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tionariesM. Cro
hemore , F. Mignosi , A. Restivo , S. SalemiAbstra
t|We give a new text 
ompression s
heme basedon Forbidden Words ("antidi
tionary"). We prove that ouralgorithms attain the entropy for balan
ed binary sour
es.They run in linear time. Moreover, one of the main advan-tages of this approa
h is that it produ
es very fast de
om-pressors. A se
ond advantage is a syn
hronization propertythat is helpful to sear
h 
ompressed data and allows paral-lel 
ompression. The te
hniques used in this paper are fromInformation Theory and Finite Automata.Keywords| Data Compression, Lossless 
ompression, In-formation Theory, Finite Automaton, Forbidden Word, Pat-tern Mat
hing. I. Introdu
tionWE present a simple text 
ompression method 
alledDCA (Data Compression with Antidi
tionaries)that uses some \negative" information about the text,whi
h is des
ribed in terms of antidi
tionaries. In 
on-trast to other methods that make use, as a main tool, ofdi
tionaries, i.e., parti
ular sets of words o

urring as fa
-tors in the text (
f. [1℄, [2℄, [3℄, [4℄ and [5℄), our methodtakes advantage of words that do not o

ur as fa
tors inthe text, i.e., that are forbidden. Su
h sets of words are
alled here antidi
tionaries.We des
ribe a stati
 
