
HAL Id: hal-00619579
https://hal.science/hal-00619579

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data compression using antidictionaries
Maxime Crochemore, Filippo Mignosi, Antonio Restivo, Sergio Salemi

To cite this version:
Maxime Crochemore, Filippo Mignosi, Antonio Restivo, Sergio Salemi. Data compression using an-
tidictionaries. Proceedings of the I.E.E.E., 2000, 88 (11), pp.1756-1768. �10.1109/5.892711�. �hal-
00619579�

https://hal.science/hal-00619579
https://hal.archives-ouvertes.fr

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 180Data Compression Using Antidi
tionariesM. Cro
hemore , F. Mignosi , A. Restivo , S. SalemiAbstra
t|We give a new text
ompression s
heme basedon Forbidden Words ("antidi
tionary"). We prove that ouralgorithms attain the entropy for balan
ed binary sour
es.They run in linear time. Moreover, one of the main advan-tages of this approa
h is that it produ
es very fast de
om-pressors. A se
ond advantage is a syn
hronization propertythat is helpful to sear
h
ompressed data and allows paral-lel
ompression. The te
hniques used in this paper are fromInformation Theory and Finite Automata.Keywords| Data Compression, Lossless
ompression, In-formation Theory, Finite Automaton, Forbidden Word, Pat-tern Mat
hing. I. Introdu
tionWE present a simple text
ompression method
alledDCA (Data Compression with Antidi
tionaries)that uses some \negative" information about the text,whi
h is des
ribed in terms of antidi
tionaries. In
on-trast to other methods that make use, as a main tool, ofdi
tionaries, i.e., parti
ular sets of words o

urring as fa
-tors in the text (
f. [1℄, [2℄, [3℄, [4℄ and [5℄), our methodtakes advantage of words that do not o

ur as fa
tors inthe text, i.e., that are forbidden. Su
h sets of words are
alled here antidi
tionaries.We des
ribe a stati

ompression s
heme that runs inlinear time (Se
tions II and III) in
luding the
onstru
tionof antidi
tionaries (Se
tion V and Se
tion VI). Variationsusing statisti
al or dynami
al
onsiderations are dis
ussedin the
on
lusion (Se
tion VII)Let w be a text on the binary alphabet f0; 1g and letAD be an antidi
tionary for w. By reading the text w fromleft to right, if at a
ertain moment the
urrent pre�x v ofthe text has as suÆx a word u0 su
h that u = u0a 2 ADwith a 2 f0; 1g, i.e., u is forbidden, then surely the letterfollowing v in the text
annot be a and, sin
e the alpha-bet is binary, it is the letter b 6= a. In other terms, weknow in advan
e the next letter b, that turns out to beredundant or predi
table. The main idea of our methodis to eliminate redundant letters in order to a
hieve
om-pression. The de
oding algorithm re
overs the text w byDCA URL is http://www-igm.univ-mlv.fr/�ma
/DCA.htmlM. Cro
hemore, Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Fran
e. E-mail: Maxime.Cro
hemore�univ-mlv.fr.F. Mignosi, Universit�a degli Studi di Palermo, Italy and Bran-deis University, U.S.A. E-mail: mignosi�altair.math.unipa.it andmignosi�
s.brandeis.edu. Work partially supported by the CNR-NATO fellowship n. 215.31 and by the proje
t \Modelli innovativi di
al
olo: metodi sintatti
i e
ombinatori" MURST, Italy.A. Restivo, Universit�a degli Studi di Palermo, Italy. E-mail:restivo�altair.math.unipa.it. Work partially supported by the pro-je
t \Modelli innovativi di
al
olo: metodi sintatti
i e
ombinatori"MURST, Italy.S. Salemi, Universit�a degli Studi di Palermo, Italy. E-mail: sale-mi�altair.math.unipa.it. Work partially supported by the proje
t\Modelli innovativi di
al
olo: metodi sintatti
i e
ombinatori"MURST, Italy.

predi
ting the letter following the
urrent pre�x v of walready de
ompressed.The method proposed here presents some analogies withideas dis
ussed by C. Shannon at the very beginning ofInformation Theory. In [6℄ Shannon designed psy
holog-i
al experiments in order to evaluate the entropy of En-glish. One of su
h experiments was about the human abil-ity to re
onstru
t an English text where some
hara
terswere erased. A
tually our
ompression method erases some
hara
ters and the de
ompression re
onstru
t them.We prove (Se
tion IV) that the
ompression rate of our
ompressor rea
hes the entropy almost surely, providedthat the sour
e is balan
ed and produ
ed from a �nite an-tidi
tionary. This type of sour
e approximates a large
lassof sour
es, and
onsequently, a variant of the basi
 s
hemegives an optimal
ompression for them. The idea of usingantidi
tionaries is founded on the fa
t that there exists atopologi
al invariant for Dynami
al Systems based on for-bidden words, invariant that is independent of the entropy(
f. [7℄ and [8℄).The use of the antidi
tionary AD in
oding and de
odingalgorithms requires that AD must be stru
tured in order toanswer to the following query on a word v: does there ex-ists a word u = u0a, a 2 f0; 1g, in AD su
h that u0 isa suÆx of v? In the
ase of positive answer the outputshould also in
lude the letter b de�ned by b 6= a. One ofthe main features of our method is that we are able to im-plement eÆ
iently �nite antidi
tionaries in terms of �niteautomata. This leads to fast linear-time
ompression andde
ompression algorithms that
an be realized by sequen-tial transdu
ers (generalized sequential ma
hines). This isespe
ially relevant for �xed sour
es. It is then
omparableto the fastest
ompression methods be
ause the basi
 oper-ation at
ompression and de
ompression time is just tablelookup.A
entral notion of the present method is that of minimalforbidden words, whi
h allows to redu
e the size of anti-di
tionaries. This notion has also some interesting
ombi-natorial properties. Our
ompression method in
ludes al-gorithms to
ompute antidi
tionaries, algorithms that arebased on the above
ombinatorial properties and that aredes
ribed in detail in [9℄ and [10℄.The
ompression method shares also an interesting syn-
hronization property, in the
ase of �nite antidi
tionaries.It states that the en
oding of a blo
k of data does not de-pend on the left and right
ontexts ex
ept for a limited-sizepre�x of the en
oded blo
k. This is also helpful to sear
h
ompressed data and the same property allows to designeÆ
ient parallel
ompression algorithms.The paper is organized as follows.In Se
tion II we give the de�nition of Forbidden Wordsand of antidi
tionaries. We des
ribe DCA, our text
om-

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 181pression and de
ompression algorithms (binary oriented)assuming that the antidi
tionary is given. In Se
tion IIIwe des
ribe a data stru
ture for �nite antidi
tionaries thatallows us to answer in an eÆ
ient way the queries need-ed by our
ompression and de
ompression algorithms; weshow how to implement it given a �nite antidi
tionary. Inthe
ase of rational antidi
tionaries the
ompression is al-so des
ribed in terms of transdu
ers. We end the se
tionby proving the syn
hronization property. In Se
tion IVwe evaluate the
ompression rate of our
ompression al-gorithm relative to a given antidi
tionary. In Se
tion Vwe show how to
onstru
t antidi
tionaries for single wordsand sour
es. As a
onsequen
e we obtain a family of lin-ear time optimal algorithms for text
ompression that areuniversal for balan
ed Markov sour
es with �nite memo-ry. In Se
tion VI we give linear time improved algorithmsfor building antidi
tionaries for a stati
 approa
h. Theyuse the ideas of pruning and self-
ompressing. We dis
ussimprovements and generalizations in Se
tion VII.Some of the results present in this paper have been su
-
in
tly stated in [11℄.II. Basi
 AlgorithmsLet us �rst introdu
e the main ideas of our algorithmon its stati
 version. We dis
uss variations of this �rstapproa
h in Se
tion VII.Let w be a �nite binary word and let F (w) be the set offa
tors of w. For instan
e, if w = 01001010 then F (w) =f"; 0; 1; 00; 01; 10; 001; 010; : : : ; 01001010g where " denotesthe empty word.Let us take some words in the
omplement of F (w), i.e.,let us take some words that are not fa
tors of w and thatwe
all forbidden. This set of su
h words AD is
alled anantidi
tionary for the language F (w). Antidi
tionaries
anbe �nite as well in�nite. For instan
e, if w = 01001010the words 11, 000, and 10101 are forbidden and the setf11; 000; 10101g is an antidi
tionary for F (w). For in-stan
e, if w1 = 001001001001 the in�nite set of all wordsthat have two 1's as i-th and as i+2-th letter for some in-teger i, is an antidi
tionary for w1. We want here to stressthat an antidi
tionary
an be any subset of the
omple-ment of F (w). Therefore an antidi
tionary
an be de�nedby any property that
on
erns words.The
ompression algorithm treats the input word in anon-line manner. At a
ertain step in this pro
ess we haveread the word v proper pre�x of w. If there exists any wordu = u0a, a 2 f0; 1g, in the antidi
tionary AD su
h that u0 isa suÆx of v, then surely the letter following v
annot be a,i.e., the next letter is b, b 6= a. In other words, we know inadvan
e the next letter b that turns out to be \redundant"or predi
table. Remark that this argument works only inthe
ase of binary alphabets.The main idea in the algorithm we des
ribe is to elim-inate redundant letters. In what follows we �rst des
ribethe
ompression algorithm, En
oder, and then the de-
ompression algorithm, De
oder. The word to be
om-pressed is noted w = a1 � � �an and its
ompressed versionis denoted by
(w).

