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Abstract. - Despite the quantum nature of the process, collective scattering by dense cold
samples of two-level atoms can be interpreted classically describing the sample as a macroscopic
object with a complex refractive index. We demonstrate that resonances in Mie theory can be
easily observable in the cooperative scattering by tuning the frequency of the incident laser field or
the atomic number. The solution of the scattering problem is obtained for spherical atomic clouds
who have the parabolic density characteristic of BECs, and the cooperative radiation pressure
force calculated exhibits resonances in the cloud displacement for dense clouds. At odds from
uniform clouds which show a complex structure including narrow peaks, these densities show
resonances, yet only under the form of quite regular and contrasted oscillations.

Introduction. – Mie theory is the well-known solu-
tion of Maxwell’s equations for the scattering of electro-
magnetic radiation by spherical objects [1,2]. Via calcula-
tion of the electric and magnetic fields inside and outside
the object the theory predicts the total optical cross sec-
tion, which determines the amount of scattered light, and
the form factor, which characterizes the far-field radiation
pattern [3, 4]. Simple solutions are available in regimes
where the object size R differs very much from the radi-
ation wavelength λ, or when the refractive index m is far
from the vacuum one. For example, for small phase-shifts
|m−1|R/λ≪ 1 in optically dilute media |m−1| ≪ 1, one
enters the Rayleigh-Debye-Gans regime whereas for small
particles and small phase-shifts, one obtains Rayleigh scat-
tering by point-like objects.

For objects whose size is of the order of the radiation
wavelength (e.g. water droplets in the atmosphere or in
emulsions), Mie’s full theory has to be used to find the
scattering pattern. Mie scattering differs from Rayleigh
scattering in several respects. While the intensity of
Rayleigh-scattered radiation scales with the object size as
R6 and is identical in forward and backward direction, the
intensity of Mie-scattered radiation is roughly independent
of wavelength, and it is larger in forward than in backward
direction. The greater the particle size, the more light is
Mie-scattered into forward direction. The hallmark of Mie

scattering, however, are the Mie resonances: those are sets
of parameters (size, refraction index, wavelength), where
Mie scattering is particularly strong or particularly weak.
The sharpness of some Mie resonances make them useful
for measuring unknown parameters such as particles’ size.

Recently, a series of papers demonstrated how collec-
tivities of point-like Rayleigh-scattering particles may co-
operate [5–10] in scattering radiation into the forward di-
rection and the relationship to Mie scattering was pointed
out [11, 12]. Here, we show that the theory of collective
scattering by smooth distributions of point-like scatterers
is equivalent to Mie scattering by demonstrating that the
premisses of both models are identical. Hence, we may ap-
ply the Mie scattering technique to atomic clouds as long
as their granularity, as well as collisions and nonresonant
atomic interactions, can be neglected.

In Mie theory, boundary conditions of the scattering
object assume a fundamental role: these are generally
sharp since dielectric spheres typically have homogeneous
densities, while atomic clouds, in general, have parabolic
or Gaussian density distributions and smooth boundaries.
Within the framework of the Mie theory, we compare cal-
culations for homogeneous and parabolic densities, and
identify the impact of sharp or smooth boundaries on the
occurrence and shape of Mie resonances. Our study re-
veal that some resonances will persist, although not the
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sharpest: this means that a jump in the refractive index
is not required, as one could expect from classical cavi-
ties where smooth gradients of index also allow for mode
propagation and selection (e.g. graded-index fibers).
Finally, we predict experimental regimes where reso-

nances in Mie scattering can be observed in atomic clouds
by monitoring the radiation pressure force acting on the
cloud’s center-of-mass. To this aim, we calculate the res-
onances as a function of atom number and pump laser
detuning. A major advantage of using resonant atoms as
scatters is that the refraction index can be varied over
very large ranges by changing the cloud’s density and vol-
ume, or simply by tuning the light frequency. This greatly
facilitates the detection of the resonances.
In this Letter, we first show the equivalence of the co-

operative scattering by two-level atoms and the Mie scat-
tering, assuming a scalar photon model and reducing the
scattering equation for excitation probability amplitude to
a differential Helmholtz equation with complex refraction
index. Then, we solve the Mie problem and calculate the
radiation pressure force, before discussing the presence of
Mie resonances in spherical clouds with parabolic densi-
ties. Finally, we draw our conclusions.

