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Data Compression Using Antidictionaries

M. Crochemore , F. Mignosi , A. Restivo , S. Salemi

Abstract— We give a new text compression scheme based
on Forbidden Words (”antidictionary”). We prove that our
algorithms attain the entropy for balanced binary sources.
They run in linear time. Moreover, one of the main advan-
tages of this approach is that it produces very fast decom-
pressors. A second advantage is a synchronization property
that is helpful to search compressed data and allows paral-
lel compression. The techniques used in this paper are from
Information Theory and Finite Automata.

Keywords— Data Compression, Lossless compression, In-
formation Theory, Finite Automaton, Forbidden Word, Pat-
tern Matching.

I. INTRODUCTION

E present a simple text compression method called

DCA (Data Compression with Antidictionaries)
that uses some “negative” information about the text,
which is described in terms of antidictionaries. In con-
trast to other methods that make use, as a main tool, of
dictionaries, i.e., particular sets of words occurring as fac-
tors in the text (cf. [1], [2], [3], [4] and [5]), our method
takes advantage of words that do not occur as factors in
the text, i.e., that are forbidden. Such sets of words are
called here antidictionaries.

We describe a static compression scheme that runs in
linear time (Sections IT and III) including the construction
of antidictionaries (Section V and Section VI). Variations
using statistical or dynamical considerations are discussed
in the conclusion (Section VII)

Let w be a text on the binary alphabet {0,1} and let
AD be an antidictionary for w. By reading the text w from
left to right, if at a certain moment the current prefix v of
the text has as suffix a word u’ such that v = u'a € AD
with a € {0,1}, i.e., u is forbidden, then surely the letter
following v in the text cannot be a and, since the alpha-
bet is binary, it is the letter b # a. In other terms, we
know in advance the next letter b, that turns out to be
redundant or predictable. The main idea of our method
is to eliminate redundant letters in order to achieve com-
pression. The decoding algorithm recovers the text w by
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predicting the letter following the current prefix v of w
already decompressed.

The method proposed here presents some analogies with
ideas discussed by C. Shannon at the very beginning of
Information Theory. In [6] Shannon designed psycholog-
ical experiments in order to evaluate the entropy of En-
glish. One of such experiments was about the human abil-
ity to reconstruct an English text where some characters
were erased. Actually our compression method erases some
characters and the decompression reconstruct them.

We prove (Section IV) that the compression rate of our
compressor reaches the entropy almost surely, provided
that the source is balanced and produced from a finite an-
tidictionary. This type of source approximates a large class
of sources, and consequently, a variant of the basic scheme
gives an optimal compression for them. The idea of using
antidictionaries is founded on the fact that there exists a
topological invariant for Dynamical Systems based on for-
bidden words, invariant that is independent of the entropy
(cf. [7] and [8]).

The use of the antidictionary AD in coding and decoding
algorithms requires that AD must be structured in order to
answer to the following query on a word »: does there ex-
ists a word u = w'a, a € {0,1}, in AD such that ' is
a suffix of v? In the case of positive answer the output
should also include the letter b defined by b # a. One of
the main features of our method is that we are able to im-
plement efficiently finite antidictionaries in terms of finite
automata. This leads to fast linear-time compression and
decompression algorithms that can be realized by sequen-
tial transducers (generalized sequential machines). This is
especially relevant for fixed sources. It is then comparable
to the fastest compression methods because the basic oper-
ation at compression and decompression time is just table
lookup.

A central notion of the present method is that of minimal
forbidden words, which allows to reduce the size of anti-
dictionaries. This notion has also some interesting combi-
natorial properties. Our compression method includes al-
gorithms to compute antidictionaries, algorithms that are
based on the above combinatorial properties and that are
described in detail in [9] and [10].

The compression method shares also an interesting syn-
chronization property, in the case of finite antidictionaries.
It states that the encoding of a block of data does not de-
pend on the left and right contexts except for a limited-size
prefix of the encoded block. This is also helpful to search
compressed data and the same property allows to design
efficient parallel compression algorithms.

The paper is organized as follows.

In Section IT we give the definition of Forbidden Words
and of antidictionaries. We describe DCA, our text com-
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pression and decompression algorithms (binary oriented)
assuming that the antidictionary is given. In Section III
we describe a data structure for finite antidictionaries that
allows us to answer in an efficient way the queries need-
ed by our compression and decompression algorithms; we
show how to implement it given a finite antidictionary. In
the case of rational antidictionaries the compression is al-
so described in terms of transducers. We end the section
by proving the synchronization property. In Section IV
we evaluate the compression rate of our compression al-
gorithm relative to a given antidictionary. In Section V
we show how to construct antidictionaries for single words
and sources. As a consequence we obtain a family of lin-
ear time optimal algorithms for text compression that are
universal for balanced Markov sources with finite memo-
ry. In Section VI we give linear time improved algorithms
for building antidictionaries for a static approach. They
use the ideas of pruning and self-compressing. We discuss
improvements and generalizations in Section VII.

Some of the results present in this paper have been suc-
cinctly stated in [11].

II. BASIC ALGORITHMS

Let us first introduce the main ideas of our algorithm
on its static version. We discuss variations of this first
approach in Section VII.

Let w be a finite binary word and let F'(w) be the set of
factors of w. For instance, if w = 01001010 then F(w) =
{g,0,1,00,01, 10,001,010, ...,01001010} where € denotes
the empty word.

Let us take some words in the complement of F(w), i.e.,
let us take some words that are not factors of w and that
we call forbidden. This set of such words AD is called an
antidictionary for the language F'(w). Antidictionaries can
be finite as well infinite. For instance, if w = 01001010
the words 11, 000, and 10101 are forbidden and the set
{11,000,10101} is an antidictionary for F(w). For in-
stance, if w; = 001001001001 the infinite set of all words
that have two 1’s as i-th and as ¢ + 2-th letter for some in-
teger ¢, is an antidictionary for w;. We want here to stress
that an antidictionary can be any subset of the comple-
ment of F(w). Therefore an antidictionary can be defined
by any property that concerns words.

The compression algorithm treats the input word in an
on-line manner. At a certain step in this process we have
read the word v proper prefix of w. If there exists any word
u=u'a, a € {0,1}, in the antidictionary AD such that u’ is
a suffix of v, then surely the letter following v cannot be a,
i-e., the next letter is b, b # a. In other words, we know in
advance the next letter b that turns out to be “redundant”
or predictable. Remark that this argument works only in
the case of binary alphabets.

The main idea in the algorithm we describe is to elim-
inate redundant letters. In what follows we first describe
the compression algorithm, ENCODER, and then the de-
compression algorithm, DECODER. The word to be com-
pressed is noted w = aq - -a, and its compressed version
is denoted by v(w).

ENCODER (antidictionary AD, word w € {0,1}*)
1. véeeg7+¢

2. for a + first to last letter of w

3 if for every suffix v’ of v, ©'0,u’t € AD
4. ¥ v.a;

) vV v.a;

6. return (|v|, v);

As an example, let us run the algorithm ENCODER on
the string w = 01001010 with the antidictionary AD =
{000,10101,11}. The steps of the treatment are de-
scribed in the next array by the current values of the prefix
v; = aq - - - a; of w that has been just considered and of the
output y(w). In the case of positive answer to the query to
the antidictionary AD, the array also indicates the value of
the corresponding forbidden word u. The number of times
the answer is positive in a run corresponds to the number
of bits erased.