ompression s
heme that runs inlinear time (Se
tions II and III) in
luding the 
onstru
tionof antidi
tionaries (Se
tion V and Se
tion VI). Variationsusing statisti
al or dynami
al 
onsiderations are dis
ussedin the 
on
lusion (Se
tion VII)Let w be a text on the binary alphabet f0; 1g and letAD be an antidi
tionary for w. By reading the text w fromleft to right, if at a 
ertain moment the 
urrent pre�x v ofthe text has as suÆx a word u0 su
h that u = u0a 2 ADwith a 2 f0; 1g, i.e., u is forbidden, then surely the letterfollowing v in the text 
annot be a and, sin
e the alpha-bet is binary, it is the letter b 6= a. In other terms, weknow in advan
e the next letter b, that turns out to beredundant or predi
table. The main idea of our methodis to eliminate redundant letters in order to a
hieve 
om-pression. The de
oding algorithm re
overs the text w byDCA URL is http://www-igm.univ-mlv.fr/�ma
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predi
ting the letter following the 
urrent pre�x v of walready de
ompressed.The method proposed here presents some analogies withideas dis
ussed by C. Shannon at the very beginning ofInformation Theory. In [6℄ Shannon designed psy
holog-i
al experiments in order to evaluate the entropy of En-glish. One of su
h experiments was about the human abil-ity to re
onstru
t an English text where some 
hara
terswere erased. A
tually our 
ompression method erases some
hara
ters and the de
ompression re
onstru
t them.We prove (Se
tion IV) that the 
ompression rate of our
ompressor rea
hes the entropy almost surely, providedthat the sour
e is balan
ed and produ
ed from a �nite an-tidi
tionary. This type of sour
e approximates a large 
lassof sour
es, and 
onsequently, a variant of the basi
 s
hemegives an optimal 
ompression for them. The idea of usingantidi
tionaries is founded on the fa
t that there exists atopologi
al invariant for Dynami
al Systems based on for-bidden words, invariant that is independent of the entropy(
f. [7℄ and [8℄).The use of the antidi
tionary AD in 
oding and de
odingalgorithms requires that AD must be stru
tured in order toanswer to the following query on a word v: does there ex-ists a word u = u0a, a 2 f0; 1g, in AD su
h that u0 isa suÆx of v? In the 
ase of positive answer the outputshould also in
lude the letter b de�ned by b 6= a. One ofthe main features of our method is that we are able to im-plement eÆ
iently �nite antidi
tionaries in terms of �niteautomata. This leads to fast linear-time 
ompression andde
ompression algorithms that 
an be realized by sequen-tial transdu
ers (generalized sequential ma
hines). This isespe
ially relevant for �xed sour
es. It is then 
omparableto the fastest 
ompression methods be
ause the basi
 oper-ation at 
ompression and de
ompression time is just tablelookup.A 
entral notion of the present method is that of minimalforbidden words, whi
h allows to redu
e the size of anti-di
tionaries. This notion has also some interesting 
ombi-natorial properties. Our 
ompression method in
ludes al-gorithms to 
ompute antidi
tionaries, algorithms that arebased on the above 
ombinatorial properties and that aredes
ribed in detail in [9℄ and [10℄.The 
ompression method shares also an interesting syn-
hronization property, in the 
ase of �nite antidi
tionaries.It states that the en
oding of a blo
k of data does not de-pend on the left and right 
ontexts ex
ept for a limited-sizepre�x of the en
oded blo
k. This is also helpful to sear
h
ompressed data and the same property allows to designeÆ
ient parallel 
ompression algorithms.The paper is organized as follows.In Se
tion II we give the de�nition of Forbidden Wordsand of antidi
tionaries. We des
ribe DCA, our text 
om-
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ompression algorithms (binary oriented)assuming that the antidi
tionary is given. In Se
tion IIIwe des
ribe a data stru
ture for �nite antidi
tionaries thatallows us to answer in an eÆ
ient way the queries need-ed by our 
ompression and de
ompression algorithms; weshow how to implement it given a �nite antidi
tionary. Inthe 
ase of rational antidi
tionaries the 
ompression is al-so des
ribed in terms of transdu
ers. We end the se
tionby proving the syn
hronization property. In Se
tion IVwe evaluate the 
ompression rate of our 
ompression al-gorithm relative to a given antidi
tionary. In Se
tion Vwe show how to 
onstru
t antidi
tionaries for single wordsand sour
es. As a 
onsequen
e we obtain a family of lin-ear time optimal algorithms for text 
ompression that areuniversal for balan
ed Markov sour
es with �nite memo-ry. In Se
tion VI we give linear time improved algorithmsfor building antidi
tionaries for a stati
 approa
h. Theyuse the ideas of pruning and self-
ompressing. We dis
ussimprovements and generalizations in Se
tion VII.Some of the results present in this paper have been su
-
in
tly stated in [11℄.II. Basi
 AlgorithmsLet us �rst introdu
e the main ideas of our algorithmon its stati
 version. We dis
uss variations of this �rstapproa
h in Se
tion VII.Let w be a �nite binary word and let F (w) be the set offa
tors of w. For instan
e, if w = 01001010 then F (w) =f"; 0; 1; 00; 01; 10; 001; 010; : : : ; 01001010g where " denotesthe empty word.Let us take some words in the 
omplement of F (w), i.e.,let us take some words that are not fa
tors of w and thatwe 
all forbidden. This set of su
h words AD is 
alled anantidi
tionary for the language F (w). Antidi
tionaries 
anbe �nite as well in�nite. For instan
e, if w = 01001010the words 11, 000, and 10101 are forbidden and the setf11; 000; 10101g is an antidi
tionary for F (w). For in-stan
e, if w1 = 001001001001 the in�nite set of all wordsthat have two 1's as i-th and as i+2-th letter for some in-teger i, is an antidi
tionary for w1. We want here to stressthat an antidi
tionary 
an be any subset of the 
omple-ment of F (w). Therefore an antidi
tionary 
an be de�nedby any property that 
on
erns words.The 
ompression algorithm treats the input word in anon-line manner. At a 
ertain step in this pro
ess we haveread the word v proper pre�x of w. If there exists any wordu = u0a, a 2 f0; 1g, in the antidi
tionary AD su
h that u0 isa suÆx of v, then surely the letter following v 
annot be a,i.e., the next letter is b, b 6= a. In other words, we know inadvan
e the next letter b that turns out to be \redundant"or predi
table. Remark that this argument works only inthe 
ase of binary alphabets.The main idea in the algorithm we des
ribe is to elim-inate redundant letters. In what follows we �rst des
ribethe 
ompression algorithm, En
oder, and then the de-
ompression algorithm, De
oder. The word to be 
om-pressed is noted w = a1 � � �an and its 
ompressed versionis denoted by 
(w).

