw € B(X{#r}), there is a finite block: such
thatuw € B°(F,T). HenceB(X;# ry) is included in the set
of factors of BY(F, T).

Let F be an anti-factorial list of periodic forbidden words

with period 7. We associate witlf the finite deterministic

automatoriD(F) described below. A finite word is accepteci¢“€P

by this automaton if it is the label of a path from an initiedtst
to a final one. As shown in Proposition D(F) accepts the
setB°(F,T) of finite blocks ofX;r ; appearing in phase.

An essential presentation of the PFT shftr 1, is obtained

from D(F) by removing the states that have no outgoing edg%—g1

or no incoming edges.

The automatorD(F) is defined by the tupléQ, A, i, F, §)

as follows:

o the setQ of states is|J,<,<p_; @k, Where Qy
{(w, k) | w is a prefix of a word inF®},

o A is the current alphabet,

« the initial statei corresponds to the empty wofd, 0)

« the setF of final states i)\ Uy« <71 Fi, WhereFy,
{(w, k) | we F®}. -

The states ofJ,. -, Fi are calledsink statesThe set of
transitionsT is defined as follows:

o T = {((w,k),a,(v,;k + rmodT)) | (u,k) € Qi \
Fy,a € A, andv is the longest suffiXua)[r . . |ua| — 1]
of uwa such that(v,k + r mod T') € Q}, (transitions
((u, k), a, (ua, k)) such that(ua,k) € Q) are called

T), whereu' is the longest suffix[k . . |u| — 1] of u such that
(v, k mod T) is a state ofy. Sinced(i, ua) is defined (i, u)
is not a sink state an@ (i, u), a, 6(¢, ua)) is a transition ofT.

If 6(¢,u) = (v, kmodT), 0(i,ua) = (v,k + r mod T),
wherew is the longest suffiXu’a)[r .. |u'a| — 1] of v'a such
that (v, k + r mod T') is a state of@. Let v’ be a nonempty
suffix (ua)[r’..|ual — 1] of ua such that(v’, mod T') is a
state of@. Thenv' = w'a, andw’ is a suffixu[r’ .. |u| —1] of
u such thatw’, r’ mod T') is a state of). From the inductive
hypothesis, we get that’ is a suffix ofu’, and thusy’ = w'a
is a suffix ofu’a. Thenwv is the longest suffiXua)[r . . |ua|—1]
of ua such that(v,r mod T') is a state of@. |
Proposition 4: Let F be a finite anti-factorial list of peri-
odic forbidden words with period’. The automatorD(F)
tsB°(F,T). It is also a presentation ok r ry after
removing the sink states.

Proof: We first prove thatB°(F,T) is included in
the language accepted HY(F). Let w be a finite block of
B(F,T). If wis not accepted b (F), §(i,w) is not defined.
us there is a prefix. of w such thaté(i,u) = (v, k) is
a sink state. Hence is a suffix u[n..|u| — 1] of u, with
k = nmod T, which belongs toF®*). This implies that
v <, w, andw ¢ BY(F,T).

Conversely, let us assume that¢ BY(F,T). There is an
integerk with 0 < k < |w|, and a finite block: € F(k med 1),
such thatu <, w. We denote by: the wordw[0. .k — 1J.
Hencezu is a prefix ofw. If w is accepted b (F), (i, zu) is
defined. By Lemma 1§(i, zu) = (v,r mod T'), wherev is the
longest suffix(zu)[r . . |zu| — 1] of zu such that{v, r mod T')
is a state ofp). Since(u, k mod T') is a state ofQ, |v| > |ul.
Sinceu, v are suffixes ofzu, u € F*FodT) js a suffix ofv
that is a prefix of a word inF(" medT) The anti-factoriality
of F implies thatk = r mod T, andu = v. Thusé(i, zu) is
a sink state, and therefote is not accepted b (F), which
is a contradiction. [ |

The above definition of the automat@F) turns into the

forward edges while the others are called backwaglgorithm below called PRIODIC-AUTOMATON that produces

edges). it. We first consider the code of this algorithm without the
The partial transition function defined by transitions inded lines 3.a, 3.b, 3.c and the lines 11.a, 11.b, 11.c. It builds
by 6. If w is a finite word and; a state (g, w) is defined if the automatorD(F) from a finite anti-factorial collection of
and only if there is a path starting atwith label w. In that finite words. With all lines included, it builds the automato

that there is no transition going out of a sink state, &yt a) collection of T" finite sets of finite words. Each finite set of
is defined for any letter. and any state that is not a sink Words is represented by a tree-like deterministic automato
state. called atrie, defined as follows.