€ y(w) =¢

vy =0 y(w) =0

vy = 01 ~y(w) =01 u=11€ AD
vz = 010 y(w) =01

vy = 0100 v(w) =010 u =000 € AD
vs = 01001 y(w) =010 wu=11€ AD
v = 010010 ~v(w) = 010

vr = 0100101 y(w) = 0101 w=11¢€ AD
vg = 01001010 v(w) =0101 u = 10101 € AD
ve = 010010100  ~(w) = 0101 u = 000 € AD
v10 = 0100101001 ~(w) =0101 w=11€ AD

Remark that the function v is not injective.

For instance v(01) = 4(010) = 01.

In order to have an injective mapping we can consid-
er the function 7'(w) = (Jw|,y(w)). In this case we can
reconstruct the original word w from both +'(w) and the
antidictionary.

The decoding algorithm works as follow. The com-
pressed word is y(w) = by ---by and the length of w is
n. The algorithm recovers the word w by predicting the
letter following the current prefix v of w already decom-
pressed. If there exists one word u = u'a, a € {0,1}, in the
antidictionary AD such that «' is a suffix of v, then, the
output letter is b, b # a. Otherwise, the next letter is read
from the input 7.

DECODER (antidictionary AD, word v € {0, 1}*,

integer n)
1. v<+¢
2. while [v| <n
3. if for some v’ suffix of v and a € {0,1}, u'a
belongs to AD
4. V= v a;
D. else
6. b < next letter of v;
7. v v-b;
8. return (v);

The antidictionary AD must be structured in order to an-
swer to the following query on a word v: does there exist
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one word u = u'a, a € {0, 1}, in AD such that «' is a suffix
of v7 In case of a positive answer the output should also
include the letter b defined by b # a. Notice that the letter
a considered at line 3 is unique because, at this point, the
end of the text w has not been reached so far.

In this approach, where the antidictionary is static and
available to both the encoder and the decoder, the encoder
must send to the decoder the length of the word |w], in
addition to the compressed word «(w), in order to give to
the decoder a “stop” criterion. Slight variations of the pre-
vious compression-decompression algorithm can be easily
obtained by giving other “stop” criteria: For instance, the
encoder can send the number of letters that the decoder has
to reconstruct after that the last letter of the compressed
word y(w) has been read. Or the encoder can let the de-
coder stop when there is no more letter available in ~y (line
6), or when both letters are impossible to be reconstructed
according to AD. Doing so, the encoder must send to the
decoder the number of letters to erase in order to recover
the original message. For such variations antidictionaries
can be structured to answer slightly more complex queries.

Since we are considering here the static case, the encoder
must send to the decoder the antidictionary unless the de-
coder has already a copy of the antidictionary or it has
an algorithmic way to reconstruct the antidictionary from
some previously acquired information.

The method presented here brings to mind some ideas
proposed by C. Shannon at the very beginning of Informa-
tion Theory. In [6] Shannon designed psychological exper-
iments in order to evaluate the entropy of English. One of
such experiments was about the human ability to recon-
struct an English text where some characters were erased.
Actually our compression methods erases some characters
and the decompression reconstruct them. For instance in
previous example the input string is 0100101001, where
bars indicate which letters are erased during the compres-
sion.

In order to get good compression rates (at least in the
static approach when the antidictionary has to be sent) we
need to minimize in particular the size of the antidictionary.
Remark that if there exists a forbidden word u = u/a,
a € {0,1} in the antidictionary such that «' is also for-
bidden then our algorithm will never use this word w in
the algorithms. So that we can erase this word from the
antidictionary without any loss for the compression of w.
This argument leads to consider the notion of minimal for-
bidden word with respect to a factorial language L, and the
notion of anti-factorial language, points that are discussed
in the next section.

III. IMPLEMENTATION OF FINITE ANTIDICTIONARIES

When the antidictionary is a finite set, the queries on the
antidictionary required by the algorithms of the previous
section are realized as follows. We build a deterministic
automaton accepting the words having no factor in the an-
tidictionary. Then, while reading the text to encode, if a
transition leads to a sink state, the output is the other let-
ter. We denote by A(AD) the automaton built from the

antidictionary AD. An algorithm to build A(AD) is de-
scribed in [9] and [10]. The same construction has been
discovered by Choffrut et al. [12], it is similar to a descrip-
tion given by Aho and Corasick ([13], see [14]), by Diekert
et al. [15], and it is related to a more general construction
given in [16].

The required automaton accepts a factorial language L.
Recall that a language L is factorial if L satisfies the fol-
lowing property: for any words, w, v, uv € L = u € L
and v € L. The complement language L® = A*\ L is a
(two-sided) ideal of A*. Denoting by MF (L) the base of
this ideal, we have L¢ = A* MF(L)A*. The set MF (L) is
called the set of minimal forbidden words for L. A word
v € A* is forbidden for the factorial language L if v & L,
which is equivalent to say that v occurs in no word of L.
In addition, v is minimal if it has no proper factor that is
forbidden.

One can note that the set MF (L) uniquely characterizes
L, just because L = A* \ A*MF(L)A*. This set MF(L)
is an anti-factorial language or a factor code, which means
that it satisfies: Yu,v € MF(L), u # v => uis not a factor
of v, property that comes from the minimality of words of
MF(L). Indeed, there is a duality between factorial and
anti-factorial languages, because we also have the equality:
MF(L) = ALNLAN(A*\L). In view of the remark made at
the end of the previous section, from now on in the paper
we consider only antidictionaries that consist of minimal
forbidden words. Thus they are anti-factorial languages.

Figure 1 displays the trie that accepts the anti-factorial
language AD = {000,10101,11}. The automaton pro-
duced from the trie is shown in Figure 2.

—{3]

Fig. 1. Trie of the factor code {000,10101,11}. Squares represent
terminal states.

The following theorem is proved in [10]. It is based on
an algorithm called L-AUTOMATON that has as (finite) in-
put AD in the form of a trie 7. It is straigthforward to
get T if AD is given in the form of a list of words. The
algorithm can be adapted to test whether 7 represents an
anti-factorial set, to generate the trie of the anti-factorial
language associated with a set of words, or even to build
the automaton associated with the anti-factorial language
corresponding to any set of words.

Theorem 1: The construction of A(AD) from T can be
realized in linear time.

We report here, for sake of completeness, the algorithm
L-AUTOMATON described in [10]. Tts input, the trie 7 that
represents AD, is a tree-like automaton accepting the set
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0,1

Fig. 2. Automaton accepting the words that avoid the set
{000,10101,11}. Squares represent non-terminal states (sink s-
tates).

AD and, as such, it is noted (Q, A,¢,T,4"). The set T of
terminal states is the set of leaves of the trie.

The algorithm uses a function f called a failure function
and defined on states of T as follows. States of the trie 7
are identified with the prefixes of words in AD. For a state
au (a € A, u € A*), f(au) is the longest suffix of u that is a
state of the trie 7, a word that may happen to be u itself.
This state is also d(i,u), where ¢ is the transition function
of A(AD), and this can be easily proved by induction on
the length of u. Note that f(i) is undefined, which justifies
a specific treatment of the initial state in the algorithm.