From collective atomic scattering to Mie scat-

tering. – In his seminal paper [1], Gustav Mie proposed
an analytical solution to the scattering of light over ex-
tended objects under the form of infinite series. This
theory was originally developed for homogeneous media
of refractive index m0, in which the elementary solu-
tions to the wave equation are known to be of the form
ψnl = jn(m0k0r)Ynl(θ, ϕ) (where jn is the spherical Bessel
function, and Ynl the spherical harmonics), while outside
they simply read jn(k0r)Ynl(θ, ϕ). The continuity of the
fields at the boundaries eventually determines the scatter-
ing coefficient for each (n, l) mode.
On the other hand, the cooperative scattering by a sam-

ple of N two-level atoms (with random position rj , transi-
tion frequency ωa and linewidth Γ = d2ω3

a/2πh̄ǫ0c
3, where

d is the electric dipole matrix element), illuminated by a
resonant uniform field is described by the following cou-
pled equations [7–9]

dβj
dt

=

(

i∆0 −
Γ

2

)

βj −
i

2

d

h̄
Ei(rj) (1)

−Γ

2

∑

m 6=j

exp(ik0|rj − rm|)
ik0|rj − rm| βm,

where j = 1, . . . , N and βj is the probability amplitude of
excitation of the jth atom, Ei(r) = E0e

ik0·r is the electric
field of the incident laser and ∆0 = ω0 − ωa its detuning
with respect to the atomic transition, where ω0 = ck0. In
this approach, short-range dipole terms and polarization
effects are neglected [13]. Neglecting granularity effects,
the cloud can be described by a continuous field β(r, t),
whose steady-state regime is given by

eik0·r = (2δ + i) β̃(r) (2)

+

∫

dr′ρ(r′)
exp(ik0|r− r′|)

k0|r− r′| β̃(r′),

where ρ(r) is the atomic density, δ = ∆0/Γ and we have
set

β(r) =
dE0

h̄Γ
β̃(r). (3)

Let us remark that the kernel of Eq.(2) is the Green func-
tion for the Helmholtz equation, that is

(∇2 + k20)
exp(ik0|r− r′|)

|r− r′| = −4πδ(r− r′) (4)

and that (∇2+k20) exp(ik0 · r) = 0. Then, applying (∇2+
k20) on Eq.(2), we obtain that β̃(r) satisfies the Helmholtz
equation [14, 15]

[∇2 + k20m
2(r)]β̃(r) = 0, (5)

where m(r), the cloud refractive index, is given by

m2(r) = 1− 4πρ(r)

k30 (2δ + i)
. (6)

Hence, the cloud of cold atoms acts on the light as a “clas-
sical” medium of index m(r), whose imaginary part origi-
nates in the single-atom decay term [16]: it is here respon-
sible for the absorbing nature of the cloud, and vanishes
only in the limit of far-detuned incident laser.
For a cloud with spherical symmetry m(r), the so-

lutions of the wave equation can be decomposed along
the orthogonal basis of the spherical harmonics [4] as
∑∞

n=0

∑n
s=−n un(r)Yns(θ, ϕ) where the radial modes un

satisfy

u′′n(r) + 2
u′n(r)

r
+

[

m2(r) − n(n+ 1)

r2

]

un = 0. (7)

We focus on the axi-symmetric problem, where only the
s = 0 modes are relevant, and the solution write

β̃(r) =
√
4π

∞
∑

n=0

√
2n+ 1inβnun(r)Yn0(r̂). (8)

where r̂ is a unit vector in the direction of r. As for the
incident wave, it decomposes as

exp(ik0 · r) =
√
4π

∞
∑

n=0

√
2n+ 1injn(k0r)Yn0(r̂). (9)

Since the exponential kernel is diagonal in the basis of the
spherical harmonics

exp(ik0|r− r′|)
k0|r− r′| = 4πi

∞
∑

n=0

n
∑

s=−n

Yns(r̂)Y
∗
ns(r̂

′)

×
{

jn(k0r
′)h

(1)
n (k0r) for r > r′

jn(k0r)h
(1)
n (k0r

′) for r ≤ r′
, (10)
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where h
(1)
n (z) are the spherical Hankel functions. We then

introduce fn(r) such that
∫

dr′ρ(r′)
exp(i|r− r′|)
k0|r− r′| un(r

′)Yn0(r̂
′) = fn(r)Yn0(r̂).