En
oder (antidi
tionary AD, word w 2 f0; 1g�)1. v  "; 
  ";2. for a �rst to last letter of w3. if for every suÆx u0 of v, u00;u01 62 AD4. 
  
:a;5. v  v:a;6. return (jvj, 
);As an example, let us run the algorithm En
oder onthe string w = 01001010 with the antidi
tionary AD =f000; 10101; 11g. The steps of the treatment are de-s
ribed in the next array by the 
urrent values of the pre�xvi = a1 � � �ai of w that has been just 
onsidered and of theoutput 
(w). In the 
ase of positive answer to the query tothe antidi
tionary AD, the array also indi
ates the value ofthe 
orresponding forbidden word u. The number of timesthe answer is positive in a run 
orresponds to the numberof bits erased." 
(w) = "v1 = 0 
(w) = 0v2 = 01 
(w) = 01 u = 11 2 ADv3 = 010 
(w) = 01v4 = 0100 
(w) = 010 u = 000 2 ADv5 = 01001 
(w) = 010 u = 11 2 ADv6 = 010010 
(w) = 010v7 = 0100101 
(w) = 0101 u = 11 2 ADv8 = 01001010 
(w) = 0101 u = 10101 2 ADv9 = 010010100 
(w) = 0101 u = 000 2 ADv10 = 0100101001 
(w) = 0101 u = 11 2 ADRemark that the fun
tion 
 is not inje
tive.For instan
e 
(01) = 
(010) = 01.In order to have an inje
tive mapping we 
an 
onsid-er the fun
tion 
0(w) = (jwj; 
(w)). In this 
ase we 
anre
onstru
t the original word w from both 
0(w) and theantidi
tionary.The de
oding algorithm works as follow. The 
om-pressed word is 
(w) = b1 � � � bh and the length of w isn. The algorithm re
overs the word w by predi
ting theletter following the 
urrent pre�x v of w already de
om-pressed. If there exists one word u = u0a, a 2 f0; 1g, in theantidi
tionary AD su
h that u0 is a suÆx of v, then, theoutput letter is b, b 6= a. Otherwise, the next letter is readfrom the input 
.De
oder (antidi
tionary AD, word 
 2 f0; 1g�,integer n)1. v  ";2. while jvj < n3. if for some u0 suÆx of v and a 2 f0; 1g, u0abelongs to AD4. v  v � :a;5. else6. b next letter of 
;7. v  v � b;8. return (v);The antidi
tionary AD must be stru
tured in order to an-swer to the following query on a word v: does there exist
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h that u0 is a suÆxof v? In 
ase of a positive answer the output should alsoin
lude the letter b de�ned by b 6= a. Noti
e that the lettera 
onsidered at line 3 is unique be
ause, at this point, theend of the text w has not been rea
hed so far.In this approa
h, where the antidi
tionary is stati
 andavailable to both the en
oder and the de
oder, the en
odermust send to the de
oder the length of the word jwj, inaddition to the 
ompressed word 
(w), in order to give tothe de
oder a \stop" 
riterion. Slight variations of the pre-vious 
ompression-de
ompression algorithm 
an be easilyobtained by giving other \stop" 
riteria: For instan
e, theen
oder 
an send the number of letters that the de
oder hasto re
onstru
t after that the last letter of the 
ompressedword 
(w) has been read. Or the en
oder 
an let the de-
oder stop when there is no more letter available in 
 (line6), or when both letters are impossible to be re
onstru
teda