Let L be a finite language of finite words,tae represent-

Remarks One can easily prove from the definitions that
o If g€ Q\ (FUUy<r<r_1(,k)), all transitions arriving
on stateg have the same label.
o If ¢ € Q, there is a path frony to a sink state in the
automaton.

ing L is a finite deterministic automaton acceptihgwhere
« the set of states is the set of prefixes of wordd.in
« the initial state is the empty worsl
« the set of final states if’,
« the set of transitions i$(u,a,ua) | a € A}.



The sizeof a trie 7 is defined as its number of states and itan be removed. For each staiethe value of the failure
is denoted by7|. function is represented as the target of the dashed eddimgtar
The input of our algorithm is the set of trieg;,
(Qg, A, iy, Fy, 03, that accept the finite se’5(*), for 0 < k < in phase) (in white) and the set of states in phasén gray).
T —1 (see Figure 2). The output is the deterministic automatdiote that all transitions go from a state in phds® a state
acceptingD(F). It is denoted by(Q, A,,T,¢). An essential in phasel or conversely.
representation oK~ 1 is obtained from it by removing the
states that have no outgoing edges or no incoming edges, and
by setting all states both initial and final.
The key point for the final efficiency is the use of a function

at p. States can be divided into two subsets, the set of states

f called afailure functionand defined on the sé€}, the union
of the setsQ, of states of the trie¥}, as follows. A state
of the trie 7; is identified with a pair(u, k), wherew is a
prefix of a word inF*). For a statqau, k) € Q, f(au, k) is
0(ik+1 mod T, ). Note thatf (i) is undefined for any: such

that0 < k < T — 1, which justifies a specific treatment of the

initial states in the algorithm. The failure function guatees
a good time complexity of the algorithm.

PERIODIC-AUTOMATON (tries 75, = (Qx, A, ik, Fx, 0%)
acceptingZ*), integerT’)

1. setQ = Uk Qk, F = Uk Fy, 1 = 1.
2. for eacha € A andeachk, 0<k<T -1

3.a if i, € F, remove transitiony (ix, a) in 7y
3.b if 0k (ix,a) is definedand ix41 moa T € F
3.c remove transitiony (ix, a) in 7y

4, if 0k (ix,a) is defined

5. seté(ik, a) = 5k (ik, a)

6. Setf(6(2k7 a)) = ik+l mod T

7. else

8. Seté(ik7 a) = ik+1 mod T

9. for eachk, eachp € Qi \ {ix} in width-first search
from |, ix
10. and for eacha € A

11.a if p € F, remove transitiodx(p,a) in 7,

11.b  if dx(p,a) is definedand §(f(p),a) € F

11.c remove transitiody (p, a) in 7

12. if 9x(p,a) is defined

13. setd(p,a) = dk(p, a)

14. setf(6(p, a)) = 5(f(p), a)

15. else ifp & U, Fr

16. setd(p,a) = 8(f(p), a)

17. else

18 setd(p,a) is undefined (or equal tp)

19: return automatond = (Q, A,i,Q \ F, 9)

O 0——0
OO0

Fig. 2. Example of the two input tries for the collectioA defined by
FO = {010}, F&) = {101} and T = 2. Final states are doubled circled.

Fig. 3. Presentation of the shi;r 1y, where {F, T} is defined by
FO = {010}, FV) = {101} and T = 2.

Proposition 5: Let (7;)o<k<7—1 be the tries of a finite anti-
factorial list F of periodic forbidden words for the peridd.
Algorithm PERIODIC-AUTOMATON builds the deterministic
automatorD(F).

Proof: Since we assume thét is anti-factorial, we skip
the lines 3 and 11 of the code of the algorithm. The automaton
computed by the algorithm has a set of stafesvhich is the
union of the set of states of the input tries. The automaton is
deterministic by construction.

Let p = (u, k) be a state ofp;. We prove by induction on
the length ofu that:

1) if u # ¢, f(p) = (v,k+ rmodT), wherev is the
longest suffixu[r .. |u| — 1] of u, distinct fromu, such
that (v, k+r mod T) € @,

2) if a is a letter of A, and (p, a) is defined,i(p, a)
(w,k + smod T), where w is the longest suffix
(ua)[s. . |ua]—1] of ua such tha{w, k+s mod T') € Q.