L-AUTOMATON (trie 7 = (Q, A,¢,T,4"))
1. foreacha € A
2. if ¢'(i,a) defined
3 d(i,a) < 0'(i,a);
4 f(6(i,a))  i;
5. else
6. 5(i, a) + i;
7. for each state p € @\ {i} in width-first
search and each a € A
8. if ¢'(p,a) defined
9. 6(p,a) « 0'(p,a);
10. F(6(p,a)) < 6(£(p), )
11. elseifpg T
12. 5(p,a) < 6(F(p), 0);
13. else
14. d(p,a) < p;
15. return (@, A,i,Q \ T,9);

A. Transducers

From the automaton A(AD) we can easily construct a
(finite-state) transducer B(AD) that realizes the compres-
sion algorithm ENCODER, i.e., that computes the function
7. The input part of B(AD) coincides with A(AD), with
sink states removed, and the output is given as follows: if
a state of A(AD) has two outgoing edges, then the output
labels of these edges coincide with their input label; if a
state of A(AD) has only one outgoing edge, then the out-
put label of this edge is the empty word. The transducer
B(AD) works as follows on an input string w. Consider
the (unique) path in B(AD) corresponding to w. The let-

ters of w that correspond to an edge that is the unique
outgoing edge of a given state are erased; other letters are
unchanged.

We can then state the following theorem.

Theorem 2: Algorithm ENCODER can be realized by a
sequential transducer (generalized sequential machine).
Concerning the algorithm DECODER, remark (see Sec-
tion II) that the function 7 is not injective and that we
need some additional information, for instance the length
of the original uncompressed word, in order to reconstruct
it without ambiguity. Therefore, DECODER can be realized
by the same transducer as above, by interchanging input
and output labels (denote it by B'(AD)), with a supple-
mentary instruction to stop the decoding.

Let @ = Q1 U Q> be a partition of the set of states
@, where @; is the set of states having j outgoing edges
(j = 1,2). For any q € Q1, define p(q) = (¢,¢1,---,¢) as
the unique path in the transducer for which ¢, € @ for
h <rand g, € Q2.

Given an input word v = byby...b,, there exists in
B'(AD) a unique path ,q1, ..., such that g, —1 € Q2
and the transition from ¢, _1 to ¢m correspond to the
input letter b,,. If ¢y € @2, then the output word corre-
sponding to this path in B'(AD) is the unique word w such
that v(w) = v. If ¢,y € @1, then we can stop the decoding
algorithm realized by B'(AD) in any state ¢ € p(gm'), and,
for different states, we obtain different decodings. So we
need supplementary information (for instance, the length of
the original uncompressed word) to perform the decoding.
In this sense we can say that B’(AD) realizes sequentially
the algorithm DECODER (cf. also [17]).

The constructions and the results given above on finite
antidictionaries and transducers can be generalized also to
the case of rational antidictionaries, or, equivalently, when
the set of words “produced by the source” is a regular (ra-
tional) language. In these cases it is not, in a strict sense,
necessary to introduce explicitly antidictionaries and al-
1 the methods can be presented in terms of automata and
transducers, as above. Remark however that the presenta-
tion given in Section II in terms of antidictionaries is more
general, since it includes the non rational case. Moreover,
even in the finite case, the construction of automata and
transducers from a fixed text, given in the next section,
makes an explicit use of the notion of minimal forbidden
words and of antidictionaries.

B. A Synchronization Property

In the sequel we prove a synchronization property of
automata built from finite antidictionaries, as described
above. This property also “characterizes” in some sense
finite antidictionaries. This property is a classical one and
it is of fundamental importance in practical applications.

Definition 1: Given a deterministic finite automaton
A, we say that a word w = ay---aj is synchronizing
for A if, whenever w represents the label of two paths
(qla ay, q2) T (Qka akaqk+1) and (‘11,01,‘15) T (q;caakaqz-y-l)
of length k, then the two ending states g1 and g, are
equal.
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If L(A) is factorial, any word that does not belong to
L(A) is synchronizing. Clearly in this case synchronizing
words in L(A) are much more interesting. Remark also
that, since A is deterministic, if w is synchronizing for A,
then any word w’ = wwv that has w as prefix is also syn-
chronizing for A.

Definition 2: A deterministic finite automaton A is local
if there exists an integer k such that any word of length &
is synchronizing. Automaton A is also called k-local.
Remark that if A is k-local then it is m-local for any m > k.

Given a finite antifactorial language AD, let A(AD) be
the automaton associated with AD that recognizes the lan-
guage L(AD). Let us eliminate the sink states and edges
going to them. Since there is no possibility of misunder-
standing, we denote the resulting automaton by A(AD)
again. Notice that it has no sink state, that all states are
terminal, and that L(A(AD)) is factorial.

Theorem 3: Let AD be a finite antifactorial antidic-
tionary and let k be the length of the longest word in AD.
Then automaton A(AD) associated to AD is (k — 1)-local.

Proof: Let v = a1---an—1 be a word of length
n — 1. We have to prove that u is synchronizing. Suppose
that there exist two paths (q1,a1,¢2) - (@n-1,0n—1,qn)
and (q1,a1,q%) - (qh_1,an-1,4q,,) of length n — 1 labeled
by u. We have to prove that the two ending states ¢, and
q,, are equal. Recall that states of A are words, and, more
precisely they are the proper prefixes of words in AD. A
simple induction on i, 1 < i < n shows that ¢; (respectively
q}) “is” the longest suffix of the word g1 a1 - - - a; (respective-
ly gja; - - - a;) that is also a “state”, i.e., a proper prefix of
a word in AD. Hence g, (respectively ¢,) is the longest suf-
fix of the word ¢ u (respectively ¢ju) that is also a proper
prefix of a word in AD. Since all proper prefixes of words in
AD have length at most n — 1, both ¢, and ¢}, have length
at most n — 1. Since u has length n — 1, both they are the
longest suffix of u that is also a proper prefix of a word in
AD, i.e., they are equal. |

In other terms, the theorem says that only the last k& —
1 bits matter for determining whether AD is avoided or
not. The theorem admits a “converse” that shows that
locality characterizes in some sense finite antidictionaries
(cf. Propositions 2.8 and 2.14 of [18]).

Theorem 4: If automaton A is local and L(A) is a fac-
torial language then there exists a finite antifactorial lan-
guage AD such that L(A) = L(AD).

Let AD be an antifactorial antidictionary and let k be the
length of the longest word in AD. Let also w = wjuvwy €
L(AD) with |u| = k—1 and let y(w) = y1y2ys be the word
produced by our encoder of Section II with input AD and
w. The word y; is the word produced by our encoder after
processing wiu, the word y» is the word produced by our
encoder after processing v and the word ys is the word
produced by our encoder after processing ws.

The proof of next theorem is an easy consequence of
previous definitions and of the statement of Theorem 3.

Theorem 5: The word y» depends only on the word uv
and it does not depend on the contexts of it, wy and w-.