En
oder (antidi
tionary AD, word w 2 f0; 1g�)1. v ";
 ";2. for a �rst to last letter of w3. if for every suÆx u0 of v, u00;u01 62 AD4.

:a;5. v v:a;6. return (jvj,
);As an example, let us run the algorithm En
oder onthe string w = 01001010 with the antidi
tionary AD =f000; 10101; 11g. The steps of the treatment are de-s
ribed in the next array by the
urrent values of the pre�xvi = a1 � � �ai of w that has been just
onsidered and of theoutput
(w). In the
ase of positive answer to the query tothe antidi
tionary AD, the array also indi
ates the value ofthe
orresponding forbidden word u. The number of timesthe answer is positive in a run
orresponds to the numberof bits erased."
(w) = "v1 = 0
(w) = 0v2 = 01
(w) = 01 u = 11 2 ADv3 = 010
(w) = 01v4 = 0100
(w) = 010 u = 000 2 ADv5 = 01001
(w) = 010 u = 11 2 ADv6 = 010010
(w) = 010v7 = 0100101
(w) = 0101 u = 11 2 ADv8 = 01001010
(w) = 0101 u = 10101 2 ADv9 = 010010100
(w) = 0101 u = 000 2 ADv10 = 0100101001
(w) = 0101 u = 11 2 ADRemark that the fun
tion
 is not inje
tive.For instan
e
(01) =
(010) = 01.In order to have an inje
tive mapping we
an
onsid-er the fun
tion
0(w) = (jwj;
(w)). In this
ase we
anre
onstru
t the original word w from both
0(w) and theantidi
tionary.The de
oding algorithm works as follow. The
om-pressed word is
(w) = b1 � � � bh and the length of w isn. The algorithm re
overs the word w by predi
ting theletter following the
urrent pre�x v of w already de
om-pressed. If there exists one word u = u0a, a 2 f0; 1g, in theantidi
tionary AD su
h that u0 is a suÆx of v, then, theoutput letter is b, b 6= a. Otherwise, the next letter is readfrom the input
.De
oder (antidi
tionary AD, word
 2 f0; 1g�,integer n)1. v ";2. while jvj < n3. if for some u0 suÆx of v and a 2 f0; 1g, u0abelongs to AD4. v v � :a;5. else6. b next letter of
;7. v v � b;8. return (v);The antidi
tionary AD must be stru
tured in order to an-swer to the following query on a word v: does there exist

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 182one word u = u0a, a 2 f0; 1g, in AD su
h that u0 is a suÆxof v? In
ase of a positive answer the output should alsoin
lude the letter b de�ned by b 6= a. Noti
e that the lettera
onsidered at line 3 is unique be
ause, at this point, theend of the text w has not been rea
hed so far.In this approa
h, where the antidi
tionary is stati
 andavailable to both the en
oder and the de
oder, the en
odermust send to the de
oder the length of the word jwj, inaddition to the
ompressed word
(w), in order to give tothe de
oder a \stop"
riterion. Slight variations of the pre-vious
ompression-de
ompression algorithm
an be easilyobtained by giving other \stop"
riteria: For instan
e, theen
oder
an send the number of letters that the de
oder hasto re
onstru
t after that the last letter of the
ompressedword
(w) has been read. Or the en
oder
an let the de-
oder stop when there is no more letter available in
 (line6), or when both letters are impossible to be re
onstru
teda

ording to AD. Doing so, the en
oder must send to thede
oder the number of letters to erase in order to re
overthe original message. For su
h variations antidi
tionaries
an be stru
tured to answer slightly more
omplex queries.Sin
e we are
onsidering here the stati

ase, the en
odermust send to the de
oder the antidi
tionary unless the de-
oder has already a
opy of the antidi
tionary or it hasan algorithmi
 way to re
onstru
t the antidi
tionary fromsome previously a
quired information.The method presented here brings to mind some ideasproposed by C. Shannon at the very beginning of Informa-tion Theory. In [6℄ Shannon designed psy
hologi
al exper-iments in order to evaluate the entropy of English. One ofsu
h experiments was about the human ability to re
on-stru
t an English text where some
hara
ters were erased.A
tually our
ompression methods erases some
hara
tersand the de
ompression re
onstru
t them. For instan
e inprevious example the input string is 01�00�1�01�0�0�1, wherebars indi
ate whi
h letters are erased during the
ompres-sion.In order to get good
ompression rates (at least in thestati
 approa
h when the antidi
tionary has to be sent) weneed to minimize in parti
ular the size of the antidi
tionary.Remark that if there exists a forbidden word u = u0a,a 2 f0; 1g in the antidi
tionary su
h that u0 is also for-bidden then our algorithm will never use this word u inthe algorithms. So that we
an erase this word from theantidi
tionary without any loss for the
ompression of w.This argument leads to
onsider the notion of minimal for-bidden word with respe
t to a fa
torial language L, and thenotion of anti-fa
torial language, points that are dis
ussedin the next se
tion.III. Implementation of Finite Antidi
tionariesWhen the antidi
tionary is a �nite set, the queries on theantidi
tionary required by the algorithms of the previousse
tion are realized as follows. We build a deterministi
automaton a

epting the words having no fa
tor in the an-tidi
tionary. Then, while reading the text to en
ode, if atransition leads to a sink state, the output is the other let-ter. We denote by A(AD) the automaton built from the

antidi
tionary AD. An algorithm to build A(AD) is de-s
ribed in [9℄ and [10℄. The same
onstru
tion has beendis
overed by Cho�rut et al. [12℄, it is similar to a des
rip-tion given by Aho and Corasi
k ([13℄, see [14℄), by Diekertet al. [15℄, and it is related to a more general
onstru
tiongiven in [16℄.The required automaton a

epts a fa
torial language L.Re
all that a language L is fa
torial if L satis�es the fol-lowing property: for any words, u, v, uv 2 L) u 2 Land v 2 L. The
omplement language L
 = A� n L is a(two-sided) ideal of A�. Denoting by MF (L) the base ofthis ideal, we have L
 = A�MF (L)A�. The set MF (L) is
alled the set of minimal forbidden words for L. A wordv 2 A� is forbidden for the fa
torial language L if v 62 L,whi
h is equivalent to say that v o

urs in no word of L.In addition, v is minimal if it has no proper fa
tor that isforbidden.One
an note that the set MF (L) uniquely
hara
terizesL, just be
ause L = A� n A�MF (L)A�: This set MF (L)is an anti-fa
torial language or a fa
tor
ode, whi
h meansthat it satis�es: 8u; v 2 MF (L); u 6= v =) u is not a fa
torof v, property that
omes from the minimality of words ofMF (L). Indeed, there is a duality between fa
torial andanti-fa
torial languages, be
ause we also have the equality:MF (L) = AL\LA\(A�nL): In view of the remark made atthe end of the previous se
tion, from now on in the paperwe
onsider only antidi
tionaries that
onsist of minimalforbidden words. Thus they are anti-fa
torial languages.Figure 1 displays the trie that a

epts the anti-fa
toriallanguage AD = f000; 10101; 11g. The automaton pro-du
ed from the trie is shown in Figure 2.m1 m2 3m0 m4 m5 m6 m7 89�����0 -0 -0-1 -0 -1 -0 -1����R1Fig. 1. Trie of the fa
tor
ode f000; 10101; 11g. Squares representterminal states.The following theorem is proved in [10℄. It is based onan algorithm
alled L-automaton that has as (�nite) in-put AD in the form of a trie T . It is straigthforward toget T if AD is given in the form of a list of words. Thealgorithm
an be adapted to test whether T represents ananti-fa
torial set, to generate the trie of the anti-fa
toriallanguage asso
iated with a set of words, or even to buildthe automaton asso
iated with the anti-fa
torial language
orresponding to any set of words.Theorem 1: The
onstru
tion of A(AD) from T
an berealized in linear time.We report here, for sake of
ompleteness, the algorithmL-automaton des
ribed in [10℄. Its input, the trie T thatrepresents AD, is a tree-like automaton a

epting the set

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 183m1 m2 3m0 m4 m5 m6 m7 89�����0 -0 -0-1 -0 -1 -0 -1����R1 ����	 1?1 ����	 1 60 HHHHHHHHHY 0� �	�0,1 � �	�0,1