Property 1 is trivially satisfied when is a letter. Property 2
is trivially satisfied whenu is the empty word.

Let u be a nonempty finite wordy = (u, k) € Q. Hence
u = u'a, Wherea is a letter, and we denote hy the state
(UI, k?) of Q.

By the inductive hypothesis of 1, sinde’| < |ul, either
u’ = ¢ and Property 1 is satisfied for the staig or v’ #
g, and f(p') = (v',k + 7’ mod T'), wherev' is the longest
suffix o'[r .. |u’| —1] of «, distinct from’, such tha(v’, k+
r’ mod T') € Q. By the inductive hypothesis of 2, sing€| <
[u'| < |ul, 6(f(p),a) = (W', k+r"+ s mod T), wherew’ is
the longest suffiXv’a)[s’ . . |v'a| — 1] of v'a such thatw’, k+
"+ modT) e Q. Thenf(p) =d(f(¥),a) = (W', k+r"+
s’ mod T). Thus, the blocky’ is a proper suffix ofu’a = u.
Let z be a proper suffiXu’a)[t. . |u'a] — 1] of u'a such that

The shift X;# r}, given in Figure 2, is presented by the(z,k + tmod T') € Q. Thenz = z'a and 2’ is a suffix

deterministic automaton of Figure 3. The doubled circledest

u'[t". . |u'|—1] of «’ distinct fromw’, with (2/, k+t mod T') €



Q. This implies that:’ is a suffix ofv’, and that: = z’a is a be a set of forbidden blocks such thét= Xr. We know
suffix of w’. Then Property 1 is satisfied for the state from Proposition 1 that the shif7; » is a periodic-finite-
We now consider two cases to prove property 2. ket type system defined by the collectighas follows. Fork €
be a letter of the alphabet. Let us assume first that there{ls...,7 — 1},
a transitiondy (p,a). Thend(p,a) is defined asiy(p,a) = o if k€U, G® is the (U — k)-closure ofF plus the word
(ua, k) and Property 2 is satisfied. Otherwisé(p,a) is 0,
defined asé(f(p),a). Since Property 1 is satisfied for the . if k ¢ U, G is the (U — k)-closure of .
statep, f(p) is the state(v, k + r mod T'), wherev is the
longest suffixu[r.. |u| — 1] of u distinct from u such that
(v, k +rmod T) € Q. Hencelv| < |u|. Then, by inductive
hypothesis of 25(f(p),a) = (x,k + r + s mod T'), where
x is the longest suffix(va)[s..|va] — 1] of va such that
(z,k+r+smodT) € Q. Thusz is a suffix ofua. If y is a
suffix (ua)[t . . |ua|—1] of ua such thafy, k+t mod T') € Q,
theny = y'a and y’ is a suffix uft..|u] — 1] of u such
that (y/',k + t mod T) € Q. Thus eithery’ = w or 3 is
a suffix of v. The former case implies = 0 and d;(p, a)
exists, which is excluded. The latter case implies that y'a
is a suffix of va, and thus a suffix ofz. It follows that
d(p,a) = (z,k + t mod T), wherez is the longest suffix
(ua)[t..|ua] — 1] of ua such that(z,k + t mod T) € Q.
Sinced(p,a) is defined asi(f(p),a), Property 2 is satisfied
for the statep.

Therefore, assuming thak is anti-factorial, it remains to
check that the instructions implement the definitioriZdfF).

|

Corollary 1: Let (7x)o<x<7—1 be the tries of a finite list
F of periodic forbidden words for the period. Algorithm
PERIODIC-AUTOMATON builds a deterministic automaton ac
cepting B°(F,T). It is also a presentation ok r,r after

We assume that the input data of our construction are
the periodT and the trie7 accepting a prefix-free set of
forbidden blocksF of S. The construction of a presentation
of S is composed of two steps. In the first step, we build
T tries T, 0 < k < T — 1, accepting finite setgg(¥)
such thatX(g ry = Sf . In the second step, we compute
a presentation ofSg . from the tries 7, acceptingG®).
Algorithm PerRIODIC-AUTOMATON of Section Ill performs
this second step.

We describe the first step for a two-letter alphabet=
{0, 1}, but the results carry over easily to larger alphabets. In
order to reduce the complexity of the construction, we sligh
change the set§(*) defined in Proposition 1 to avoid the
generation of allU-flips of words inF.