The property stated in the theorem has an interesting
consequence for the design of pattern matching algorithms
on words compressed by the algorithm ENCODER. It im-
plies that to search the compressed word for a pattern, it
is not necessary to decode the whole word. Just a limited
left context of an occurrence of the pattern needs to be
processed. The same property allows the design of highly
parallelizable compression algorithms. The idea is that the
compression can be performed independently and in par-
allel on any block of data. If the text to be compressed is
parsed into blocks of data in such a way that each block
overlaps the next block by a length not smaller than the
length of the longest word in the antidictionary, then it is
possible to run the whole compression process in parallel.

IV. EFFICIENCY

In this section we evaluate the efficiency of our compres-
sion algorithm relatively to a source corresponding to the
finite antidictionary AD.

Indeed, the antidictionary AD naturally defines a source
S(AD) in the following way. Let A(AD) be the automa-
ton constructed in the previous section with no sink states
and recognizing the factorial language L(AD) (all states are
terminal). To avoid trivial cases, we suppose that in this
automaton all the states have at least one outgoing edge.
Recall that since our algorithms work on a binary alphabet,
all states have at most two outgoing edges.

For any state of A(AD) with only one outgoing edge we
give to this edge probability 1. For any state of A(AD)
with two outgoing edge we give to these edges probabili-
ty 1/2. This defines a deterministic (or unifilar, cf. [19])
Markov source, denoted S(AD). Notice also that, by The-
orem 3, that S(AD) is a Markov source of finite order or
finite memory (cf. [19]). We call a binary Markov source
with this probability distribution an balanced source.

Remark that our compression algorithm is defined exact-
ly for all the words “emitted” by S(AD).

In what follows we suppose that the graph of the source
S, i.e., the graph of automaton A(AD), is strongly connect-
ed. The results that we prove can be extended to the gen-
eral case by using standard techniques of Markov Chains
(cf. [19], [20], [21] and [22]). Recall (cf. Theorem 6.4.2
of [19]) that the entropy H(S) of a deterministic Markov
source S is H(S) = =X}, wivi,j logs(7i,j), where (vi;) is
the stochastic matrix of S and (u1, - -, 4y, is the stationary
distribution of S.

We now state three lemmas.

Lemma 1: The entropy of a balanced source S is given
by H(S) = ¥iepu; where D is the set of all states that
have two outgoing edges.

Proof: By definition

H(S) = =X pivi,j logs (Vi)

If 7 is a state with only one outgoing edge, by definition
this edge must have probability 1. Then X;u;v; ; l0gs(7i ;)
reduces to p; logs(1), that is equal to 0. Hence

H(S) = =Siep Xl pivi i 10gs(7i,z)-
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Since from each ¢ € D there are exactly two outgoing
edges having each probability 1/2, one has

H(S) = —Xiep2ui(1/2) logy(1/2) = Zieppu

as stated. |

Lemma 2: Let w = ay - - - am be a word in L(AD) and let
q1 -+ ¢m+1 be the sequence of states in the path determined
by w in A(AD) starting from the initial state. The length
of v(w) is equal to the number of states ¢q;, s = 1,...,m,
that belong to D, where D is the set of all states that have
two outgoing edges.

Proof: ~ The statement is straightforward from the
description of the compression algorithm and the imple-
mentation of the antidictionary with automaton A(AD).

|

Through a well-known results on “large deviations” (cf.
Problem IX.6.7 of [23]), we get a kind of optimality of the
compression scheme.

Let q= q1, - - - qm be the sequence of m states of a path of
A(AD) and let Ly, ;(q) be the frequency of state ¢; in this
sequence, i.e., Ly i(q) = m;/m, where m; is the number
of occurrences of ¢; in the sequences q. Let also X, (€) =
{ a | q has m states and maz; | Ly, ;(q) — ;| > €}, where
q represents a sequence of m states of a path in A(AD).
In other words, X,,(¢) is the set of all sequences of states
representing path in A(AD) that “deviate” at least of € in
at least one state g; from the theoretical frequency ;.

Lemma 3: For any € > 0, the set X,,(e) satisfies the
equality lim-Llog, Pr(X,,(€)) = —c(e), where c(e) is a posi-
tive constant depending on e.

We now state the main theorem of this section. The
proof of it uses the three previous lemmas. It states that
for any e the probability that the compression rate 7(v) =
|v(v)|/|v] of a string of length n is greater than H (S(AD))+
€, goes exponentially to zero. Hence, as a corollary, almost
surely the compression rate of an infinite sequence emitted
by S(AD) reaches the entropy H(S(AD)), that is the best
possible result.

Theorem 6: Let K, (€) be the set of words w of length m
such that the compression rate 7(v) = |y(v)|/|v| is greater
than H(S(AD))+e€. For any € > 0 there exist a real number
r(€), 0 < r(e) < 1, and an integer m(e) such that for any
m > m(e), Pr(K,,(e)) < r(e)™.

Proof: Let w be a word of length m in the language
L(AD) and let g1, - - -, gm+1 be the sequence of states in the
path determined by w in A(AD) starting from the initial
state. Let q= (q1," -, qm) be the sequence of the first m
states. We know, by Lemma 2, that the length of ~(w)
is equal to the number of states ¢;, ¢ = 1---m, in q that
belong to D, where D is the set of all states having two
outgoing edges.

If w belongs to Ky, (€), i.e., if the compression rate 7(v) =
|v(v)|/|v] is greater than H(S(AD)) + €, then there must
exists an index j such that Ly, j(q) > p; + ¢/|D|. In fact,
if for all j, Ly, j(a) < p;j + €/|D| then, by definitions and
by Lemma 1,

T(v) = ¥jepLm,j(a) < Ejeppj + € = H(S(AD)) + e,

a contradiction. Therefore the sequence of states q belongs
to X (€e/d). Hence Pr(Kp(€)) < Pr(X,(e/d)).

By Lemma 3, there exists an integer m(e) such that for
any m > m(e) one has

€ 1 €

g, Pr(Xm(5)) < ~3¢(5).

Then Pr(Kp,(e)) < 2-0/2ecle/dm — If we set r(e) =
2—(1/2)e(e/d) the statement of the theorem follows. [ |
Theorem 7: The compression rate 7(x) of an infinite se-

quence x emitted by the source S(AD) reaches the entropy
H(S(AD)) almost surely.

V. How TO BUILD ANTIDICTIONARIES

In practical applications the antidictionary might not be
given a priori but it must be derived either from the text
to be compressed or from a family of texts belonging to the
assumed source of the text to be compressed.

There exist several criteria to build efficient antidic-
tionaries, depending on different aspects or parameters that
one wishes to optimize in the compression process. Each
criterion gives rise to different algorithms and implementa-
tions.

All our methods to build antidictionaries are based on
data structures to store factors of words, such as suffix
tries, suffix trees, DAWGs, and suffix and factor automata
(see for instance Theorem 15 in [10]). In these structures,
it is possible to consider a notion of suffix link. This link
is essential to design efficient algorithms to build represen-
tations of sets of minimal forbidden words in term of tries
or trees. This approach leads to construction algorithm-
s that run in linear time in the length of the text to be
compressed.

A rough solution to control the size of antidictionaries
is obviously to bound the length of words in the antidic-
tionary. A better solution in the static compression scheme
is to prune the trie of the antidictionary with a criterion
based on the tradeoff between the space of the trie to be
sent and the gain in compression, this will be developed in
next section. However, the first solution is enough to get
compression rates that reach asymptotically the entropy
for balanced sources, even if this is not true for general
sources. Both solutions can be designed to run in linear
time.