 	��0,1Fig. 2. Automaton a

epting the words that avoid the setf000; 10101; 11g. Squares represent non-terminal states (sink s-tates).AD and, as su
h, it is noted (Q;A; i; T; Æ0). The set T ofterminal states is the set of leaves of the trie.The algorithm uses a fun
tion f
alled a failure fun
tionand de�ned on states of T as follows. States of the trie Tare identi�ed with the pre�xes of words in AD. For a stateau (a 2 A, u 2 A�), f(au) is the longest suÆx of u that is astate of the trie T , a word that may happen to be u itself.This state is also Æ(i; u), where Æ is the transition fun
tionof A(AD), and this
an be easily proved by indu
tion onthe length of u. Note that f(i) is unde�ned, whi
h justi�esa spe
i�
 treatment of the initial state in the algorithm.L-automaton (trie T = (Q;A; i; T; Æ0))1. for ea
h a 2 A2. if Æ0(i; a) de�ned3. Æ(i; a) Æ0(i; a);4. f(Æ(i; a)) i;5. else6. Æ(i; a) i;7. for ea
h state p 2 Q n fig in width-�rstsear
h and ea
h a 2 A8. if Æ0(p; a) de�ned9. Æ(p; a) Æ0(p; a);10. f(Æ(p; a)) Æ(f(p); a);11. else if p 62 T12. Æ(p; a) Æ(f(p); a);13. else14. Æ(p; a) p;15. return (Q;A; i;Q n T; Æ);A. Transdu
ersFrom the automaton A(AD) we
an easily
onstru
t a(�nite-state) transdu
er B(AD) that realizes the
ompres-sion algorithm En
oder, i.e., that
omputes the fun
tion
. The input part of B(AD)
oin
ides with A(AD), withsink states removed, and the output is given as follows: ifa state of A(AD) has two outgoing edges, then the outputlabels of these edges
oin
ide with their input label; if astate of A(AD) has only one outgoing edge, then the out-put label of this edge is the empty word. The transdu
erB(AD) works as follows on an input string w. Considerthe (unique) path in B(AD)
orresponding to w. The let-

ters of w that
orrespond to an edge that is the uniqueoutgoing edge of a given state are erased; other letters areun
hanged.We
an then state the following theorem.Theorem 2: Algorithm En
oder
an be realized by asequential transdu
er (generalized sequential ma
hine).Con
erning the algorithm De
oder, remark (see Se
-tion II) that the fun
tion
 is not inje
tive and that weneed some additional information, for instan
e the lengthof the original un
ompressed word, in order to re
onstru
tit without ambiguity. Therefore, De
oder
an be realizedby the same transdu
er as above, by inter
hanging inputand output labels (denote it by B0(AD)), with a supple-mentary instru
tion to stop the de
oding.Let Q = Q1 [Q2 be a partition of the set of statesQ, where Qj is the set of states having j outgoing edges(j = 1; 2). For any q 2 Q1, de�ne p(q) = (q; q1; : : : ; qr) asthe unique path in the transdu
er for whi
h qh 2 Q1 forh < r and qr 2 Q2.Given an input word v = b1b2 : : : bm, there exists inB0(AD) a unique path i; q1; : : : ; qm0 su
h that qm0�1 2 Q2and the transition from qm0�1 to qm0
orrespond to theinput letter bm. If qm0 2 Q2, then the output word
orre-sponding to this path in B0(AD) is the unique word w su
hthat
(w) = v. If qm0 2 Q1, then we
an stop the de
odingalgorithm realized by B0(AD) in any state q 2 p(qm0), and,for di�erent states, we obtain di�erent de
odings. So weneed supplementary information (for instan
e, the length ofthe original un
ompressed word) to perform the de
oding.In this sense we
an say that B0(AD) realizes sequentiallythe algorithm De
oder (
f. also [17℄).The
onstru
tions and the results given above on �niteantidi
tionaries and transdu
ers
an be generalized also tothe
ase of rational antidi
tionaries, or, equivalently, whenthe set of words \produ
ed by the sour
e" is a regular (ra-tional) language. In these
ases it is not, in a stri
t sense,ne
essary to introdu
e expli
itly antidi
tionaries and al-l the methods
an be presented in terms of automata andtransdu
ers, as above. Remark however that the presenta-tion given in Se
tion II in terms of antidi
tionaries is moregeneral, sin
e it in
ludes the non rational
ase. Moreover,even in the �nite
ase, the
onstru
tion of automata andtransdu
ers from a �xed text, given in the next se
tion,makes an expli
it use of the notion of minimal forbiddenwords and of antidi
tionaries.B. A Syn
hronization PropertyIn the sequel we prove a syn
hronization property ofautomata built from �nite antidi
tionaries, as des
ribedabove. This property also \
hara
terizes" in some sense�nite antidi
tionaries. This property is a
lassi
al one andit is of fundamental importan
e in pra
ti
al appli
ations.De�nition 1: Given a deterministi
 �nite automatonA, we say that a word w = a1 � � � ak is syn
hronizingfor A if, whenever w represents the label of two paths(q1; a1; q2) � � � (qk; ak; qk+1) and (q01; a1; q02) � � � (q0k; ak; q0k+1)of length k, then the two ending states qk+1 and q0k+1 areequal.

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 184If L(A) is fa
torial, any word that does not belong toL(A) is syn
hronizing. Clearly in this
ase syn
hronizingwords in L(A) are mu
h more interesting. Remark alsothat, sin
e A is deterministi
, if w is syn
hronizing for A,then any word w0 = wv that has w as pre�x is also syn-
hronizing for A.De�nition 2: A deterministi
 �nite automaton A is lo
alif there exists an integer k su
h that any word of length kis syn
hronizing. Automaton A is also
alled k-lo
al.Remark that if A is k-lo
al then it ism-lo
al for anym � k.Given a �nite antifa
torial language AD, let A(AD) bethe automaton asso
iated with AD that re
ognizes the lan-guage L(AD). Let us eliminate the sink states and edgesgoing to them. Sin
e there is no possibility of misunder-standing, we denote the resulting automaton by A(AD)again. Noti
e that it has no sink state, that all states areterminal, and that L(A(AD)) is fa
torial.Theorem 3: Let AD be a �nite antifa
torial antidi
-tionary and let k be the length of the longest word in AD.Then automaton A(AD) asso
iated to AD is (k � 1)-lo
al.Proof: Let u = a1 � � � an�1 be a word of lengthn� 1. We have to prove that u is syn
hronizing. Supposethat there exist two paths (q1; a1; q2) � � � (qn�1; an�1; qn)and (q01; a1; q02) � � � (q0n�1; an�1; q0n) of length n � 1 labeledby u. We have to prove that the two ending states qn andq0n are equal. Re
all that states of A are words, and, morepre
isely they are the proper pre�xes of words in AD. Asimple indu
tion on i, 1 � i � n shows that qi (respe
tivelyq0i) \is" the longest suÆx of the word q1a1 � � � ai (respe
tive-ly q01a1 � � � ai) that is also a \state", i.e., a proper pre�x ofa word in AD. Hen
e qn (respe
tively q0n) is the longest suf-�x of the word q1u (respe
tively q01u) that is also a properpre�x of a word in AD. Sin
e all proper pre�xes of words inAD have length at most n� 1, both qn and q0n have lengthat most n� 1. Sin
e u has length n� 1, both they are thelongest suÆx of u that is also a proper pre�x of a word inAD, i.e., they are equal.In other terms, the theorem says that only the last k �1 bits matter for determining whether AD is avoided ornot. The theorem admits a \
onverse" that shows thatlo
ality
hara
terizes in some sense �nite antidi
tionaries(
f. Propositions 2.8 and 2.14 of [18℄).Theorem 4: If automaton A is lo
al and L(A) is a fa
-torial language then there exists a �nite antifa
torial lan-guage AD su
h that L(A) = L(AD).Let AD be an antifa
torial antidi
tionary and let k be thelength of the longest word in AD. Let also w = w1uvw2 2L(AD) with juj = k� 1 and let
(w) = y1y2y3 be the wordprodu
ed by our en
oder of Se
tion II with input AD andw. The word y1 is the word produ
ed by our en
oder afterpro
essing w1u, the word y2 is the word produ
ed by ouren
oder after pro
essing v and the word y3 is the wordprodu
ed by our en
oder after pro
essing w2.The proof of next theorem is an easy
onsequen
e ofprevious de�nitions and of the statement of Theorem 3.Theorem 5: The word y2 depends only on the word uvand it does not depend on the
ontexts of it, w1 and w2.