If L is a set of finite words, we caprefix part of L the
subsetl — LAY of L, whereA™ is the set of nonempty words
over A. Hence, the prefix part of, is obtained fromL by
removing the words that have a strict prefix initself.

If k& ¢ U, we defineG*) as the set of words obtained by
setting all symbols at positions with i + £k mod T € U, to
1 in the words ofF, and by keeping the prefix part of this
set. If k € U, G is obtained by adding the word to the
removing the sink states, _above definec_i set, alld by keeping again only its prefix part. It

Proof: Now F is no longer anti-factorial. We keep the'S 8asy 10 verify thabiy = X(g,r). The result s a collection
. . .., of prefix-free sets but it may not be an anti-factorial cdilew.
lines 3 and 11 of the code of the algorithm. The algonthr% P y o !
Example 2 The RLL (2,7)-constraint is defined by the set

gt lnes 3250, 3cand 4 b1k s ety LS o (1101 o) ort v
property ' ’ U = {1} we have to construct three sef§®), for & = 0,1

F is not anti-factorial, it builds a new anti-factorial caitéon and2

F' with B(F,T) = B°(F',T), by eliminating the wordsy : . . y
n a set]—‘(ig that)have étrict f?’:lctgra “w ing]-‘("ﬂ mod T) First, for every word ofF, we flip the symbol$ in positions
J " ¢ such thati + £k mod T' € U. Hence, fork = 0, we

get the words{11,111,01001001}, for £k = 1 the words
{11,101, 10010010}, and for k = 2 the words {11,101,
00100100}. The setsG(*) are obtained by taking the prefix
part of the sets above, and by adding the wotd thoseG*)
such thatt mod 7" € U. We obtain

Proposition 6: If transition functions are implemented by
transition matrices, algorithme®RIODIC-AUTOMATON runs in
time O((2,, [Qx]) x [A]) on inputZi = (Qx, A, ix, Fi, o),
for0<k<T-1.

Proof: If transition functionsd,, and$ are implemented

by transition matrices, access to or definition &fp,a) or G = {11,01001001},

d(p,a) (p state,a € A) are realized in constant amount of ¢® = {0,11,101, 10010010}

time. The result follows immediately. [ | o ’
y G® = {11,101,00100100}.

IV. PRESENTATION OF FINITEMEMORY SYSTEMS WITH
UNCONSTRAINED POSITIONS Example 3 The constrained system MTR) is defined by

In this section, we use results from Sections Il and 11l te Set of forbidden blockg = {1111}. ForT = 3, U = {1},

derive an algorithm for constructing presentation of a dinit & obtain
memory system with unconstrained positions from a finite G 1111},
list of forbidden words characterizing the constraint. Shi 1
o : e M = {0,1111}
construction is an alternative to the construction giveifi3i @ ’ ’
Let S be a finite-memory system (or finite type shift), g = {111}
T a period andU a set of unconstrained positions. L&t



We will use the following operation on tries accepting prefixlarger than the size of the input trie.

free sets of words. If7 and 7’ are two tries accepting The second step of the construction uses
prefix-free sets of wordd. and L’ respectively, we denote Algorithm PERIODIC-AUTOMATON of Section III for

by PREFIX-FREE-UNION(7,7") a procedure that computes acomputing a presentation of; - from tries 7, accepting sets
trie accepting the prefix part df U L'. G™*) such thatXg 4 = S{ . The output is an automaton
A=(Q,A,i,Q\ F,o) acceptingSy 7. If the sink statesife.
states off") are removed, one gets a presentation of the shift

PREFIX-FREE-UNION (tries 7 = (Q, A, 1, F, ),
T/ — (Q/7A77:/7F/76/))

1. if one of the tries is emptyeturn the other trie Sf},T-

2. if one of the tries is reduced to a final stagturn this trie We now evaluate the overall time-complexity of the process
3. let!(7), (resp.l(7")) be the subtrie rooted dt(:, 0) and compare it with the time-complexity of the construction
(respectivelyd (i, 0)) _ _ given in [3]. Algorithm RERIODIC-AUTOMATON runs on tries

4. éfé;"éggmglef;zf (17)))) be the subtrie rooted ai(i, 1) i, in time O((X,. |7x]) x |A]). Since| 75| < |T], itis O(T x

5. (such a sugtrie is empty if the transition does not existy| |7 | |4[). Then the overall time-complexity for the input data
6. setd(i,0) = PREFIX-FREEUNION(I(T),1(T")) T and a trie7 accepting a prefix-free set of forbidden blocks
7. setd(i, 1) = PREFIX-FREE-UNION(r(T),r(7")) of S, is O(T x |A| x |T|log|T|). It becomes linear for linear
8. return the trie7. tries. The evaluation of the space complexity is similar and

givesO(T x |A] x |T]).
The construction of [3] enables the computation of a presen-
tation of S7; - from a presentation of finite-state constrained

The construction of the trie§, acceptingG*®) is then
performed through Algorithm BrIODIC-TRIES below.