(11)
so that, assuming ρ(r) = 0 for r > R

fn(R) = 4πih(1)n (k0R)

∫ R

0

ρ(r′)r′2un(r
′)jn(k0r

′)dr′.

(12)
Then, the projection of Eq.(2) on mode n leads to

jn(k0r) = (2δ + i)βnun(r) + βnfn(r). (13)

Using Eq.(12) and defining

λn = 4π

∫ R

0

ρ(r)r2un(r)jn(k0r)dr (14)

we obtain

βn =
jn(k0R)

(2δ + i)un(R) + iλnh
(1)
n (k0R)

. (15)

Thus, the exact solution to the scattering problem is ob-
tained under the form of infinite series over the spherical
modes, as is reminiscent of Mie’s solution [1,4]. In the lat-
ter approach, the coefficients of scattering for each mode
are determined by using the continuity of the tangential
electric and magnetic fields, and of their derivatives, at
the cloud boundaries. In our problem, we considered a
scalar electric field only, and assuming it is orthoradial, it
reads [9]

Es(r) = − dk20
4πǫ0

∫

dr′ρ(r′)
exp(ik0|r− r′|)

|r− r′| β(r′). (16)

Now, the electric field expresses in two different ways in-
side (r < R) and outside (r ≥ R) the cloud

E(out)
s (r) =

E0

2i

∞
∑

n=0

(2n+ 1)inβnλnh
(1)
n (k0r)Pn(cos θ)(17)

E(in)
s (r) =

E0

2i

∞
∑

n=0

(2n+ 1)inβnPn(cos θ)4π

×
[

(
∫ r

0

dr′r′2un(r
′)jn(k0r

′)

)

h(1)n (k0r)

+

(

∫ R

r

dr′r′2un(r
′)h(1)n (k0r

′)

)

jn(k0r)

]

.(18)

A straightforward calculation shows that Es(r) and
∂Es(r)/∂r as given by eqs.(17) and (18) are continuous
at the cloud boundary r = R. This allows to conclude
that our solution is the same as the one proposed by Mie,
although we did not make a direct use of continuity hy-
potheses for the electromagnetic fields. Let us also remark
that our solution holds for any radial solution un(r) of the
Helmholtz equation, i.e. it applies to any spherical cloud
with finite boundary at r = R.

Mie resonances in nonuniform resonant media.

– The treatment of scattering in nonuniform media is
difficult due to the lack of explicit solutions to the wave
equation in that case, so numerical approaches are the
most common to tackle with this problem [4]. We shall
here treat the case of homogeneous samples, and of those
with a quadratic dependence of the atomic density over
the radius.
In the first case, the atomic density of a cloud of ra-

dius R is ρ0 = 3N/4πR3, whereas its refractive index
is constant m0 =

√

1− 3N/[(k0R)3(2δ + i)] and the so-
lution of the wave equation inside the cloud is simply
un(r) = jn(k0m0r). Thanks to properties of the Bessel
functions [17], λn can be calculated explicitely as

λn = (2δ + i)(k0R)
2[m0jn−1(k0m0R)jn(k0R)

−jn−1(k0R)jn(k0m0R)] (19)

As for clouds of size R, with a parabolic density ρ(r) =
(5N/2V )[1 − r2/R2] and volume V = 4πR3/3, their
spatially-dependent refraction index reads

m2
q(r) = m2

c + γ2r2, (20)

with mc =
√

1− (15/2)N/[(k0R)3(2δ + i)] the index in
the core of the sample, and γ2 = (15/2)N/[(k0R)

5(2δ+i)].
Remark that when k0R → ∞, but at constant central den-
sity N/V and at fixed r, Eq.(7) tends toward the equation
for the spherical Bessel function jn(k0mcr): the homoge-
neous medium limit is then recovered, as expected since
the center of the cloud is then locally homogeneous. Using
the substitution [19] un(r) = r−3/2wn(x), with x = γr2/2,
we obtain a Coulomb wave equation for wn(x), well known
in nuclear physics [20]

w′′
n(x) +

[

1 +
m2

c

2γx
−
(

n(n+ 1)

4
− 3

16

)

1

x2

]

wn(x) = 0.