The property stated in the theorem has an interesting
onsequen
e for the design of pattern mat
hing algorithmson words
ompressed by the algorithm En
oder. It im-plies that to sear
h the
ompressed word for a pattern, itis not ne
essary to de
ode the whole word. Just a limitedleft
ontext of an o

urren
e of the pattern needs to bepro
essed. The same property allows the design of highlyparallelizable
ompression algorithms. The idea is that the
ompression
an be performed independently and in par-allel on any blo
k of data. If the text to be
ompressed isparsed into blo
ks of data in su
h a way that ea
h blo
koverlaps the next blo
k by a length not smaller than thelength of the longest word in the antidi
tionary, then it ispossible to run the whole
ompression pro
ess in parallel.IV. Effi
ien
yIn this se
tion we evaluate the eÆ
ien
y of our
ompres-sion algorithm relatively to a sour
e
orresponding to the�nite antidi
tionary AD.Indeed, the antidi
tionary AD naturally de�nes a sour
eS(AD) in the following way. Let A(AD) be the automa-ton
onstru
ted in the previous se
tion with no sink statesand re
ognizing the fa
torial language L(AD) (all states areterminal). To avoid trivial
ases, we suppose that in thisautomaton all the states have at least one outgoing edge.Re
all that sin
e our algorithms work on a binary alphabet,all states have at most two outgoing edges.For any state of A(AD) with only one outgoing edge wegive to this edge probability 1. For any state of A(AD)with two outgoing edge we give to these edges probabili-ty 1=2. This de�nes a deterministi
 (or uni�lar,
f. [19℄)Markov sour
e, denoted S(AD). Noti
e also that, by The-orem 3, that S(AD) is a Markov sour
e of �nite order or�nite memory (
f. [19℄). We
all a binary Markov sour
ewith this probability distribution an balan
ed sour
e.Remark that our
ompression algorithm is de�ned exa
t-ly for all the words \emitted" by S(AD).In what follows we suppose that the graph of the sour
eS, i.e., the graph of automaton A(AD), is strongly
onne
t-ed. The results that we prove
an be extended to the gen-eral
ase by using standard te
hniques of Markov Chains(
f. [19℄, [20℄, [21℄ and [22℄). Re
all (
f. Theorem 6.4.2of [19℄) that the entropy H(S) of a deterministi
 Markovsour
e S is H(S) = ��ni;j=1�i
i;j log2(
i;j); where (
i;j) isthe sto
hasti
 matrix of S and (�1; � � � ; �n) is the stationarydistribution of S.We now state three lemmas.Lemma 1: The entropy of a balan
ed sour
e S is givenby H(S) = �i2D�i where D is the set of all states thathave two outgoing edges.Proof: By de�nitionH(S) = ��ni;j=1�i
i;j log2(
i;j):If i is a state with only one outgoing edge, by de�nitionthis edge must have probability 1. Then �j�i
i;j log2(
i;j)redu
es to �i log2(1), that is equal to 0. Hen
eH(S) = ��i2D�nj=1�i
i;j log2(
i;j):

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 185Sin
e from ea
h i 2 D there are exa
tly two outgoingedges having ea
h probability 1=2, one hasH(S) = ��i2D2�i(1=2) log2(1=2) = �i2D�ias stated.Lemma 2: Let w = a1 � � � am be a word in L(AD) and letq1 � � � qm+1 be the sequen
e of states in the path determinedby w in A(AD) starting from the initial state. The lengthof
(w) is equal to the number of states qi, i = 1; : : : ;m,that belong to D, where D is the set of all states that havetwo outgoing edges.Proof: The statement is straightforward from thedes
ription of the
ompression algorithm and the imple-mentation of the antidi
tionary with automaton A(AD).Through a well-known results on \large deviations" (
f.Problem IX.6.7 of [23℄), we get a kind of optimality of the
ompression s
heme.Let q= q1; � � � qm be the sequen
e of m states of a path ofA(AD) and let Lm;i(q) be the frequen
y of state qi in thissequen
e, i.e., Lm;i(q) = mi=m, where mi is the numberof o

urren
es of qi in the sequen
es q. Let also Xm(�) =f q j q has m states and maxi jLm;i(q)� �ij � �g; whereq represents a sequen
e of m states of a path in A(AD).In other words, Xm(�) is the set of all sequen
es of statesrepresenting path in A(AD) that \deviate" at least of � inat least one state qi from the theoreti
al frequen
y �i.Lemma 3: For any � > 0, the set Xm(�) satis�es theequality lim 1m log2Pr(Xm(�)) = �
(�); where
(�) is a posi-tive
onstant depending on �.We now state the main theorem of this se
tion. Theproof of it uses the three previous lemmas. It states thatfor any � the probability that the
ompression rate �(v) =j
(v)j=jvj of a string of length n is greater thanH(S(AD))+�, goes exponentially to zero. Hen
e, as a
orollary, almostsurely the
ompression rate of an in�nite sequen
e emittedby S(AD) rea
hes the entropy H(S(AD)), that is the bestpossible result.Theorem 6: Let Km(�) be the set of words w of lengthmsu
h that the
ompression rate �(v) = j
(v)j=jvj is greaterthan H(S(AD))+�. For any � > 0 there exist a real numberr(�), 0 < r(�) < 1, and an integer m(�) su
h that for anym > m(�), Pr(Km(�)) � r(�)m:Proof: Let w be a word of length m in the languageL(AD) and let q1; � � � ; qm+1 be the sequen
e of states in thepath determined by w in A(AD) starting from the initialstate. Let q= (q1; � � � ; qm) be the sequen
e of the �rst mstates. We know, by Lemma 2, that the length of
(w)is equal to the number of states qi, i = 1 � � �m, in q thatbelong to D, where D is the set of all states having twooutgoing edges.If w belongs toKm(�), i.e., if the
ompression rate �(v) =j
(v)j=jvj is greater than H(S(AD)) + �, then there mustexists an index j su
h that Lm;j(q) > �j + �=jDj. In fa
t,if for all j, Lm;j(q) � �j + �=jDj then, by de�nitions andby Lemma 1,�(v) = �j2DLm;j(q) � �j2D�j + � = H(S(AD)) + �;

a
ontradi
tion. Therefore the sequen
e of states q belongsto Xm(�=d). Hen
e Pr(Km(�)) � Pr(Xm(�=d)).By Lemma 3, there exists an integer m(�) su
h that forany m > m(�) one has1m log2Pr(Xm(�d)) � �12
(�d):Then Pr(Km(�)) � 2�(1=2)
(�=d)m. If we set r(�) =2�(1=2)
(�=d), the statement of the theorem follows.Theorem 7: The
ompression rate �(x) of an in�nite se-quen
e x emitted by the sour
e S(AD) rea
hes the entropyH(S(AD)) almost surely.V. How to build Antidi
tionariesIn pra
ti
al appli
ations the antidi
tionary might not begiven a priori but it must be derived either from the textto be
ompressed or from a family of texts belonging to theassumed sour
e of the text to be
ompressed.There exist several
riteria to build eÆ
ient antidi
-tionaries, depending on di�erent aspe
ts or parameters thatone wishes to optimize in the
ompression pro
ess. Ea
h
riterion gives rise to di�erent algorithms and implementa-tions.All our methods to build antidi
tionaries are based ondata stru
tures to store fa
tors of words, su
h as suÆxtries, suÆx trees, DAWGs, and suÆx and fa
tor automata(see for instan
e Theorem 15 in [10℄). In these stru
tures,it is possible to
onsider a notion of suÆx link. This linkis essential to design eÆ
ient algorithms to build represen-tations of sets of minimal forbidden words in term of triesor trees. This approa
h leads to
onstru
tion algorithm-s that run in linear time in the length of the text to be
ompressed.A rough solution to
ontrol the size of antidi
tionariesis obviously to bound the length of words in the antidi
-tionary. A better solution in the stati

ompression s
hemeis to prune the trie of the antidi
tionary with a
riterionbased on the tradeo� between the spa
e of the trie to besent and the gain in
ompression, this will be developed innext se
tion. However, the �rst solution is enough to get
ompression rates that rea
h asymptoti
ally the entropyfor balan
ed sour
es, even if this is not true for generalsour
es. Both solutions
an be designed to run in lineartime.We present in this se
tion a very simple
onstru
tion tobuild �nite antidi
tionaries of a �nite word w. It is thebase on whi
h several variations are developed. The idea isto build the automaton a

epting the words having samefa
tors of w of length k and, from this, to build the setof minimal forbidden words of length k of the word w. It
an be used as a �rst step to build antidi
tionaries for �xedsour
es. In this
ase our s
heme
an be
onsidered as a stepfor a
ompressor generator (
ompressor
ompiler). In thedesign of a
ompressor generator, or
ompressor
ompiler,statisti
al
onsiderations and the possibility of making "er-rors" in predi
ting the next letter play an important role,as dis
ussed in Se
tion VII.