ording to AD. Doing so, the en
oder must send to thede
oder the number of letters to erase in order to re
overthe original message. For su
h variations antidi
tionaries
an be stru
tured to answer slightly more 
omplex queries.Sin
e we are 
onsidering here the stati
 
ase, the en
odermust send to the de
oder the antidi
tionary unless the de-
oder has already a 
opy of the antidi
tionary or it hasan algorithmi
 way to re
onstru
t the antidi
tionary fromsome previously a
quired information.The method presented here brings to mind some ideasproposed by C. Shannon at the very beginning of Informa-tion Theory. In [6℄ Shannon designed psy
hologi
al exper-iments in order to evaluate the entropy of English. One ofsu
h experiments was about the human ability to re
on-stru
t an English text where some 
hara
ters were erased.A
tually our 
ompression methods erases some 
hara
tersand the de
ompression re
onstru
t them. For instan
e inprevious example the input string is 01�00�1�01�0�0�1, wherebars indi
ate whi
h letters are erased during the 
ompres-sion.In order to get good 
ompression rates (at least in thestati
 approa
h when the antidi
tionary has to be sent) weneed to minimize in parti
ular the size of the antidi
tionary.Remark that if there exists a forbidden word u = u0a,a 2 f0; 1g in the antidi
tionary su
h that u0 is also for-bidden then our algorithm will never use this word u inthe algorithms. So that we 
an erase this word from theantidi
tionary without any loss for the 
ompression of w.This argument leads to 
onsider the notion of minimal for-bidden word with respe
t to a fa
torial language L, and thenotion of anti-fa
torial language, points that are dis
ussedin the next se
tion.III. Implementation of Finite Antidi
tionariesWhen the antidi
tionary is a �nite set, the queries on theantidi
tionary required by the algorithms of the previousse
tion are realized as follows. We build a deterministi
automaton a

epting the words having no fa
tor in the an-tidi
tionary. Then, while reading the text to en
ode, if atransition leads to a sink state, the output is the other let-ter. We denote by A(AD) the automaton built from the

antidi
tionary AD. An algorithm to build A(AD) is de-s
ribed in [9℄ and [10℄. The same 
onstru
tion has beendis
overed by Cho�rut et al. [12℄, it is similar to a des
rip-tion given by Aho and Corasi
k ([13℄, see [14℄), by Diekertet al. [15℄, and it is related to a more general 
onstru
tiongiven in [16℄.The required automaton a

epts a fa
torial language L.Re
all that a language L is fa
torial if L satis�es the fol-lowing property: for any words, u, v, uv 2 L ) u 2 Land v 2 L. The 
omplement language L
 = A� n L is a(two-sided) ideal of A�. Denoting by MF (L) the base ofthis ideal, we have L
 = A�MF (L)A�. The set MF (L) is
alled the set of minimal forbidden words for L. A wordv 2 A� is forbidden for the fa
torial language L if v 62 L,whi
h is equivalent to say that v o

urs in no word of L.In addition, v is minimal if it has no proper fa
tor that isforbidden.One 
an note that the set MF (L) uniquely 
hara
terizesL, just be
ause L = A� n A�MF (L)A�: This set MF (L)is an anti-fa
torial language or a fa
tor 
ode, whi
h meansthat it satis�es: 8u; v 2 MF (L); u 6= v =) u is not a fa
torof v, property that 
omes from the minimality of words ofMF (L). Indeed, there is a duality between fa
torial andanti-fa
torial languages, be
ause we also have the equality:MF (L) = AL\LA\(A�nL): In view of the remark made atthe end of the previous se
tion, from now on in the paperwe 
onsider only antidi
tionaries that 
onsist of minimalforbidden words. Thus they are anti-fa
torial languages.Figure 1 displays the trie that a