(21)
Its solutions are the so-called Coulomb wave functions [21]
Fn/2−1/4(−m2

c/4γ, x). The irregular Coulomb wave func-
tion G is discarded because of its 1/r divergence at the
origin, just as the spherical Hankel function is discarded
to describe the field inside homogeneous media. Thus, we
get the following solution for the radial component of the
field

un(r) =
1

r3/2
Fn

2
− 1

4

(

−m
2
c

4γ
,
γr2

2

)

. (22)

Let us introduce the structure factor s(k) = s(θ, ϕ) for a
direction k = k0(sin θ cosϕ, sin θ sinϕ, cos θ), defined as

s(k) =
1

N

∫

dr′ρ(r′)β̃(r′)e−ik·r′ . (23)

After integration over space, it turns into

s(k) =
∞
∑

n=0

(2n+ 1)βnλnPn(cos θ), (24)
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where we have made use of
∫ 2π

0

dϕ′ sinϕ′e−i(a cosϕ′+b sinϕ′) = 2πJ0

(

√

a2 + b2
)

∫ 1

−1

dy J0(r
′ sin θ

√

1− y2)Pn(y)e
−iyr′ cos θdy

= 2i−njn(r
′)Pn(cos θ). (25)

Then, in the far-field limit (r ≫ R), the scattered intensity
simply reads

Iscat(r, θ, ϕ) =
E2

0

4(k0r)2
|s(θ, ϕ)|2. (26)

Using the analytic expressions obtained for the homoge-
neous and the parabolic density, we now turn to studying
the resonances in Mie scattering for atomic clouds. Sim-
ulations of the intensity scattered along the illuminating
axis reveal that homogeneous samples exhibit some spiky
irregular structures, whereas inhomogeneous (parabolic)
samples are characterized by more regular oscillations (see
Fig.1). This suggests not only that the Mie resonances
do not only originate in the sharp boundaries of homoge-
neous obstacles, but on the contrary that they may even
be easier to observe in media with smooth densities. Ac-
tually, the numerous spikes in homogeneous media can be
interpreted as “whispering gallery modes” [22–24], that
propagate along the surface of the cloud, within a local
minimum of the effective radial potential created by the
jump of the medium’s index. On the other hand, assim-
ilating the cloud to a cavity, one can interpret the regu-
lar oscillations as cavity modes which survive despite the
smoothening of the boundaries of the potential. Thus, the
smoothening of the index leads to the disappearance of
the local minimum for the effective potential, and of the
whispering gallery modes as a consequence.
Finally, the simulations confirm that the theory for con-

tinuous media is in good agreements with N -body samples
(see Fig.1), although discrepancies appear for smaller val-
ues of detuning, and thus larger refractive index. How-
ever, simulations where N is tuned reveal that this effect
is due to the small number of particles that one can con-
sider numerically: since finding the stationary solution of
(1) requires the inversion of a N × N matrix problem,
simulations are typically limited to systems of at most
N ∼ 2.103 particles. Thus, the finite-N effects observed
in Fig.1 are expected to vanish for larger number of par-
ticles that one can typically find in a cold atomic cloud
(that is N = 105 − 107). More specifically, one can show
that N/σ2 ≫ 1 is required to neglect granularity [9, 10].
This highlights the relevance of the continuous approach to
model the scattering process of large-N clouds, on which
we shall now focus.