PERIODIC-TRIES(trie T = (Q, A, i, F, §), integerT) systemS' in an exponential amount of time in general, and

1. makeT copies7; = (Qx, A, ik, Fr, d) of T in quadratic time with a particular condition, called thepga

2. for eachk € {0,...,T — 1} condition (see [3, pp. 875]). Although our algorithm is poly

3. for each statg of 7, at distanced from i nomial and that given in [3] is exponential, the two algarith

g: (fozf'r(‘ztingin'g daj?cétth;an dc;gr(;ge%k compute similar presentations. But the input data are riffe

6. let/(75,), (resp.r(7x)) be the subtrie rooted In particular, the minimal set of forbidden words of a finite-
by 6% (p, 0) (resp.dx(p, 1)), eventually empty memory system can be computed in quadratic-time (see [6])
if the transition does not exist from a deterministic presentation of the system when this

7. removed (p, 0), if it exists presentation has a unique initial state. If the system isrgby

g: if ke Usgaét%ip(yii)o:) anEef/l/X-siFanE;;tgl.oN(Z(T’“)’ r(Te)) a deterministic presen_tation wher_e all states are iniveth Q

10. return the triesT;, states and memory/, it can take in the worst case(|A|)

— amount of time to compute a deterministic presentation that
Proposition 7: Algorithm PERIODIC-TRIES runs in time has a unique initial state. Thus the complexities of the two
O(|Q|log |Q] x T x |A]) on the input trie7 = (Q, A,i, F,5) algorithms cannot be compared directly and one can choose

and the input period’. one or the other depending on the way the constraint is defined
Proof: ~The procedure REFIX-FREE-UNION(7 = Some constraints may be naturally defined by a list of
(Q,A,i,F96), T = (Q,A, i, F',§')) runs in time forbidden blocks. For instance, an MTR constraint is defined

O(min(|Q|,|Q'])). If p is a state of the trie7, we de- by a single forbidden block. The RLLd, k)-constraint is
note by ((p) the (eventually empty) left subtrie of, i.e. defined byd forbidden blocks of length at most+ 1 and
the subtrie rooted byi(p,0). Similarly, we denote byr(p) one block of lengthk + 1. With (d, k) = (2,7) one gets the
the (eventually empty) right subtrie gf. Thus Algorithm forbidden blockg{11, 101,00000000}. A trie accepting a finite
PERIODIC-TRIES(T = (Q,A,4,F,d)) runs in timeO(T x set is built in time linear in the sum of the lengths of the
|A] x > cqomin({(p)], [r(p)]). We now evaluate the sumwords of the set. In the particular case of the set of forbidde
s =Y ,comin(|l(p)], |r(p)]). We say that a subtrie of a stateplocks of the(d, k)-constraint, the trie is built in time linear
p is small if it has the smallest size among the two subtriés d + £, i.e. sinced < k, in time O(k) from the inputsd and
children of p. Then each state belongs to at mast, |Q| k. Moreover the trie has a size that is al9gk). Indeed, the
small subtries. It follows that < |Q| log, |Q|- B trie has the particular linear structure described in Fagdr
We mention that other simplifications may be added in the follows that Algorithm RERIODIC-AUTOMATON runs in
procedure BRIODIC-TRIES. For instance, if we are interestedtime O(k) on this input trie. Indeed, in the analysis of the
in computing bi-infinite words or right-infinite words, amwd  complexity in the proof of Proposition %,= O(|Q|) = O(k).
words 0 and ul accepted by a trie may be removed an@rhus our algorithm works linearly on the MTR constraintsjan
replaced byu. Indeed, in the case of infinite words, 40 on the RLL constraints. An efficient algorithm for the MTR
andul are forbidden in a positior, thenw is also forbidden. constraints is also given in [3]. Figure 5 displays an exampl
Nevertheless, this simplification does not reduce the diverfor the constraint MTRY). The presentation can be minimized
asymptotic complexity of the process. with standard methods [9]. It leads to the minimal preséotat
Note that, if one considersA| and T' as constants, the displayed in Figure 6.
|Q| log | Q] time-complexity obtained in Proposition 7 becomes A condition similar to the gap condition of [3, pp. 875]
linear in|Q| when the input trie7” is linear,i.e. accepts a single can be stated as follows. We assume that there is at most one
word. Note also that each output periodic trie has a size nmiconstrained position if0,..., M — 1}, where M is the



k+1

Fig. 4. The trie of the RLL(d, k)-constraint. Fig. 6. The Shannon cover &7, . for S = MTR(3), T' =3, U = {1}. It
is the minimal presentation of that of Figure 5.