epts the anti-fa
toriallanguage AD = f000; 10101; 11g. The automaton pro-du
ed from the trie is shown in Figure 2.m1 m2 3m0 m4 m5 m6 m7 89�����0 -0 -0-1 -0 -1 -0 -1����R1Fig. 1. Trie of the fa
tor 
ode f000; 10101; 11g. Squares representterminal states.The following theorem is proved in [10℄. It is based onan algorithm 
alled L-automaton that has as (�nite) in-put AD in the form of a trie T . It is straigthforward toget T if AD is given in the form of a list of words. Thealgorithm 
an be adapted to test whether T represents ananti-fa
torial set, to generate the trie of the anti-fa
toriallanguage asso
iated with a set of words, or even to buildthe automaton asso
iated with the anti-fa
torial language
orresponding to any set of words.Theorem 1: The 
onstru
tion of A(AD) from T 
an berealized in linear time.We report here, for sake of 
ompleteness, the algorithmL-automaton des
ribed in [10℄. Its input, the trie T thatrepresents AD, is a tree-like automaton a

epting the set
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 	��0,1Fig. 2. Automaton a

epting the words that avoid the setf000; 10101; 11g. Squares represent non-terminal states (sink s-tates).AD and, as su
h, it is noted (Q;A; i; T; Æ0). The set T ofterminal states is the set of leaves of the trie.The algorithm uses a fun
tion f 
alled a failure fun
tionand de�ned on states of T as follows. States of the trie Tare identi�ed with the pre�xes of words in AD. For a stateau (a 2 A, u 2 A�), f(au) is the longest suÆx of u that is astate of the trie T , a word that may happen to be u itself.This state is also Æ(i; u), where Æ is the transition fun
tionof A(AD), and this 
an be easily proved by indu
tion onthe length of u. Note that f(i) is unde�ned, whi
h justi�esa spe
i�
 treatment of the initial state in the algorithm.L-automaton (trie T = (Q;A; i; T; Æ0))1. for ea
h a 2 A2. if Æ0(i; a) de�ned3. Æ(i; a) Æ0(i; a);4. f(Æ(i; a)) i;5. else6. Æ(i; a) i;7. for ea
h state p 2 Q n fig in width-�rstsear
h and ea
h a 2 A8. if Æ0(p; a) de�ned9. Æ(p; a) Æ0(p; a);10. f(Æ(p; a)) Æ(f(p); a);11. else if p 62 T12. Æ(p; a) Æ(f(p); a);13. else14. Æ(p; a) p;15. return (Q;A; i;Q n T; Æ);A. Transdu
ersFrom the automaton A(AD) we 
an easily 
onstru
t a(�nite-state) transdu
er B(AD) that realizes the 
ompres-sion algorithm En
oder, i.e., that 
omputes the fun
tion
. The input part of B(AD) 
oin
ides with A(AD), withsink states removed, and the output is given as follows: ifa state of A(AD) has two outgoing edges, then the outputlabels of these edges 
oin
ide with their input label; if astate of A(AD) has only one outgoing edge, then the out-put label of this edge is the empty word. The transdu
erB(AD) works as follows on an input string w. Considerthe (unique) path in B(AD) 
orresponding to w. The let-