Mie resonances in cold atomic clouds. – One of
the effects of the light scattering by a cloud of cold atoms
is the displacement of its center-of-mass (e.g. measured
by time-of-flight imaging techniques [10, 12]) due to the

−10
3

−10
2

−10
1

10
−1

10
0

10
1

δ

|s
(θ

=
0)

|2

 

 

Quadratic density
Homogeneous density
N−body (homogeneous)

Fig. 1: Intensity scattered by the sample along the illumi-
nating axis for homogeneous (thin black line) and quadratic
(thick blue line) continuous densities, and for a N-atom homo-
geneous cloud with random atomic distribution (black dots).

Simulations realized for N = 2.103 and σr = k0
√

〈r2〉 = 1

(and thus σr =
√

3/5k0R for an homogeneous density, and

σr =
√

3/7k0R for a quadratic one).

radiation pressure force, which can be interpreted micro-
scopically by a sequence of absorption and spontaneous
emission cycles. More specifically, the atom absorbs a
laser photon with k = k0ẑ and re-emits it in a direction
k = k0(sin θ cosϕ, sin θ sinϕ, cos θ). The resulting radia-
tion pressure force reads [9]

Fz = −h̄k0
Ω2

0

Γ
Im(s(k0))−

h̄k0Ω
2
0N

8πΓ

∫

dk cos θ|s(k)|2

(27)
where Ω0 = dE0/h̄ is the Rabi frequency of the incident
field. In the framework of Mie scattering, the absorption
part of the force reads

F (a)
z = −h̄k0

Ω2
0

ΓN

∞
∑

n=0

(2n+ 1)Im(λnβn). (28)

As for the emission part, using the orthogonality of Leg-
endre polynomials, as well as the relation

∫ 1

−1

xPn(x)Pn′ (x)dx = 2
(nδn,n′+1 + n′δn′,n+1)

(2n+ 1)(2n′ + 1)
, (29)

it reads

F (e)
z = −h̄k0

2Ω2
0

ΓN

∞
∑

n=0

(n+ 1)Re(λnλ
∗
n+1βnβ

∗
n+1). (30)

These analytical expressions then allow to investigate
numerically the presence of resonances in Mie theory
in large-N samples [10, 18], such as those produced in
Tübingen [12], where clouds of size σr = k0

√

〈r2〉 ≈ 10
and N ∼ 106 were studied. The simulations reveal that
the radiation pressure force actually exhibits resonances
when the number of atoms N is tuned, at fixed detuning
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δ (see Fig.2a). Their contrast is significantly higher at
(negative) larger values of δ yet they require larger num-
ber of atoms. Plotting the force oscillations as a function
of the phase shift of on-axis light rays

φ = k0

∫

[Re(m(0, 0, z))− 1] dz (31)

makes clear that φ is the relevant variable to characterize
the resonances in clouds with quadratic densities, i.e. cav-
ity modes. Note that since the absorption and emission
forces compensate at small φ, Mie oscillations actually ap-
pear in the radiative force at values of φ higher than for
the scattered light (typically 4π). The period of these os-
cillations can be qualitatively retrieved using the formulae
for the homogeneous media (19). If one considers a large
cloud k0R ≫ 1, then jn(x) ≈ sin(x−nπ/2)/x (for x≫ 1)
leads to the approximate expression

λn ≈ 2δ + i

m0

[m0 + 1

2
sin((m0 − 1)k0R) (32)

+
m0 − 1

2
sin((m0 + 1)k0R− nπ)

]

, n2 < k0R.

This explains why the radiation pressure force will oscillate
with the value of the phase-shift (φ = 2Re(m0−1)k0R for
homogeneous clouds, and (4/3)Re(m0−1)k0R for samples
with quadratic densities). Note that in the case of a dilute
cloud such that |m0−1| ≪ 1 (yet |m0−1|k0R can be large),
one has φ ≈ −(2/3)b0δ/(4δ

2+1), which highlights the role
of the optical thickness [7]

b0 =
6π

k20

∫

ρ(0, 0, z)dz (33)

instead of the atomic density in the collective scatter-
ing problem [10]. Since optical resonances will emerge
for N/δσ2

r ∼ 1, the conditions for the observation reads
N > δσ2

r . Finally, remark that when the spatial density
N/σ3

r becomes significant, other effects such as near field
dipole dipole interactions have to be accounted for [11,13].