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 186Algorithm Build-AD des
ribed hereafter builds the setof minimal forbidden words of length k (k > 0) of the wordw. It takes as input an automaton a

epting the wordsthat have the same fa
tors of length k (or less) as w, i.e.,a

epting the languageLk = fx 2 f0; 1g� j (u 2 F (x) and juj � k)) u 2 F (w)g:The prepro
essing of the automaton is done by the al-gorithm Build-Fa
t whose
entral operation is des
ribedby the fun
tion Next.Build-Fa
t (word w 2 f0; 1g�, integer k > 0)1. i new state; Q fig;2. level(i) 0;3. p i;4. while not end of string w5. a next letter of w;6. p Next(p; a; k);7. return trie (Q; i;Q; Æ), fun
tion f ;Next (state p, letter a, integer k > 0)1. if Æ(p; a) de�ned2. return Æ(p; a);3. else if level (p) = k4. return Next(f(p); a; k);5. else6. q new state; Q Q [fqg;7. level(q) level (p) + 1;8. Æ(p; a) q;9. if (p = i) f(q) i;10. else f(q) Next(f(p); a; k);11. return q;Build-AD (trie (Q; i;Q; Æ), fun
tion f , integer k > 0)1. T ;; Æ0 Æ;2. for ea
h p 2 Q, 0 < level(p) < k, in breadth-�rstorder3. for a 0 then 14. if Æ(p; a) is unde�ned and Æ(f(p); a) isde�ned5. q new state; T T [fqg;6. Æ0(p; a) q;7. Q Q n fstates of Q from whi
h no Æ0-pathleads to Tg8. return trie (Q [T; i; T; Æ0);The automaton is represented by both a trie and its fail-ure fun
tion f . If p is a node of the trie asso
iated withthe word av, v 2 f0; 1g� and a 2 f0; 1g, f(p) is the nodeasso
iated with v. This is a standard te
hnique used inthe
onstru
tion of suÆx trees (see [24℄ for example). Itis used here in algorithm Build-AD (line 4) to test theminimality of forbidden words a

ording to the equalityMF (L) = AL \ LA \ (A� n L).The above
onstru
tion gives rise to the following stat-i

ompression s
heme in whi
h we need to read the text

twi
e, the �rst time to
onstru
t the antidi
tionary AD andthe se
ond time to en
ode the text.Informally, the en
oder sends a message z of the form(x; y; �(n)) to the de
oder, where x is a des
ription of theantidi
tionary AD, y is the text
oded a

ording to AD, asdes
ribed in Se
tion II, and �(n) is the usual binary
odeof the length n of the text. The de
oder �rst re
onstru
t-s from x the antidi
tionary and then de
odes y a

ordingto the algorithm in Se
tion II. The antidi
tionary AD is
omposed in this simple
ompression s
heme by all mini-mal forbidden words of length k of w, but other intelligent
hoi
es of subsets of AD are possible. We
an des
ribe theantidi
tionary AD for instan
e by
oding with standardte
hniques the trie asso
iated with AD to obtain the wordx. A basi
 question is how fast must grow the number kas fun
tion of the length n of the word w. In this simple
ompression s
heme we
hoose k to be any fun
tion su
hthat one has that jxj = o(n), but other
hoi
es are possible.Sin
e the
ompression rate is the size jzj of z divided bythe length n of the text, we have that jzj=n = jyj=n+o(n).Assuming that for n and k large enough the sour
e S(AD),as in Se
tion IV, approximates the sour
e of the text, then,by the results of Se
tion IV, the
ompression rate is \opti-mal".For instan
e, suppose that w is emitted by an balan
edMarkov sour
e S with memory h, and let L be the formallanguage
omposed of all �nite words that
an be emit-ted by S. By Theorem 4 there exists a �nite antifa
toriallanguage N su
h that L = L(N). Moreover, sin
e S hasmemory h, the words in N have length smaller than or e-qual to h+1. If jwj is su
h that k > h then AD
ontains Nand, therefore H(S(AD)) � H(S(N)) = H(S). By Corol-lary 1 we
an dedu
e that this simple
ompression s
hemeturns out to be universal for the family of balan
ed Markovsour
es with �nite memory (
f. [25℄).Let w= a1a2 � � � be a binary in�nite word that is periodi
(i.e., there exists integer P > 0 su
h that for any index ithe letter ai is equal to the letter ai+P), and let wn be thepre�x of w of length n. We want to
ompress the word wnfollowing our simple s
heme informally des
ribed above.It is not diÆ
ult to prove that the
ompression rate forwn is jzj=n = O(�(n)) = O(log2(n)), whi
h means that thes
heme
an a
hieve an exponential
ompression.VI. Pruning Antidi
tionariesIn this se
tion, as well as in previous se
tion, we
onsidera stati

ompression s
heme in whi
h we need to read thetext twi
e: the �rst time to
onstru
t the antidi
tionaryAD and the se
ond time to en
ode the text.In this se
tion, however, we suppose that we have enoughresour
es to build, in linear time, a suÆx or a fa
tor au-tomaton (or their
ompa
ted version,
f. [26℄) of the �nitetext string to be
ompressed. From these stru
tures we
an obtain in linear time a trie representating of all mini-mal forbidden words of the text (
f. [10℄). It
an be shownthat the total length of all minimal forbidden words
an bequadrati
 in the size of the original text. However the trierepresenting these words is of linear size. It is
lear that if

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 187we want to get good
ompression ratios not all the minimalforbidden words should be
onsidered.The �rst idea developed in this se
tion is to prune thetrie of the antidi
tionary with some
riteria based on thetradeo� between the spa
e of the trie to be sent and thegain in
ompression. Clearly, the spa
e of the trie to besent stri
tly depend on how we en
ode the trie.Using a
lassi
al approa
h, in this se
tion we re
all thata binary tree that has k nodes
an be en
oded using twobits for ea
h node, whi
h gives 2k bits for the whole tree.Indeed, depending on whether a subtree S of a binary treeT has both subtrees, only the right subtree, only the leftsubtree, or no subtree, the root of S
an be en
oded respe
-tively by the strings 11, 10, 01, 00. This is done re
ursivelyin a pre�x traversal of the whole tree. All the results p-resented in this se
tion
an be easily extended to the
asewhen a node of the trie
an be en
oded using � bits forea
h node, where � is a positive real number.The se
ond idea presented afterwards is to
ompressthe words retained in the antidi
tionary using the anti-di
tionary itself.The two operations, pruning and self
ompressing,
anbe applied iteratively on antidi
tionaries. They lead tovery
ompa
t representations of antidi
tionaries, produ
inghigher
ompression ratios.A. Pruned Antidi
tionaryA linear-time algorithm for obtaining the trie T of allminimal forbidden word of a �xed text t
an be found in[10℄. Hen
e we suppose here that we have this trie T .In order to make a tradeo� between the spa
e of thetrie to be sent and the gain in
ompression, we have toknow how mu
h ea
h forbidden word
ontributes to the
ompression. Minimal forbidden words of text t
orrespondin a bije
tive way to the leaves of the trie T , i.e. withany leave q of the tree we
an asso
iate the
orrespondingminimal forbidden word w(q). Indeed if we identify, asin Se
tion III, the nodes of the trie T to the pre�xes ofthe minimal forbidden words, then the fun
tion w is theidentity.We de�ne a
ost fun
tion
 that asso
iates with any leaf qof T the number of bits
(q) that the word w(q)
ontributesto erase during the
ompression of the text t. This number
(q) is also the number of times that the longest properpre�x of w(q) appears in text t as a fa
tor but not as asuÆx. In another words, the number
(q) is the numberof times that a state p is traversed while reading the textt in the automaton A(AD), where p leads to state q bysome letter a (
f. Se
tion III and Theorem 1). Indeedthe last letter of the text is not
onsidered in this pro
essbe
ause there is nothing to erase after it. By Theorem 1,the fun
tion

an be
omputed in linear time.We further de�ne the gain (saving) of a subtree S of thetrie T representing an antidi
tionary T as g(S) = �(
(q) jq leaf of S)� 2mS where mS is the number of nodes of S.Indeed the number of bits that have to be sent after
ompression is
omposed of: 2blogn
 bits to en
ode the

length n of the text t (
f. the
as
ading lengths te
hniquein [4℄ and referen
es therein); 2mT bits for a des
riptionof the antidi
tionary T ; j
(t)j bits for the text
ompressedusing T . The overall size is2blogn
+ 2mT + j
(t)j = 2blogn
+ n� g(T)by de�nition of g(T).Sin
e 2blogn
+ n is �xed and sin
e the gain g(T) is thesum of the gain of its subtrees minus 2 bits (for en
odingthe root), then pruning subtrees of T that have a negativegain in
reases the gain of T and,
onsequently, de
reasesthe overall number of bits that have to be sent after
om-pression.Suppose however that S2 is a subtree of S1 whi
h is, inturn, a subtree of the trie T . Suppose further that S2 hasa negative gain and the same holds for S1, but that S1 hasa positive gain if S2 is pruned from it. In this
ase, in orderto obtain better
ompression ratios, the best thing to dois to prune S2 and not the whole S1. It is thus naturalto
onsider the optimization problem related to an absta
tnon-negative fun
tion
 (de�ned on leaves of T) where oneinstan
e is a trie T representing a pre�x
ode C, and asolution is a trie T 0 that represents a subset of C and thatmaximizes the gain g(T 0).In what follows we show that a bottom-up approa
h givesa linear-time solution to this problem.With any subtree S of T we asso
iate the fun
tion g0,
alled the pruned gain, that is de�ned byg0(S) = 8><>: 0 if S is empty
(S)� 2 if S is a leafg0(S1)� 2 if S has one
hild S1Mwhere M = max(g0(S1); g0(S2); g0(S1) + g0(S2)) � 2, withS1 and S2
hildren of S.From the above de�nition it is not diÆ
ult to see thatit is possible to
ompute fun
tion g0 in linear time withrespe
t to the size of the trie T , in a bottom-up traversalof the trie.We
an now present the simple pruning algorithm.Simple Pruning (trie T , fun
tion
)1.
ompute g0(S) for ea
h subtree S of T ;2. eliminate subtrees S of T for whi
h g0(S) � 0;3. return modi�ed trie T ;The following proposition is a
onsequen
e of the de-s
riptions given above, and the next theorem shows thatthe output of the algorithm gives a solution to the opti-mization problem des
ribed above.Proposition 1: Algorithm Simple Pruning
an be per-formed in linear time.Theorem 8: Let T be a trie representing a pre�x
ode Cand let
 be a non-negative fun
tion de�ned on leaves of T .The output T 0 of algorithm Simple Pruning representsa subset of C and g0(T 0) is maximum. Moreover we havethat g(T 0) = g0(T 0).