ters of w that 
orrespond to an edge that is the uniqueoutgoing edge of a given state are erased; other letters areun
hanged.We 
an then state the following theorem.Theorem 2: Algorithm En
oder 
an be realized by asequential transdu
er (generalized sequential ma
hine).Con
erning the algorithm De
oder, remark (see Se
-tion II) that the fun
tion 
 is not inje
tive and that weneed some additional information, for instan
e the lengthof the original un
ompressed word, in order to re
onstru
tit without ambiguity. Therefore, De
oder 
an be realizedby the same transdu
er as above, by inter
hanging inputand output labels (denote it by B0(AD)), with a supple-mentary instru
tion to stop the de
oding.Let Q = Q1 [ Q2 be a partition of the set of statesQ, where Qj is the set of states having j outgoing edges(j = 1; 2). For any q 2 Q1, de�ne p(q) = (q; q1; : : : ; qr) asthe unique path in the transdu
er for whi
h qh 2 Q1 forh < r and qr 2 Q2.Given an input word v = b1b2 : : : bm, there exists inB0(AD) a unique path i; q1; : : : ; qm0 su
h that qm0�1 2 Q2and the transition from qm0�1 to qm0 
orrespond to theinput letter bm. If qm0 2 Q2, then the output word 
orre-sponding to this path in B0(AD) is the unique word w su
hthat 
(w) = v. If qm0 2 Q1, then we 
an stop the de
odingalgorithm realized by B0(AD) in any state q 2 p(qm0), and,for di�erent states, we obtain di�erent de
odings. So weneed supplementary information (for instan
e, the length ofthe original un
ompressed word) to perform the de
oding.In this sense we 
an say that B0(AD) realizes sequentiallythe algorithm De
oder (
f. also [17℄).The 
onstru
tions and the results given above on �niteantidi
tionaries and transdu
ers 
an be generalized also tothe 
ase of rational antidi
tionaries, or, equivalently, whenthe set of words \produ
ed by the sour
e" is a regular (ra-tional) language. In these 
ases it is not, in a stri
t sense,ne
essary to introdu
e expli
itly antidi
tionaries and al-l the methods 
an be presented in terms of automata andtransdu
ers, as above. Remark however that the presenta-tion given in Se
tion II in terms of antidi
tionaries is moregeneral, sin
e it in
ludes the non rational 
ase. Moreover,even in the �nite 
ase, the 
onstru
tion of automata andtransdu
ers from a �xed text, given in the next se
tion,makes an expli
it use of the notion of minimal forbiddenwords and of antidi
tionaries.B. A Syn
hronization PropertyIn the sequel we prove a syn
hronization property ofautomata built from �nite antidi
tionaries, as des
ribedabove. This property also \
hara
terizes" in some sense�nite antidi
tionaries. This property is a 
lassi
al one andit is of fundamental importan
e in pra
ti
al appli
ations.De�nition 1: Given a deterministi
 �nite automatonA, we say that a word w = a1 � � � ak is syn
hronizingfor A if, whenever w represents the label of two paths(q1; a1; q2) � � � (qk; ak; qk+1) and (q01; a1; q02) � � � (q0k; ak; q0k+1)of length k, then the two ending states qk+1 and q0k+1 areequal.
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torial, any word that does not belong toL(A) is syn
hronizing. Clearly in this 
ase syn
hronizingwords in L(A) are mu
h more interesting. Remark alsothat, sin
e A is deterministi
, if w is syn
hronizing for A,then any word w0 = wv that has w as pre�x is also syn-
hronizing for A.De�nition 2: A deterministi
 �nite automaton A is lo
alif there exists an integer k su
h that any word of length kis syn
hronizing. Automaton A is also 
alled k-lo
al.Remark that if A is k-lo
al then it ism-lo
al for anym � k.Given a �nite antifa
torial language AD, let A(AD) bethe automaton asso
iated with AD that re
ognizes the lan-guage L(AD). Let us eliminate the sink states and edgesgoing to them. Sin
e there is no possibility of misunder-standing, we denote the resulting automaton by A(AD)again. Noti
e that it has no sink state, that all states areterminal, and that L(A(AD)) is fa
torial.Theorem 3: Let AD be a �nite antifa
torial antidi
-tionary and let k be the length of the longest word in AD.Then automaton A(AD) asso
iated to AD is (k � 1)-lo
al.Proof: Let u = a1 � � � an�1 be a word of lengthn� 1. We have to prove that u is syn
hronizing. Supposethat there exist two paths (q1; a1; q2) � � � (qn�1; an�1; qn)and (q01; a1; q02) � � � (q0n�1; an�1; q0n) of length n � 1 labeledby u. We have to prove that the two ending states qn andq0n are equal. Re
all that states of A are words, and, morepre
isely they are the proper pre�xes of words in AD. Asimple indu
tion on i, 1 � i � n shows that qi (respe
tivelyq0i) \is" the longest suÆx of the word q1a1 � � � ai (respe
tive-ly q01a1 � � � ai) that is also a \state", i.e., a proper pre�x ofa word in AD. Hen
e qn (respe
tively q0n) is the longest suf-�x of the word q1u (respe
tively q01u) that is also a properpre�x of a word in AD. Sin
e all proper pre�xes of words inAD have length at most n� 1, both qn and q0n have lengthat most n� 1. Sin
e u has length n� 1, both they are thelongest suÆx of u that is also a proper pre�x of a word inAD, i.e., they are equal.In other terms, the theorem says that only the last k �1 bits matter for determining whether AD is avoided ornot. The theorem admits a \
onverse" that shows thatlo
ality 
hara
terizes in some sense �nite antidi
tionaries(
f. Propositions 2.8 and 2.14 of [18℄).Theorem 4: If automaton A is lo
al and L(A) is a fa
-torial language then there exists a �nite antifa
torial lan-guage AD su
h that L(A) = L(AD).Let AD be an antifa
torial antidi
tionary and let k be thelength of the longest word in AD. Let also w = w1uvw2 2L(AD) with juj = k� 1 and let 
(w) = y1y2y3 be the wordprodu
ed by our en
oder of Se
tion II with input AD andw. The word y1 is the word produ
ed by our en
oder afterpro
essing w1u, the word y2 is the word produ
ed by ouren
oder after pro
essing v and the word y3 is the wordprodu
ed by our en
oder after pro
essing w2.The proof of next theorem is an easy 
onsequen
e ofprevious de�nitions and of the statement of Theorem 3.Theorem 5: The word y2 depends only on the word uvand it does not depend on the 
ontexts of it, w1 and w2.