We present in this section a very simple construction to
build finite antidictionaries of a finite word w. It is the
base on which several variations are developed. The idea is
to build the automaton accepting the words having same
factors of w of length k and, from this, to build the set
of minimal forbidden words of length & of the word w. It
can be used as a first step to build antidictionaries for fixed
sources. In this case our scheme can be considered as a step
for a compressor generator (compressor compiler). In the
design of a compressor generator, or compressor compiler,
statistical considerations and the possibility of making ”er-
rors” in predicting the next letter play an important role,
as discussed in Section VII.
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Algorithm BUILD-AD described hereafter builds the set
of minimal forbidden words of length k (k > 0) of the word
w. It takes as input an automaton accepting the words
that have the same factors of length & (or less) as w, i.e.,
accepting the language

Ly ={z € {0,1}"| (v € F(z) and |u| < k) = u € F(w)}.

The preprocessing of the automaton is done by the al-
gorithm BUILD-FACT whose central operation is described
by the function NEXT.

BuiLp-Fact (word w € {0,1}*, integer k& > 0)
i <+ new state; Q) « {i};
level (i) < 0;
P i
while not end of string w
a + next letter of w;
p + NEXT(p,a, k);
return trie (Q,,Q, ), function f;

A o

NEXT (state p, letter a, integer k > 0)
1. if §(p,a) defined

2 return 6(p, a);

3. else if level(p) = k

4 return NEXT(f(p), a, k);

5. else

6. q < new state; @ + QU {q};
7 level(q) < level (p) + 1;

8 6(p,a) « ¢;

9 if (p =) f(q) <4

1 else f(q) + NEXT(f(p),a,k);
1

0.
1. return g¢;

BuiLp-AD (trie (Q,4,Q,6), function f, integer k > 0)
1. T+« ;68 « 4
2. for each p € Q, 0 < level(p) < k, in breadth-first

order
3. for a <~ 0 then 1
4. if 6(p, a) is undefined and 6(f(p), a) is
defined
5. q < new state; T < T'U {q};
6. §'(p,a) « g;
7. Q@+ @)\ {states of @ from which no ¢'-path
leads to T'}

8. return trie (QUT,i,T,d");

The automaton is represented by both a trie and its fail-
ure function f. If p is a node of the trie associated with
the word av, v € {0,1}* and a € {0,1}, f(p) is the node
associated with v. This is a standard technique used in
the construction of suffix trees (see [24] for example). It
is used here in algorithm BUiLD-AD (line 4) to test the
minimality of forbidden words according to the equality
MF(L)=ALNLAN(A*\L).

The above construction gives rise to the following stat-
ic compression scheme in which we need to read the text

twice, the first time to construct the antidictionary AD and
the second time to encode the text.

Informally, the encoder sends a message z of the form
(z,y,0(n)) to the decoder, where z is a description of the
antidictionary AD, y is the text coded according to AD, as
described in Section II, and o(n) is the usual binary code
of the length n of the text. The decoder first reconstruct-
s from z the antidictionary and then decodes y according
to the algorithm in Section II. The antidictionary AD is
composed in this simple compression scheme by all mini-
mal forbidden words of length & of w, but other intelligent
choices of subsets of AD are possible. We can describe the
antidictionary AD for instance by coding with standard
techniques the trie associated with AD to obtain the word
. A basic question is how fast must grow the number k
as function of the length n of the word w. In this simple
compression scheme we choose k to be any function such
that one has that || = o(n), but other choices are possible.
Since the compression rate is the size |z| of z divided by
the length n of the text, we have that |z|/n = |y|/n+ o(n).
Assuming that for n and k large enough the source S(AD),
as in Section IV, approximates the source of the text, then,
by the results of Section IV, the compression rate is “opti-
mal”.

For instance, suppose that w is emitted by an balanced
Markov source S with memory h, and let L be the formal
language composed of all finite words that can be emit-
ted by S. By Theorem 4 there exists a finite antifactorial
language N such that L = L(N). Moreover, since S has
memory h, the words in NV have length smaller than or e-
qual to h+ 1. If |w] is such that k& > h then AD contains N
and, therefore H(S(AD)) < H(S(N)) = H(S). By Corol-
lary 1 we can deduce that this simple compression scheme
turns out to be universal for the family of balanced Markov
sources with finite memory (cf. [25]).

Let w= ajas - - - be a binary infinite word that is periodic
(i.e., there exists integer P > 0 such that for any index i
the letter a; is equal to the letter a;1 p), and let wy, be the
prefix of w of length n. We want to compress the word w,,
following our simple scheme informally described above.

It is not difficult to prove that the compression rate for
wy, 18 |z|/n = O(o(n)) = O(log,(n)), which means that the
scheme can achieve an exponential compression.

VI. PRUNING ANTIDICTIONARIES

In this section, as well as in previous section, we consider
a static compression scheme in which we need to read the
text twice: the first time to construct the antidictionary
AD and the second time to encode the text.

In this section, however, we suppose that we have enough
resources to build, in linear time, a suffix or a factor au-
tomaton (or their compacted version, cf. [26]) of the finite
text string to be compressed. From these structures we
can obtain in linear time a trie representating of all mini-
mal forbidden words of the text (cf. [10]). It can be shown
that the total length of all minimal forbidden words can be
quadratic in the size of the original text. However the trie
representing these words is of linear size. It is clear that if
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we want to get good compression ratios not all the minimal
forbidden words should be considered.

The first idea developed in this section is to prune the
trie of the antidictionary with some criteria based on the
tradeoff between the space of the trie to be sent and the
gain in compression. Clearly, the space of the trie to be
sent strictly depend on how we encode the trie.

Using a classical approach, in this section we recall that
a binary tree that has k& nodes can be encoded using two
bits for each node, which gives 2k bits for the whole tree.
Indeed, depending on whether a subtree S of a binary tree
T has both subtrees, only the right subtree, only the left
subtree, or no subtree, the root of S can be encoded respec-
tively by the strings 11, 10, 01, 00. This is done recursively
in a prefix traversal of the whole tree. All the results p-
resented in this section can be easily extended to the case
when a node of the trie can be encoded using « bits for
each node, where « is a positive real number.

The second idea presented afterwards is to compress
the words retained in the antidictionary using the anti-
dictionary itself.

The two operations, pruning and self compressing, can
be applied iteratively on antidictionaries. They lead to
very compact representations of antidictionaries, producing
higher compression ratios.

A. Pruned Antidictionary

A linear-time algorithm for obtaining the trie 7 of all
minimal forbidden word of a fixed text ¢ can be found in
[10]. Hence we suppose here that we have this trie 7.

In order to make a tradeoff between the space of the
trie to be sent and the gain in compression, we have to
know how much each forbidden word contributes to the
compression. Minimal forbidden words of text ¢ correspond
in a bijective way to the leaves of the trie T, i.e. with
any leave ¢ of the tree we can associate the corresponding
minimal forbidden word w(g). Indeed if we identify, as
in Section III, the nodes of the trie 7 to the prefixes of
the minimal forbidden words, then the function w is the
identity.