maximal length of a minimal forbidden word of the system.

If this condition is satisfied, the complexity of our algarit In the sequel, we fix a positive integ@r as period. Ify is
becomes lineai,e., O(T x |A| x |T|). a finite word we denote bguft™® (y), for 0 < k < T — 1,
the set of suffixes of) beginning at a position of equal to
k moduloT. Thus,

Suff® (y) = {y[i..|y| — 1] | i = k mod T}.

We denote byFact*) (y) the set of prefixes dbuff*) (y), that
is, the set of factors af that occur iny at positionst modulo
T. In this section, we also denote B *)(y) the set of finite
blocks that are not factors gfat a positionk modulo7". Thus
F®)(y) = A* — Fact® (y).

The collection of minimal periodic forbidden words gffor
a periodT is defined as the finite collection of setd F* (y),
with 0 < k <T — 1, where

MFHE () = FO(y) - FB (At — (AT)TFE (y)A*

T-1
Fig. 5. A presentation ofg .. for S = MTR(3), T = 3,U = {1}. It is - U (AT)* AP Flhtimod T) () A%
obtained b;/ Algorithm BRIODIC-AUTOMATON on the input tries accepting i=1
the setg5(®) = {1111}, ¢ = {0,1111}, 6@ = {1111}. States in phase
0, 1, and2 are colored in white, light gray, and gray respectively. Thus, the above collectiolM}‘(’“) (y) is periodic and anti-

factorial. It is minimal in the following sense: if € () (y),
then v has a factor at some position that belongs to
V. PERIODIC FORBIDDEN WORDS OF A SINGLE FINITE ~ MFkFimed D) (y), and any other collection of finite sets of
WORD blocks G(¥) satisfying this condition verifies\iF*) (y) C
Repetitions, and especially consecutive repetitions; pta 9" - Although this notion of minimality refers to a finite word
important role in the analysis of molecular biology sequesnc ¥ 1t 1S similar to the notion of periodic first offenders defthe
Some of them are even related to known deseases. From ] for constrained systems.
point of view it is interesting to consider periodic forbield W€ now give a simpler expression of the et (y) used
words according to a single word. This may be used {8 derive the next algorithm. i o o
discover combinatorial properties of the sequence andiigen _Proposition 8: The setM]—“ '(y) of minimal periodic for-
subsequence motifs either in coding regions and in “jurfdden words ofy for a periodT" satisfies

DNA”, :_;md the_n to derive statistical features on them._ MF®) (y) = (AFactU+L mod T) ()
In this section, we study the problem of computing the ) . ) (1)
minimal periodic forbidden words of a given finite word. The N (Fact™ (y)A) N (A" — Fact™ (y)).

problem of computing the minimal (non periodic) forbidden  Proof: Let u be a block of (A Fact® ! med ) (y)) n
words of a single word has been solved in linear tim&act™ (y)4) N (A* — Fact®¥)(y)). Thenu € F®(y).
in [7], see also [10, section 6.5 pp. 212]. We extend hefinceu € Fact™)(y)A4, thenu ¢ F*)(y)A*. Sinceu €
the algorithm presented in [7] to the periodic case. The sdtFact™ 1 ™4 D) (y), thenu € A’ Fact™ ™47 (y) for
of minimal forbidden words in a phase of a wordy, with 1 < i < |u|. Henceu ¢ (AT)*F®)(y)A*, andu does not
0 < k < T—1, is the set of finite blockss that never appear at belong tol ;' (AT )* A?F(k+i med T) () A* either.

a positionk mod T of y, and such that there is no strict factor Conversely, letu be a block of MF®) (y). Thenwu €
w' of w with w' <; w appearing at a positioh + i mod T F*)(y). If u ¢ Fact¥)(y)A, thenu = va, with a € A, and
of y. v e F®(y). Henceu € Fact™™ (y)A. Let us now assume



thatu ¢ AFact*+1medT) () Thenwu = av, with a € A suffix path are the final states of the automaton.
andv € FktlmedT)(1) Theny has a factor at position