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 188Proof: First of all we
laim that the trie T 0 outputby algorithm Simple Pruning represents a subset of C.Indeed, by the de�nition of g0 it follows that if a subtreeS of T is not a leaf and if g0(S) > 0, then S must have atleast one
hild S1 with positive pruned gain, i.e. g0(S1) >0. This fa
t implies that all leaves of T 0 are leaves of T ,proving the
laim.The rest of the proof is done by indu
tion on the height ofT . If T is empty there is nothing to prove. If T has height0 then T is a leaf and we already have g(T) = g0(T). Ifg(T) > 0, T itself is equal to T 0, otherwise T 0 is the emptytree. In both
ases the statement of the theorem is satis�ed.Suppose now that T has height > 0. Either it has justone
hild S1 or it has two
hildren S1 and S2.Suppose that T has two
hildren S1 and S2. Si; theyare both tries and we
an asso
iate to them the restri
tionof the fun
tion gain to all subtrees. By applying algorithmSimple Pruning with input Si, i = 1; 2, and fun
tion
(restri
ted to leaves of
orresponding subtrees), we obtainas output a modi�ed trie S0i. By indu
tion we know thatg(S0i) = g0(S0i) and that this value maximizes the fun
tiongain. Therefore, if both g(S01) and g(S02) are positive, a trieT 0 representing a subset of C and maximizing the fun
tiongain is the trie that has the same root as T and has
hildrenS01 and S02. Moreover g(T 0) = g0(T 0) and algorithm SimplePruning does not prune S1 and S2 from T 0 so the theoremis proved in this
ase.The other
ases, (g(S1) � 0 and g(S2) > 0), (g(S1) >0 and g(S2) � 0), (g(S1) � 0 and g(S2) � 0), and the
ase when T has only one
hild S1 are dealt in analogousmanner.Remark that the statement of Theorem 8 holds essen-tially be
ause pruning a subtree S of T does not a�e
t thevalue of fun
tion gain over all other subtrees of T . This fa
-t is not true anymore with the self-
ompressing approa
hused in next subse
tion.B. Self-
ompressing the antidi
tionaryLet AD be an antifa
torial antidi
tionary for text t. Sin
eAD is antifa
torial then, for any v 2 AD the set ADnfvg isan antidi
tionary for v. Therefore it is possible to
ompressv using AD n fvg or a subset of it.One
an think of a strategy that sends to the de
oder, ina stati
 approa
h, all words v ofAD
ompressed by algorith-m En
oder with a subset of ADnfvg and v as input. Thiswould a
hieve better
ompression. We
all this approa
hself-
ompression; it is the subje
t of this subse
tion.Let us �rst try to
ompress any word v 2 AD by using thewhole AD n fvg and let us denote by
1(v) the
ompressedversion of v by using ADnfvg. Noti
e that the words of ADthat are used in
ompressing v have length � jvj. Further,if u 2 AD with juj = jvj is used to erase the last letter ofv, then u must
oin
ide with v ex
ept for the last letter,that is, u = xa, v = xb and a 6= b. In addition it is easyto see that
1(u) =
1(v). This word is also equal to
1(x)that has been
ompressed by using the antidi
tionary of allwords of AD having length shorter than jvj = juj.

As as a spe
ial
ase of the next proposition, a set fu; vghaving these properties
an o

ur at most on
e in any an-tidi
tionary AD of a text t.A pair of words (v; v1) is
alled stopping pair if v =ua; v1 = u1b 2 AD, with a; b 2 f0; 1g, a 6= b, and u isa suÆx of u1.Proposition 2: Let AD be an antifa
torial antidi
tionaryof a text t. If there exists a stopping pair (v; v1) withv1 = u1b, b 2 f0; 1g, then u1 is a suÆx of t and does notappear elsewhere in t. Moreover there exists at most onepair of words having these properties.Proof: Sin
e u1b 2 AD, u1 is a fa
tor of t. Supposethat u1
 appears as a fa
tor of t, with
 2 f0; 1g. Sin
eu is a suÆx of u1, letter
 is not letter a (be
ause ua isforbidden) and is not letter b (be
ause u1b is forbidden), a
ontradi
tion. Hen
e u1 is a suÆx of t and does not appearelsewhere in t.Sin
e u1 is a suÆx of t, then also u is a suÆx of t. Sup-pose that there exists another pair (v0 = u0
; v01 = u01d) 6=(v; v1) of words in AD with
; d 2 f0; 1g, a 6= b, and u0 isa suÆx of u01. Then u01 and u0 are also suÆxes of t and itis not diÆ
ult to prove by
ases that one of the four wordsamong v; v1; v0; v01 is a fa
tor of another,
ontradi
ting theantifa
toriality of AD.Let us suppose now that v1; : : : ; vk is a sequen
e of allwords in AD su
h that for any i, 1 � i � k�1, jvij � jvi+1j.If one knows that there exists no vj su
h that jvj j = jvijand vj has been used to erase the last letter of vi, thenthe set AD1 = fv1; : : : vi�1g is the antidi
tionary used for
ompressing vi to get
1(v), and vi
an be re
overed fromboth
(vi) and jvij using algorithm De
oder. If thereexists vj su
h that jvj j = jvij and vj has been used to erasethe last letter of vi then the set AD1 = fv1; : : : vi�1g is theantidi
tionary used for obtaining the
ompressed version
1(x) =
1(vi) of the longest
ommon pre�x x of vi andvj , with jxj = jvij � 1. Also in this
ase x and thereforevi and vj ,
an be re
overed from both
1(x) =
1(vi) andjxj = jvij � 1 using algorithm De
oder.By the above dis
ussion, it follows that if one knowsthe sequen
e (
1(v1); jv1j), (
1(v2); jv2j), : : :, (
1(vk); jvk j),together with the
ouple (i; j) su
h that vi and vj havebeen used to mutually erase their last letter (i = j = 0 ifthere is no su
h a pair), then the de
oder
an re
onstru
t,in this order, words v1, v2, : : :, vk. That is, de
oder
anre
onstru
t the whole antidi
tionary AD.Unfortunately, while AD, being antifa
torial, is also apre�x
ode and
an be represented by a trie, this is nottrue anymore for the set X1 = f
1(v) j v 2 ADg. Forexample, the reader
an easily verify that if AD = f11;000; 10101; 00100100; 1010010100101g then X1 = f11;000; 111; 0000; 1111; g. Also, if AD = f10; 110; � � � ; 1n0gthen, for any n � 0, X1 = f10g. Consequently the spa
esaved by self
ompressing the antidi
tionary
ould be lostin en
oding the set X1.We propose a di�erent approa
h that makes use ofthe same idea and leads to simple algorithms for self-
ompressing and re
overing the antidi
tionary AD. Thesealgorithms run in linear time in the size of the trie T repre-

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 189senting the antifa
torial antidi
tionary AD and, moreover,the
ompression ratios obtained with the pruning te
hnique
an only be improved by the next self
ompression te
h-nique.We present a formal des
ription of the te
hnique. Givena word v 2 AD, we
ompress it using an antidi
tionary AD0that dynami
ally
hanges at any step of the while loop online 2 of algorithm En
oder. While dealing with a properpre�x u of v and the letter a following it, the antidi
tionaryAD0 is
omposed of all words belonging to AD with lengthnot greater than juj. Letter a is erased if and only if thereexists a word u0b 2 AD, b 6= a, with u0 a proper suÆx ofu. Let us
all
2(v) the
ompressed version of v obtainedin this way and let X2 = f
2(v) j v 2 ADg.This kind of self-
ompression
an be performed in lineartime by next algorithm Self-
ompress. It has as inputboth the trie T that represents AD and the fun
tion Æ ofautomaton A(AD) (
f. algorithm L-automaton). Noti
ethat Æ is de�ned on nodes of T . Its output T 0 is the triea