We define a cost function ¢ that associates with any leaf ¢
of T the number of bits ¢(q) that the word w(q) contributes
to erase during the compression of the text ¢. This number
¢(q) is also the number of times that the longest proper
prefix of w(q) appears in text ¢ as a factor but not as a
suffix. In another words, the number ¢(q) is the number
of times that a state p is traversed while reading the text
t in the automaton A(AD), where p leads to state ¢ by
some letter a (cf. Section IIT and Theorem 1). Indeed
the last letter of the text is not considered in this process
because there is nothing to erase after it. By Theorem 1,
the function ¢ can be computed in linear time.

We further define the gain (saving) of a subtree S of the
trie 7 representing an antidictionary T as g(S) = 2(c(q) |
q leaf of S) — 2mg where mg is the number of nodes of S.

Indeed the number of bits that have to be sent after
compression is composed of: 2|logn| bits to encode the

length n of the text ¢ (cf. the cascading lengths technique
in [4] and references therein); 2my bits for a description
of the antidictionary T; |y(t)| bits for the text compressed
using 7. The overall size is

2|logn| + 2m7 + |y(t)| = 2|logn| +n — g(T)

by definition of g(T).

Since 2|logn] + n is fixed and since the gain g(7) is the
sum of the gain of its subtrees minus 2 bits (for encoding
the root), then pruning subtrees of 7 that have a negative
gain increases the gain of 7 and, consequently, decreases
the overall number of bits that have to be sent after com-
pression.

Suppose however that S, is a subtree of S; which is, in
turn, a subtree of the trie 7. Suppose further that S has
a negative gain and the same holds for Sy, but that S; has
a positive gain if Ss is pruned from it. In this case, in order
to obtain better compression ratios, the best thing to do
is to prune Ss and not the whole S;. It is thus natural
to consider the optimization problem related to an abstact
non-negative function ¢ (defined on leaves of T') where one
instance is a trie T representing a prefix code C, and a
solution is a trie 7' that represents a subset of C' and that
maximizes the gain g(7").

In what follows we show that a bottom-up approach gives
a linear-time solution to this problem.

With any subtree S of 7 we associate the function g¢',
called the pruned gain, that is defined by

0 if S is empty
c(S)—2 if Sis aleaf

g'(S1) —2 if S has one child S;
M

where M = max(g'(S1),9'(S2),9'(S1) + ¢'(S2)) — 2, with
S1 and Sy children of S.

From the above definition it is not difficult to see that
it is possible to compute function ¢’ in linear time with
respect to the size of the trie 7, in a bottom-up traversal
of the trie.

We can now present the simple pruning algorithm.

g'(S) =

SIMPLE PRUNING (trie T, function ¢)

1. compute ¢'(S) for each subtree S of T;

2. eliminate subtrees S of T for which ¢'(S) < 0;
3. return modified trie T;

The following proposition is a consequence of the de-
scriptions given above, and the next theorem shows that
the output of the algorithm gives a solution to the opti-
mization problem described above.

Proposition 1: Algorithm SIMPLE PRUNING can be per-
formed in linear time.

Theorem 8: Let T be a trie representing a prefix code C'
and let ¢ be a non-negative function defined on leaves of T .
The output 7' of algorithm SIMPLE PRUNING represents
a subset of C' and ¢'(7') is maximum. Moreover we have

that g(7") = ¢'(T").
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Proof:  First of all we claim that the trie 7' output
by algorithm SIMPLE PRUNING represents a subset of C.
Indeed, by the definition of ¢’ it follows that if a subtree
S of T is not a leaf and if ¢'(S) > 0, then S must have at
least one child S; with positive pruned gain, i.e. ¢'(S1) >
0. This fact implies that all leaves of 7' are leaves of T,
proving the claim.

The rest of the proof is done by induction on the height of
T. If T is empty there is nothing to prove. If 7 has height
0 then T is a leaf and we already have g(T) = ¢'(T). If
g(T) > 0, T itself is equal to 7", otherwise 7' is the empty
tree. In both cases the statement of the theorem is satisfied.

Suppose now that 7 has height > 0. Either it has just
one child S; or it has two children S; and Ss.

Suppose that 7 has two children S; and Ss. S;; they
are both tries and we can associate to them the restriction
of the function gain to all subtrees. By applying algorithm
SIMPLE PRUNING with input S;, i = 1,2, and function ¢
(restricted to leaves of corresponding subtrees), we obtain
as output a modified trie S!. By induction we know that
g(S}) = ¢'(S}) and that this value maximizes the function
gain. Therefore, if both g(S]) and g(S4) are positive, a trie
T' representing a subset of C' and maximizing the function
gain is the trie that has the same root as 7 and has children
Si and Sh. Moreover g(7') = ¢'(T') and algorithm SIMPLE
PRUNING does not prune S; and S from 7 so the theorem
is proved in this case.

The other cases, (¢(S1) < 0 and g(Ss) > 0), (9(S1) >
0 and ¢(S2) < 0), (g(S1) < 0 and ¢(S2) < 0), and the
case when 7 has only one child S; are dealt in analogous
manner. |

Remark that the statement of Theorem 8 holds essen-
tially because pruning a subtree S of 7 does not affect the
value of function gain over all other subtrees of 7. This fac-
t is not true anymore with the self-compressing approach
used in next subsection.

B. Self-compressing the antidictionary

Let AD be an antifactorial antidictionary for text ¢. Since
AD is antifactorial then, for any v € AD the set AD\ {v} is
an antidictionary for v. Therefore it is possible to compress
v using AD \ {v} or a subset of it.

One can think of a strategy that sends to the decoder, in
a static approach, all words v of AD compressed by algorith-
m ENCODER with a subset of AD\ {v} and v as input. This
would achieve better compression. We call this approach
self-compression; it is the subject of this subsection.

Let us first try to compress any word v € AD by using the
whole AD\ {v} and let us denote by ~; (v) the compressed
version of v by using AD\ {v}. Notice that the words of AD
that are used in compressing v have length < |v|. Further,
if w € AD with |u| = |v] is used to erase the last letter of
v, then w must coincide with v except for the last letter,
that is, u = xza, v = zb and a # b. In addition it is easy
to see that 1 (u) = 741 (v). This word is also equal to v;(x)
that has been compressed by using the antidictionary of all
words of AD having length shorter than |v| = |ul.

As as a special case of the next proposition, a set {u,v}
having these properties can occur at most once in any an-
tidictionary AD of a text t.

A pair of words (v,vy) is called stopping pair if v =
ua,v, = urb € AD, with a,b € {0,1}, a # b, and u is
a suffix of u;.

Proposition 2: Let AD be an antifactorial antidictionary
of a text t. If there exists a stopping pair (v,v1) with
vy = u1b, b € {0, 1}, then w; is a suffix of ¢ and does not
appear elsewhere in t. Moreover there exists at most one
pair of words having these properties.

Proof: Since u1b € AD, u; is a factor of t. Suppose
that u;c appears as a factor of ¢, with ¢ € {0,1}. Since
u is a suffix of uy, letter ¢ is not letter a (because ua is
forbidden) and is not letter b (because u,b is forbidden), a
contradiction. Hence u; is a suffix of ¢ and does not appear
elsewhere in t.