: k+1+i mod T : . PERIODIC-SUFFIX-AUTOMATON (word v, periodT
belonging toMF++1+ T71)(y%' This (ck?rntragl%s the fact | "N 00 Sy it 7(2 2112 )
thatu does not belong th);_; (A™)* A"F* T med ) (y) A*U 2. create an initial state
(ATt F#) () A*. Hence MF®) (y) satisfies (1). n 3. sets(0) = —T
We now describe an algorithm for computing the collection 4 letp =0
MF®(y). The design of the algorithm is based on (1). A > ™" frmethEoNgL);é do_)
preliminary step of the algorithm consists in computing; fo| 7 |et fp:_p 4
any 0 < k < T — 1, a minimal deterministic automaton| 8. while 7> 0 do
acceptingSuff®) (y). This operation can be performed in time| 9. setf final
O(T x |y| x log|A|). 10. setf = s(f) _

First, the computation of a minimal deterministic autonmato 11. retum automaton(@, 4,0, £, {final})

acceptingSuff ¥ (y) is reduced to the computation of a mini-
mal deterministic automaton acceptifigff® (y[k . . |y| — 1]).

Hence, we will assume, without loss of generality, that

0. The computation of a minimal deterministic automaton
acceptingSuff(”) (y) is an extension of the known computatior]
of the minimal automaton of the suffixes of a word, also calle
the directed acyclic word graph (DAWG) of a word (see for
instance [11], [12] or [10, section 5.4 pp. 179-192]).

The states of this automaton are the equivalence classed- €lse
of the syntactic congruence associated with the Ianguagéo' lets = 6(r, a)

EXTENSION (statep, lettera)

create a new statg

create a new solid transitiap, a, q)

letr = s(p)

while » > 0 and there is no transitior going out ofr do
create a weak transitiofr, a, q)
setr = s(r)

if r<0
sets(q) =r+1

o
bo~NorwNE

. _ 1. if the transition(r, a, s) is solid
Suff*)(y) defined as follows: ifu € Fact(y), we denote by | 15 ! ieg(nqs)l :I’L(r a, 5) is soli
F,(u) thefutureof u relative toSuff”) (y). ThusF, (u) = {v| | 13.  else
uv € Suff®(y)}. Note thatF,(y) is reduced to the empty | 14. sets(q) = SPLIT(r, a, s)

word, and thatF, (u) is the empty set i ¢ Fact®) (y). The | 15 "€tum ¢
wordsu andv are equivalent if and only), (u) = F,(v).

SPLIT (statep, lettera, stateq)

Moreover, the automaton has a transition labelled isom 1. create a new staig
the class of a word: to the class ofua. If u € Fact(y), we 2. for each transitior(q, a, )
define its images(u) by the suffix functions as the longest create a weak transitiofy’, a, ) _
suffix v of u in Suff® () such thatF,(v) # F,(u). In this | 3. change the (weak) transitidp, a, g) into a solid
case,F,(u) C F,(v). transition (p, a, ¢')

A o . 4. sets(q') = s(q)

It can be shown that if is a state representing a class of 5 sets(q) = ¢/
congruent factors of, and if u belongs to this class, a#l(u) 6. lett = s(p)
belong to the same class of the congruence. Thus, one ¢ary. while ¢t > 0 and the transition(/t,a, q) is weakdo
define thesuffix link of the statep, denoted bys(p), as the | 8- change(t,a,q) into (t,a,q’)
class ofs(u) 9.  sett=s(t)

' 10. return ¢’