epting the set X2 = f
2(v) j v 2 ADg. The algorithmperforms breadth-�rst traversal of T implemented by thequeue Q. During the traversal, it
reates a self-
ompressedversion T 0 of T that represents the set X2.Self-
ompress (trie T , fun
tion Æ))1. i root of T ;2.
reate root i0;3. add (i; i0) to empty queue Q;4. while Q 6= ;5. extra
t (p; p0) from Q;6. if q0 and q1 are
hildren of p7.
reate q00 and q01 as
hildren of p0;8. add (q0; q00) and (q1; q01) to Q;9. else if q is a unique
hild of p andq = Æ(p; a), a 2 A10. if Æ(p;:a) is a leaf11. add (q; p0) to Q;12. else
reate q0 as a-
hild of p0;13. add (q; q0) to Q;14. return trie having root i0;The
orre
tness of algorithm Self-
ompress relies onthe following proposition and the dis
ussion thereafter.Proposition 3: If a node p in the trie T has two
hildrenq0 and q1 then its
orresponding node p0 in the output trieT 0 also has two
hildren.Proof: If q0 and q1 are both leaves, they representtwo minimal forbidden words ua and ub, a 6= b. There isno minimal forbidden words in the form u0a or u0b with u0a proper suÆx of u be
ause AD is antifa
torial. Thereforeneither letter a nor letter b
an be erased by the te
hnique.If q0 and q1 are not leaves, they represent two wordsua and ub, a 6= b, that are fa
tors of text t. There is nominimal forbidden words in the form u0a or u0b with u0 aproper suÆx of u be
ause these words are also fa
tors of t.Therefore neither letter a nor letter b
an be erased by thete
hnique.Let us suppose now that only one node among q0 and q1is a leaf. For instan
e, let us assume that q0 is a leaf and

q1 is not a leaf. They represent respe
tively two words uaand ub, a 6= b. Letter a
annot be erased be
ause in theantidi
tionary there is no word in the form u0b with u0 aproper suÆx of u, ub being a fa
tor of t. Letter b
annotbe erased be
ause in the antidi
tionary there is no word inthe form u0a with u0 a proper suÆx of u, sin
e ua is in theantidi
tionary and the antidi
tionary is antifa
torial.The previous proposition explains why the algorithm
re-ates two nodes q00 and q01 at line 7.We next
onsider lines 10{13, in whi
h node p of T hasonly one
hild q = Æ(p; a). The node Æ(p;:a)
annot havehigher level than p be
ause p has only one
hild. Hen
e,letter a is erased if and only if Æ(p;:a) is a leaf, by de�nitionof the te
hnique.Finally, if p has no
hildren, i.e. p is a leaf, nothingis done by the algorithm but extra
ting (p; p0) from thequeue.Corollary 1: Tries T and T 0 have the same number ofinternal nodes that have two
hildren and,
onsequently,have the same number of leaves. Trie T 0 represents thepre�x
ode X2.The
orollary implies that X2 = f
2(v) j v 2 ADg
anbe uniquely re
onstru
ted from T 0. There is an additionalproperty that allows re
onstru
ting AD from X2 without
onsidering lengths of words in AD. This simpli�es thepro
edure. The next proposition follows readily from de�-nitions.Proposition 4: If there exists no stopping pair in AD thenfor any v 2 AD, the last letter of v is not erased during theself-
ompression to get
2(v).If the de
oder has the additional information that thelast letter of t was not erased at
ompression time then it
an use this fa
t as a stop
riterion. This is also possibleeven if the antidi
tionary
hanges dynami
ally. Indeed thede
oder just has to stop after pro
essing the last letter ofthe
ompressed text. Therefore there is no need to use thelength of the text to stop de
oding.To ensure that the last letter of any v 2 AD is not erasedand to meet the above hypothesis, it is suÆ
ient to elim-inate the only possible stopping pair (
f. Proposition 2).To do that, we delete from AD the longest word v1 of su
ha pair. By Proposition 2 this word does not
ontributeto erasing letters in text t during the
ompression be
ausethere is nothing to erase after the last letter.Hen
e we suppose that in our antidi
tionary AD thisword is not in
luded, or, equivalently, that the bran
h oftrie T that has this word as unique leaf is pruned. In otherwords, we suppose from now on that antidi
tionary AD(and obviously all its subsets) has no stopping pair.Algorithm Self-automaton uses the previous hypoth-esis to re
onstru
t AD from T 0. More pre
isely, its input isa trie T 0, self-
ompressed from trie T , with its transitionfun
tion Æ0. Its output is the automaton A(AD), where ADis the antidi
tionary represented by trie T . It is similar toalgorithm L-automaton. Indeed it makes a breadth-�rsttraversal on states of the trie T . It is possible to do thisbe
ause, any time a state is rea
hed, if a
hild was \erased"during the exe
ution of Self-
ompress, it is now
reated

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 190and added to the queue Q. In order to
reate a new
hild,fun
tion Æ must be previously restored, as done in algorith-m L-automaton, by using the failure fun
tion f . Whena leaf is rea
hed in the self-
ompressed trie, the new stop
riterion tells us that there is nothing more to re
onstru
tin that bran
h.Trie T
an be obtained from the automaton A(AD), out-put of next algorithm, by using a linear time algorithmdes
ribed in [10℄.The
urrent situation in the next algorithm is as follows:when a node p is popped from the queue, trie T has beende
ompressed up to the level of p in T , f(p) is de�ned andfun
tion Æ is de�ned for all previous nodes, whi
h in
ludesnodes at previous level. After pro
essing p, Æ is also de�nedfor p and the failure fun
tion f is de�ned on its
hildren.Self-automaton (trie T 0)1. i0 root of T 0;2. Q ;;3. for ea
h a 2 A4. if Æ0(i0; a) is de�ned5. Æ(i0; a) Æ0(i0; a);6. f(Æ(i0 ; a)) i0;7. add Æ(i0 ; a) to Q;8. else9. Æ(i0; a) i0;10. while Q 6= ;11. extra
t p from Q;12. if p is not a leaf13. if Æ(f(p); a) is a leaf for a 2 A14.
reate p1;15. for ea
h b 2 A16. if Æ0(p; b) is de�ned17. Æ0(p1; b) Æ0(p; b);18. Æ(p;:a) p1;19. Æ(p; a) Æ(f(p); a));20. f(p1) Æ(f(p);:a));21. add p1 to Q;22. else23. for ea
h a 2 A24. if Æ0(p; a) is de�ned25. Æ(p; a) Æ0(p; a));26. f(Æ(p; a)) Æ(f(p); a));27. add Æ(p; a) to Q;28. else29. Æ(p; a) Æ(f(p); a));30. else31. for ea
h a 2 A32. Æ(p; a) p;33. return (Q;A; i0;Q n fleavesg; Æ);Sin
e there is a bije
tion between leaves of T and leavesof T 0, we
an asso
iate with any leaf q0 of T 0 the samevalue
(q) of the
orresponding leaf q in T . This is thenumber of bits that the word w(q) leads to erase duringthe
ompression of text t. Analogously, as in the previoussubse
tion, we
an de�ne fun
tions gain and pruned gainand, as a �rst step, we
an run algorithm Simple Pruningon T 0. At the same time we prune
orresponding subtreesin T and obtain a trie T1. Doing so, the modi�ed trie T1represents a subset of AD. As a se
ond step, we
an useagain algorithm Self-
ompress on T1 to get T 01. Notethat T 01
an be di�erent from the pruned trie T 0 be
ausepruning subtrees
an a�e
t self-
ompression.We
an iterate the above two steps for a �xed number oftimes or until the trie stabilizes.

VII. Con
lusionWe have des
ribed DCA, a text
ompression method thatuses some \negative" information about the text, repre-sented in terms of antidi
tionaries. The advantages of thes
heme are:� it is fast at de
ompressing data,� it is fast at
ompressing data for �xed sour
es,� it has a syn
hronization property in the
ase of �nite an-tidi
tionaries, property that leads to eÆ
ient parallel
om-pression and to sear
h engines on
ompressed data.In the previous se
tions we presented some stati
 DCAs
hemes in whi
h the text to be
ompressed needs to bes
anned twi
e. Starting from these stati
 s
hemes, severalvariations and improvements
an be proposed. These vari-ations are all based on
lever
ombinations of two elementsthat
an be introdu
ed in our model:� statisti

onsiderations,� dynami
 approa
hes.These are
lassi
al features that are often in
luded in otherdata
ompression methods.Statisti
al
onsiderations are used in the
onstru
tionof antidi
tionaries. If a forbidden word is responsible for\erasing" few bits of the text in the
ompression algorithmof Se
tion II and if its \des
ription" as an element of theantidi
tionary is \expensive" then the
ompression ratioimproves if it is not in
luded in the antidi
tionary. Thisidea has been partially exploited in previous se
tion. Onthe
ontrary, one
an introdu
e into the antidi
tionary aword that is not forbidden but that o

urs very rarely inthe text. In this
ase, the
ompression algorithm will pro-du
e some \errors" or \mistakes" in predi
ting the nextletter. In order to have a lossless
ompression, en
oder andde
oder must be adapted to manage su
h errors. Typi
alerrors o

ur in the
ase of antidi
tionaries built for �xedsour
es as well as in the dynami
 approa
h.Even with errors, assuming that they are rare with re-spe
t to the maximum length of words of the antidi
-tionary, our
ompression s
heme preserves the syn
hroniza-tion property of Theorem 3. The use of errors be
omesne
essary for some arti�
ial strings like 1m0 if one wantsto use a stati
 aproa
h. Without errors and with a stati
approa
h, the algorithms des
ribed in previous se
tion areunable to
ompress su
h strings.Antidi
tionaries for �xed sour
es have also an intrinsi
interest. A
ompressor generator, or
ompressor
ompil-er,
an
reate, starting from words obtained from a sour
eS, an antidi
tionary that
an be used to
ompress all oth-er words from the same sour
e S. Error management isessential for this kind of appli
ation. Having a �xed anti-di
tionary makes the
ompression fast be
ause basi
 oper-ations are just table lookups.In the dynami
 approa
h, we
onstru
t the antidi
-tionary and en
ode the text at the same time. The an-tidi
tionary is
onstru
ted (also with statisti
al
onsidera-tion) by
onsidering the whole text previously s
anned orjust a part of it. The antidi
tionary
an
hange at anystep and the algorithmi
 rules for its
onstru
tion must besyn
hronized between en
oder and de
oder.