Since u; is a suffix of ¢, then also u is a suffix of t. Sup-
pose that there exists another pair (v' = u'ec,v] = uid) #
(v,v1) of words in AD with ¢,d € {0,1}, a # b, and v’ is
a suffix of u{. Then u] and v’ are also suffixes of ¢ and it
is not difficult to prove by cases that one of the four words
among v,v1,v',v] is a factor of another, contradicting the
antifactoriality of AD. |

Let us suppose now that vy,...,v; is a sequence of all
words in AD such that for any i, 1 < i < k—1, |v;| < |vig1]-
If one knows that there exists no v; such that |v;| = |v;]
and v; has been used to erase the last letter of v;, then
the set AD; = {vy,...v;_1} is the antidictionary used for
compressing v; to get 1 (v), and v; can be recovered from
both v(v;) and |v;| using algorithm DECODER. If there
exists v; such that |v;| = |v;| and v; has been used to erase
the last letter of v; then the set AD; = {v1,...v;—1} is the
antidictionary used for obtaining the compressed version
y1(z) = 7 (v;) of the longest common prefix = of v; and
vj, with |z| = |v;] — 1. Also in this case « and therefore
v; and vj, can be recovered from both vi(x) = v (v;) and
|z] = |v;] — 1 using algorithm DECODER.

By the above discussion, it follows that if one knows
the sequence (71 (Ul)a |U1|)7 (71(”2)7 |U2|)7 B (71 (Uk)a |Uk|)7
together with the couple (i,j) such that v; and v; have
been used to mutually erase their last letter (i = j = 0 if
there is no such a pair), then the decoder can reconstruct,
in this order, words vy, vs, ..., v;. That is, decoder can
reconstruct the whole antidictionary AD.

Unfortunately, while AD, being antifactorial, is also a
prefix code and can be represented by a trie, this is not
true anymore for the set X1 = {y,(v) | v € AD}. For
example, the reader can easily verify that if AD = {11,
000, 10101, 00100100, 1010010100101} then X; = {11,
000, 111, 0000, 1111, }. Also, if AD = {10, 110, ---, 1*0}
then, for any n > 0, X; = {10}. Consequently the space
saved by self compressing the antidictionary could be lost
in encoding the set Xj.

We propose a different approach that makes use of
the same idea and leads to simple algorithms for self-
compressing and recovering the antidictionary AD. These
algorithms run in linear time in the size of the trie 7 repre-
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senting the antifactorial antidictionary AD and, moreover,
the compression ratios obtained with the pruning technique
can only be improved by the next self compression tech-
nique.

We present a formal description of the technique. Given
a word v € AD, we compress it using an antidictionary AD'
that dynamically changes at any step of the while loop on
line 2 of algorithm ENCODER. While dealing with a proper
prefix u of v and the letter a following it, the antidictionary
AD' is composed of all words belonging to AD with length
not greater than |u|. Letter a is erased if and only if there
exists a word u'b € AD, b # a, with u' a proper suffix of
u. Let us call v2(v) the compressed version of v obtained
in this way and let X5 = {y2(v) | v € AD}.

This kind of self-compression can be performed in linear
time by next algorithm SELF-COMPRESS. It has as input
both the trie 7 that represents AD and the function § of
automaton A(AD) (cf. algorithm L-AUTOMATON). Notice
that § is defined on nodes of 7. Its output 7" is the trie
accepting the set Xo = {v(v) | v € AD}. The algorithm
performs breadth-first traversal of 7 implemented by the
queue Q. During the traversal, it creates a self-compressed
version 7' of T that represents the set Xs.

SELF-COMPRESS (trie 7, function 4))
1. 4 < root of T;
2. create root, i';
3. add (i,i") to empty queue Q;
4. while Q # ()
5. extract (p,p’) from Q;
6. if go and ¢, are children of p
7. create ¢ and ¢; as children of p';
8. add (qo,qp) and (q1,q;) to Q;
9. else if ¢ is a unique child of p and
q=9d(p,a),a€ A
10. if 6(p, —a) is a leaf
11. add (¢,p’) to Q;
12. else create ¢’ as a-child of p';
13. add (¢,q") to Q;
14. return trie having root i';

The correctness of algorithm SELF-COMPRESS relies on
the following proposition and the discussion thereafter.

Proposition 3: If a node p in the trie 7 has two children
qo and ¢; then its corresponding node p' in the output trie
T also has two children.

Proof: If qy and ¢; are both leaves, they represent
two minimal forbidden words ua and ub, a # b. There is
no minimal forbidden words in the form u'a or u'b with u’
a proper suffix of u because AD is antifactorial. Therefore
neither letter a nor letter b can be erased by the technique.

If ¢ and ¢; are not leaves, they represent two words
ua and ub, a # b, that are factors of text t. There is no
minimal forbidden words in the form w’a or u'b with u' a
proper suffix of u because these words are also factors of ¢.
Therefore neither letter a nor letter b can be erased by the
technique.

Let us suppose now that only one node among ¢y and ¢;
is a leaf. For instance, let us assume that ¢qq is a leaf and

q1 is not a leaf. They represent respectively two words ua
and ub, a # b. Letter a cannot be erased because in the
antidictionary there is no word in the form u'bd with v’ a
proper suffix of u, ub being a factor of ¢. Letter b cannot
be erased because in the antidictionary there is no word in
the form u'a with u' a proper suffix of u, since ua is in the
antidictionary and the antidictionary is antifactorial. W

The previous proposition explains why the algorithm cre-
ates two nodes ¢ and ¢f at line 7.

We next consider lines 10-13, in which node p of 7 has
only one child ¢ = §(p,a). The node d(p, —~a) cannot have
higher level than p because p has only one child. Hence,
letter a is erased if and only if §(p, —a) is a leaf, by definition
of the technique.

Finally, if p has no children, i.e. p is a leaf, nothing
is done by the algorithm but extracting (p,p') from the
queue.

Corollary 1: Tries T and 7' have the same number of
internal nodes that have two children and, consequently,
have the same number of leaves. Trie 7' represents the
prefix code Xs.

The corollary implies that Xo = {v2(v) | v € AD} can
be uniquely reconstructed from 7'. There is an additional
property that allows reconstructing AD from X, without
considering lengths of words in AD. This simplifies the
procedure. The next proposition follows readily from defi-
nitions.

Proposition J: If there exists no stopping pair in AD then
for any v € AD, the last letter of v is not erased during the
self-compression to get v (v).

If the decoder has the additional information that the
last letter of ¢ was not erased at compression time then it
can use this fact as a stop criterion. This is also possible
even if the antidictionary changes dynamically. Indeed the
decoder just has to stop after processing the last letter of
the compressed text. Therefore there is no need to use the
length of the text to stop decoding.

To ensure that the last letter of any v € AD is not erased
and to meet the above hypothesis, it is sufficient to elim-
inate the only possible stopping pair (cf. Proposition 2).
To do that, we delete from AD the longest word v; of such
a pair. By Proposition 2 this word does not contribute
to erasing letters in text ¢t during the compression because
there is nothing to erase after the last letter.

Hence we suppose that in our antidictionary AD this
word is not included, or, equivalently, that the branch of
trie 7 that has this word as unique leaf is pruned. In other
words, we suppose from now on that antidictionary AD
(and obviously all its subsets) has no stopping pair.