In the description below, deterministic automata are deshot
by (Q, A4, F,d), whereQ is the set of states) the alphabet,  Proposition 9: Algorithm PERIODIC-SUFFIX-
i the initial statey the partial transition function, anfl the set AUTOMATON computes the minimal deterministic automaton
of final states. A transition labelled by from p to ¢ is also acceptingSuff”) (y) for a given periodr".
denoted by the edgép, a,q). The algorithm generating the Proof: The proof is an extension to the periodic case
minimal automaton acceptir@uff(m(y) is described in Pro- of the correctness proof of the computation of the minimal
cedure BRIODIC-SUFFIX-AUTOMATON. It is an incremental deterministic automaton accepting the set of all suffixeg of
algorithm that computes successively a minimal automat{see [10, section 5.4 pp. 179-192]). We omit the proof but we
acceptingSuff®) (y[0 . . i]), for i going fromo to |y| — 1. This mention below the main differences needed to take the period
procedure calls procedurexEENSION and $LIT. Procedure into account. Ifp is a state such thdip) < T, the suffix
EXTENSION performs the transformations needed to get link s(p) is the dummy state-T" + i(p). Let us assume that
minimal automaton acceptirgnft*) (5[0 . . i]) from a minimal we are at steq, lines 5-6 of Procedure ERIODIC-SUFFIX-
automaton acceptinguff”) (y[0..i—1]). Some dummy states AUTOMATON(y, T'). Let us denotey[0..i — 1] by w. Let r
are added during the construction. The suffix link is not defin be the state obtained at the end of the loop in lines 4-6 of
for these dummy states. The transitions belonging to sorReocedure ETENSION(p,a). If r is a dummy state, for any
longest path from the initial state to some other state dtecta word u in Suff® (w), either £, (u) = F,,(w) = {¢} or ua ¢
solid while the others are calledeak If p is a state of the Fact'® (w). n
automaton, the sequence of stapes(p), s(s(p)), . .. is finite Proposition 10: The size of the minimal automaton accept-
and ends with a dummy state. This sequence is callesfiix ing Suff® (y) for a given periodT is linear in the size of
path of p. If p is the class ofy, the non-dummy states of itsy. Algorithm PERIODIC-SUFFIX-AUTOMATON runs in time
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linear in the size ofy.
Proof: The proof is similar to the proof in the aper|od|c

case [10, section 5.4 pp. 192]. @ @
Making all states flnal in the minimal determ|n|st|c au-

tomaton acceptinguff*) (1) gives a deterministic automaton
acceptingFact*) (y). Note that this new automaton may not
be the minimal one. An example is given in Figure 7.

We now describe the second step of the algorithm. We . -77~
denote byAy, = (Qx, 4, ix, Qr, o) a deterministic automaton @ @
acceptingFact® (), that is the set of blocks, factors of
y, beginning at a position equal to modulo 7. From the
automatady, the algorithm outputs the tri€g, accepting the
sets MF*)(y). An example of this computation is described
in Figure 8.

PERIODIC-MF-TRIES ( factor automata Eig-t (71-)( )E;:tsergitf_“ztlic a!JtLO?;?;ta‘lgr_ :;d A; :rlcgeptiﬂgliacbt(? éz)safrf\_d
— ; i ac Y/ , WI | = = abbao. UTTixX

1 ]fg’; e_agﬁs ’GAI’;’C’ Fi, 0k))osk<r-1, integerT) links areyrepregented )tlay dashed I;dges. Y

2 if 0x(ix,a) defined

3. set&(ik, ) = (Sk(lk, a)

4, Setf( (Zlm )) = ik+1 mod T

5 else

6. setd(ix,a) = new sink

7. for each state € Qy in width-first search fromJ,{ix }

and eacha € A

8 if 0x(p,a) undefinedand dx+1 moa 7(f(p), a) defined
9. setd(p,a) = new sink

10. else ifdx(p,a) = q and ¢ not already reached

11. setd(p,a) =

12. setf(4(p, )) 6(f(p),a)

13. return ( k= (Qk,A Tk {Slnks},é))ongT,l;

Proposition 11: Algorithm PERIODIC-MF-TRIES
computes from the automatad;, accepting Fact®™ (y)
the set of tries accepting the minimal periodic forbidden
words ofy.
Proof: Again, the proof is an extension of the correctness
proof of the computation of the minimal forbidden words ole

Output tries7y and 7; of Algorithm PeERIoDIC-MF-TRIES for
a word from the factor automaton af (see [10, section 6.5 the |nput tries Ao and A; described in Flgure 7. The sink states are

pp. 182] or [7)). m double circled. The triefy and 73 a(?cept./\/l}' )(y) = {c,aa,bb} and
Proposition 12: Algorithm PerIODIC-SUFFIX- M7 () = {e,ba, aa, aba} respectively.
AUTOMATON followed by algorithm RRiIODIC-MF-TRIES
runs in timeO(|y| x T x log|A]).
Proof: The complexity is straightforward. [ ]

[8] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi, tdaompres-
sion using antidictionaries,” ifProceedings of the |IEEE Lossless Data
CompressionJ. Storer, Ed., 2000, pp. 1756-1768.
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