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 191File original size
ompressed size(in bytes) (in bytes)bib 111261 35535book1 768771 295966book2 610856 214476geo 102400 79633news 377109 161004obj1 21504 13094obj2 246814 111295paper1 53161 21058paper2 382199 2282pi
 513216 70240prog
 39611 15736progl 71646 20092progp 49379 13988trans 93695 22695Fig. 3. Compression ratios on �les of the Calgary Corpus.We have realized prototypes of the
ompression and de-
ompression algorithms. They also implement the dynami
version of the method. They have been tested on the Cal-gary Corpus (see Figure 3), and experiments show that weget
ompression ratios equivalent to those of most
ommon
ompressors (su
h as pkzip for example).We are
onsidering several generalizations:� Compressor s
hemes and implementations of antidi
-tionaries on more general alphabets or on other types ofdata (images, sounds, et
.),� Use of lossy
ompression espe
ially to deal with images,� Combination of DCA with other
ompression s
hemes;for instan
e, using both di
tionaries and antidi
tionarieslike positive and negative sets of examples as in LearningTheory,� Design of
hips dedi
ated to �xed sour
es.Several problems
on
erning the data
ompression s
he-me are still open. We list some of them.� Are balan
ed sour
es dense inside the family of Markovsour
es? A positive answer would raise the question ofadapting the s
heme so that it be
omes universal forMarkov or ergodi
 sour
es. Can self
ompression be usedto settle this question?� Are there eÆ
ient algorithms to build good antidi
tionar-ies for synta
ti
 sour
es, generated for instan
e by gram-mars? This raises a question of
oding on a binary alpha-bet.� What is the average of the maximum length of minimalforbidden words in texts of length n generated by an er-godi
 sour
e having entropy H?� How many times on the average should pruning and self
ompressing be iterated before the pro
ess stabilizes (seeprevious se
tion)? We would expe
t a maximum of lognsteps. Is the stabilized trie optimal?A
knowledgmentsWe thanks M.P. B�eal, M. Cohn, F.M. Dekking, R. Grossiand J. A. Storer for useful dis
ussions and suggestions.

Referen
es[1℄ J. G. Cleary T. C. Bell and I. H. Witten, Text Compression,Prenti
e Hall, 1990.[2℄ J. Gailly, \Frequently asked questions in data
ompression,"2000, FAQ, URL http://www.faqs.org/faqs/faqs/
ompression-faq/.[3℄ J. Gailly M. Nelson, The Data Compression Book, M&T Books,New York, NY, 1996.[4℄ J. A. Storer, Data Compression: Methods and Theory, Com-puter S
ien
e Press, 1988.[5℄ T. C. Bell I. H. Witten, A. Mo�at, Managing Gigabytes, VanNostrand Reinhold, 1994.[6℄ C. Shannon, \Predi
tion and entropy of printed english," BellSystem Te
hni
al J., vol. January, 1951.[7℄ A. Restivo M.-P. B�eal, F. Mignosi, \Minimal forbidden wordsand symboli
 dynami
s," in STACS'96, C. Pue
h and R. Reis-
huk, Eds., number 1046 in Le
ture Notes in Computer S
ien
e,pp. 555{566. Springer-Verlag, Berlin, 1996.[8℄ A. Restivo M.-P. B�eal, F. Mignosi and M. S
iortino, \Minimalforbidden words and symboli
 dynami
s," Advan
es in Appl.Math., vol. To appear.[9℄ A. Restivo M. Cro
hemore, F. Mignosi, \Minimal forbiddenwords and fa
tor automata," in MFCS'98, J. Gruska L. Brimand J. Slatu�ska, Eds., number 1450 in Le
ture Notes in Com-puter S
ien
e, pp. 665{673. Springer-Verlag, Berlin, 1998.[10℄ M. Cro
hemore, F. Mignosi, and A. Restivo, \Automata andforbidden words," Inf. Pro
ess. Lett., vol. 67, no. 3, pp. 111{117, 1998.[11℄ A. Restivo M. Cro
hemore, F. Mignosi and S. Salemi, \Text
ompression using antidi
tionaries," in ICALP'99, J. GruskaL. Brim and J. Slatu�ska, Eds., number 1664 in Le
ture Notes inComputer S
ien
e. Springer-Verlag, Berlin, 1999.[12℄ C. Cho�rut and K. Culik, \On extendibility of unavoidable sets,"Dis
rete Appl. Math., vol. 9, pp. 125{137, 1984.[13℄ A. V. Aho and M. J. Corasi
k, \EÆ
ient string mat
hing: anaid to bibliographi
 sear
h," Commun. ACM, vol. 18, no. 6, pp.333{340, 1975.[14℄ M. Cro
hemore and W. Rytter, Text algorithms, Oxford Uni-versity Press, 1994.[15℄ V. Diekert and Y. Kobayashi, \Some identities related to au-tomata, determinants, and m�obius fun
tions," Report 1997/05,Universit�at Stuttgart, 1997.[16℄ J. Berstel and D. Perrin, \Finite and in�nite words," in Algebrai
Combinatori
s on Words, D. Perrin J. Berstel, Ed. CambridgeUniversity Press, To appear.[17℄ Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa, \Pat-tern mat
hing in text
ompressed by using antidi
tionaries," inCPM'99, M. Cro
hemore and M. Paterson, Eds. 1999, number1645 in Le
ture Notes in Computer S
ien
e, pp. 37{49, Springer-Verlag, Berlin.[18℄ M. P. B�eal, Codage Symbolique, Masson, 1993.[19℄ R. Ash., Information Theory, Tra
ts in mathemati
s. Inter-s
ien
e Publishers, J. Wiley & Sons, 1985.[20℄ R. G. Gallager, Information Theory and Reliable Communi
a-tion, J. Wiley and Sons, In
., 1968.[21℄ R. G. Gallager, Dis
rete Sto
hasti
 Pro
esses, Kluver A
d.Publ., 1995.[22℄ J. L. Snell J. G. Kemeny, Finite Markov Chains, Van NostrandReinhold, 1960.[23℄ R. S. Ellis, Entropy, Large Deviations, and Statisti
al Me
han-i
s, Springer Verlag, 1985.[24℄ C. Han
art M. Cro
hemore, \Automata for mat
hing patterns,"in Handbook of Formal Languages, Volume 2, Linear Model-ing: Ba
kground and Appli
ation, A. Salomaa G. Rozenberg,Ed. Springer-Verlag, 1997.[25℄ R. Kri
hevsky., Universal Compression and Retrieval, KluverA
ademi
 Publishers, 1994.[26℄ M. Cro
hemore and R. V�erin, \On
ompa
t dire
ted a
y
li
word graphs," in Stru
tures in Logi
 and Computer S
ien
e,G. Rozenberg J. My
ielski and A. Salomaa, Eds., number 1261in Le
ture Notes in Computer S
ien
e, pp. 192{211. Springer-Verlag, Berlin, 1997.

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 192Maxime Cro
hemore is professor and headof the Computer S
ien
e Resear
h Laborato-ry at the University of Marne-la-Vall�ee (
loseto Paris). His resear
h interests are algorithm-s on textual data, in
luding pattern mat
hingproblems and data
ompression, and
ompu-tational biology. He has
o-authored the book"Text Algorithms" and is a steering
ommitteemember of the annual
onferen
e "Combinato-rial Pattern Mat
hing".Filippo Mignosi is professor at the Depart-ment of Mathemati
s and Appli
ations of theUniversity of Palermo. His resear
h interestsin
lude
ombinatori
s on words and on moregeneral informational stru
tures, formal lan-guages, automata theory, algorithms and data
ompression. He is visiting Brandeis Universi-ty with a N.A.T.O. fellowship.Antonio Restivo is professor at the Depart-ment of Mathemati
s and Appli
ations of theUniversity of Palermo. He is the
hair of theboard of mathemati
al and
omputer s
ien
estudies, Fa
ulty of S
ien
e. His resear
h in-terests in
lude automata theory, formal lan-guages,
ombinatori
s on words,
oding theo-ry, algorithms and data
ompression. He is thes
ienti�
 national
oordinator of the resear
hproje
t \Modelli innovativi di
al
olo: metodisintatti
i e
ombinatori", MURST, Italy.Sergio Salemi is resear
h fellow at the De-partment of Mathemati
s and Appli
ations ofthe University of Palermo. His resear
h inter-ests in
lude automata theory,
ombinatori
s onwords,
oding theory, programming languages,algorithms and data
ompression.