Algorithm SELF-AUTOMATON uses the previous hypoth-
esis to reconstruct AD from 7. More precisely, its input is
a trie 77, self-compressed from trie 7, with its transition
function ¢’. Tts output is the automaton A(AD), where AD
is the antidictionary represented by trie 7. It is similar to
algorithm L-AUTOMATON. Indeed it makes a breadth-first
traversal on states of the trie 7. It is possible to do this
because, any time a state is reached, if a child was “erased”
during the execution of SELF-COMPRESS, it is now created
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and added to the queue Q. In order to create a new child,
function & must be previously restored, as done in algorith-
m L-AUTOMATON, by using the failure function f. When
a leaf is reached in the self-compressed trie, the new stop
criterion tells us that there is nothing more to reconstruct
in that branch.

Trie T can be obtained from the automaton A(AD), out-
put of next algorithm, by using a linear time algorithm
described in [10].

The current situation in the next algorithm is as follows:
when a node p is popped from the queue, trie 7 has been
decompressed up to the level of p in T, f(p) is defined and
function ¢ is defined for all previous nodes, which includes
nodes at previous level. After processing p, d is also defined
for p and the failure function f is defined on its children.

SELF-AUTOMATON (trie 77)

1. i’ < root of T7;

2. Q<+ 0

3. foreach a € A

4 if ' (i’ a) is defined

5. 8(i',a) « &' (i, a);

6. 1600y a)) i

7 add 6(7',a) to Q;

8 else

9. 8(i a) < i';
10. while Q # 0
11. extract p from Q;
12. if p is not a leaf
13. if 6(f(p),a) is a leaf fora € A
14. create pi1;
15. for each b € A
16. if ' (p, b) is defined
17. 5’(p17b) F(S,(pab);
18. d(p, —a) « p1;
19. 5(pra) < d(f(p), a));
20. £(p1) < 8(f(p), ~a));
21. add pi1 to Q;
22. else
23. for each a € A
24. if &' (p, a) is defined
2. 5(p, a) — &'(p, a));
2. 1(6(p, )) < 5((p), 0));
27. add d(p,a) to Q;
28. else
20. 5(p, a) < O(f(p), a));
30. else
31. for each a € A
32. d(p, a) < p;
33. return (Q,A,7,Q \ {leaves},d);

Since there is a bijection between leaves of 7 and leaves
of 7', we can associate with any leaf ¢’ of 7' the same
value ¢(q) of the corresponding leaf ¢ in 7. This is the
number of bits that the word w(q) leads to erase during
the compression of text ¢t. Analogously, as in the previous
subsection, we can define functions gain and pruned gain
and, as a first step, we can run algorithm SIMPLE PRUNING
on 7'. At the same time we prune corresponding subtrees
in 7 and obtain a trie 7;. Doing so, the modified trie Ty
represents a subset of AD. As a second step, we can use
again algorithm SELF-COMPRESS on 77 to get 7';. Note
that 7'y can be different from the pruned trie 7’ because
pruning subtrees can affect self-compression.

We can iterate the above two steps for a fixed number of
times or until the trie stabilizes.
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VII. CONCLUSION

We have described DCA, a text compression method that
uses some “negative” information about the text, repre-
sented in terms of antidictionaries. The advantages of the
scheme are:

e it is fast at decompressing data,

o it is fast at compressing data for fixed sources,

o it has a synchronization property in the case of finite an-
tidictionaries, property that leads to efficient parallel com-
pression and to search engines on compressed data.

In the previous sections we presented some static DCA
schemes in which the text to be compressed needs to be
scanned twice. Starting from these static schemes, several
variations and improvements can be proposed. These vari-
ations are all based on clever combinations of two elements
that can be introduced in our model:
¢ statistic considerations,

o dynamic approaches.
These are classical features that are often included in other
data compression methods.

Statistical considerations are used in the construction
of antidictionaries. If a forbidden word is responsible for
“erasing” few bits of the text in the compression algorithm
of Section IT and if its “description” as an element of the
antidictionary is “expensive” then the compression ratio
improves if it is not included in the antidictionary. This
idea has been partially exploited in previous section. On
the contrary, one can introduce into the antidictionary a
word that is not forbidden but that occurs very rarely in
the text. In this case, the compression algorithm will pro-
duce some “errors” or “mistakes” in predicting the next
letter. In order to have a lossless compression, encoder and
decoder must be adapted to manage such errors. Typical
errors occur in the case of antidictionaries built for fixed
sources as well as in the dynamic approach.

Even with errors, assuming that they are rare with re-
spect to the maximum length of words of the antidic-
tionary, our compression scheme preserves the synchroniza-
tion property of Theorem 3. The use of errors becomes
necessary for some artificial strings like 1™0 if one wants
to use a static aproach. Without errors and with a static
approach, the algorithms described in previous section are
unable to compress such strings.

Antidictionaries for fixed sources have also an intrinsic
interest. A compressor generator, or compressor compil-
er, can create, starting from words obtained from a source
S, an antidictionary that can be used to compress all oth-
er words from the same source S. Error management is
essential for this kind of application. Having a fixed anti-
dictionary makes the compression fast because basic oper-
ations are just table lookups.

In the dynamic approach, we construct the antidic-
tionary and encode the text at the same time. The an-
tidictionary is constructed (also with statistical considera-
tion) by considering the whole text previously scanned or
just a part of it. The antidictionary can change at any
step and the algorithmic rules for its construction must be
synchronized between encoder and decoder.
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File original size compressed size

(in bytes) (in bytes)
bib 111261 35535
book1 768771 295966
book2 610856 214476
geo 102400 79633
news 377109 161004
objl 21504 13094
obj2 246814 111295
paperl 53161 21058
paper2 382199 2282
pic 513216 70240
progc 39611 15736
progl 71646 20092
progp 49379 13988
trans 93695 22695

Fig. 3. Compression ratios on files of the Calgary Corpus.

We have realized prototypes of the compression and de-
compression algorithms. They also implement the dynamic
version of the method. They have been tested on the Cal-
gary Corpus (see Figure 3), and experiments show that we
get compression ratios equivalent to those of most common
compressors (such as pkzip for example).

We are considering several generalizations:

o Compressor schemes and implementations of antidic-
tionaries on more general alphabets or on other types of
data (images, sounds, etc.),

o Use of lossy compression especially to deal with images,
o Combination of DCA with other compression schemes;
for instance, using both dictionaries and antidictionaries
like positive and negative sets of examples as in Learning
Theory,

o Design of chips dedicated to fixed sources.

Several problems concerning the data compression sche-
me are still open. We list some of them.
o Are balanced sources dense inside the family of Markov
sources? A positive answer would raise the question of
adapting the scheme so that it becomes universal for
Markov or ergodic sources. Can self compression be used
to settle this question?
o Are there efficient algorithms to build good antidictionar-
ies for syntactic sources, generated for instance by gram-
mars? This raises a question of coding on a binary alpha-
bet.
o What is the average of the maximum length of minimal
forbidden words in texts of length n generated by an er-
godic source having entropy H?
o How many times on the average should pruning and self
compressing be iterated before the process stabilizes (see
previous section)? We would expect a maximum of logn
steps. Is the stabilized trie optimal?
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