Here, due to the special role of the wavelength of the
illuminating laser on resonant atoms, the detuning δ can
also be used as a control parameter to generate Mie oscilla-
tions: at odds from dielectric droplets experiments where
it changes the effective size of the cloud klaserR, it here
modifies only the index of the cloud. Fig.3a depicts this
phenomenon when the incident wavelength is tuned, and
one recovers Mie oscillations in that case as well. As dis-
cussed previously, clouds with smooth (quadratic) densi-
ties exhibit more regular and more contrasted oscillations.
Remark that using δ as a control parameter, the curves
Fz(φ) or Iscat[θ = 0](φ) are extremely similar to those
where N is tuned (see Fig.2b), since only the refractive
index is important, and the phase-shift φ captures this
information.
Finally, we conclude by pointing out that the reso-

nances in Mie theory can be observed as well at posi-
tive detunings: As can be observed in Fig.3b, the scat-
tered intensity is rather symmetric in δ, which can for
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Fig. 2: (a) Radiation pressure force as a function of the number
of atoms N in the sample and for different detuning, namely
δ = −667 (black lines) and δ = −50 (blue lines). (b) Radiation
pressure force as a function of the phase-shift φ for δ = −667
(blue curves) and square of the structure factor |s(θ = 0)|2

(black curves), proportional to the far-field scattered light in
the forward direction. For both figures, the thin curves cor-
respond to homogeneous samples, the thick ones to quadratic
densities. Simulations realized for σr = 10.

example be understood by the fact that the phase-shift
φ ≈ −(2/3)b0δ/(4δ

2 + 1) is antisymmetric in δ (yet the
imaginary part of the refractive index is not, thus the dif-
ference in amplitudes). The symmetry decreases with δ,
when the refractive index deviates significantly from unity,
yet model (1) then loses its validity, and a more exhaustive
model is required to study the light scattering [13].

Conclusion. – We studied resonances in Mie theory
in resonant media with parabolic densities, a case most
appropriate for cold atomic clouds. It was shown that the
Mie oscillations were more regular in the case of smooth
(parabolic) densities, where only cavity modes survive,
and that they can be observed as well in the scattered
intensity as in the radiation pressure force, even though
for the lowest phase shifts the radiation pressure force is
a less sensitive measurement.

The parameters of Figs.2a and 3a correspond to the ex-
perimental case of [12], and it suggests that the resonances
can be detected in the available range of parameters. Note
that the main difference with this experiment is that the
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Fig. 3: (a) Radiation pressure force for a σr = 10 cloud as a
function of the detuning δ and for different numbers of parti-
cles, namely N = 106 (black line) and N = 105 (blue line).
The thin curves correspond to homogeneous samples, the thick
ones to quadratic densities. (b) Intensity scattered along the
illuminating axis |s(θ = 0)|2 (black thin curve) as a function
of the detuning, as well as real (plain blue line) and imagi-
nary (dash-dotted blue line) parts of refractive index m0 of the
cloud, for a cloud of size σr = 100 and homogeneously filled
with N = 2.106 particles.

cloud was then cigar-shaped, and the density assumed to
be Gaussian; yet parabolic densities are definitely more
realistic than homogeneous ones to describe the Gaussian
case.

Furthermore, the contrast of the resonances is connected
to the imaginary term of the cloud’s index (6), as discussed
in [15]. More specifically, the smaller the single-atom de-
cay term is (compared to the detuning), the larger the
contrast. Hence, large-N and far-detuned configurations
will generate sharper resonances, for they minimize the
single-atom decay contribution.

A more thorough treatment would of course require con-
sidering vectorial fields [15]. Nevertheless, simulations re-
veal that the scalar approach provides an accurate descrip-
tion of resonances in Mie scattering for large and dilute
atomic clouds.

Finally, we note that tuning the illuminating laser to-
ward the blue (δ > 0) can also allow for the observa-
tion of the resonances. However, when 4πρ/(2δk30) > 1,

the sample becomes strongly dissipative since Re(m2) be-
comes negative (see Eq.(6)): radiation trapping will then
emerge [25], that will damp the scattering process and
eclipse the resonances. The occurence of this phenomenon
in cold atomic clouds will be the object of future works.
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