The property stated in the theorem has an interesting
onsequen
e for the design of pattern mat
hing algorithmson words 
ompressed by the algorithm En
oder. It im-plies that to sear
h the 
ompressed word for a pattern, itis not ne
essary to de
ode the whole word. Just a limitedleft 
ontext of an o

urren
e of the pattern needs to bepro
essed. The same property allows the design of highlyparallelizable 
ompression algorithms. The idea is that the
ompression 
an be performed independently and in par-allel on any blo
k of data. If the text to be 
ompressed isparsed into blo
ks of data in su
h a way that ea
h blo
koverlaps the next blo
k by a length not smaller than thelength of the longest word in the antidi
tionary, then it ispossible to run the whole 
ompression pro
ess in parallel.IV. Effi
ien
yIn this se
tion we evaluate the eÆ
ien
y of our 
ompres-sion algorithm relatively to a sour
e 
orresponding to the�nite antidi
tionary AD.Indeed, the antidi
tionary AD naturally de�nes a sour
eS(AD) in the following way. Let A(AD) be the automa-ton 
onstru
ted in the previous se
tion with no sink statesand re
ognizing the fa
torial language L(AD) (all states areterminal). To avoid trivial 
ases, we suppose that in thisautomaton all the states have at least one outgoing edge.Re
all that sin
e our algorithms work on a binary alphabet,all states have at most two outgoing edges.For any state of A(AD) with only one outgoing edge wegive to this edge probability 1. For any state of A(AD)with two outgoing edge we give to these edges probabili-ty 1=2. This de�nes a deterministi
 (or uni�lar, 
f. [19℄)Markov sour
e, denoted S(AD). Noti
e also that, by The-orem 3, that S(AD) is a Markov sour
e of �nite order or�nite memory (
f. [19℄). We 
all a binary Markov sour
ewith this probability distribution an balan
ed sour
e.Remark that our 
ompression algorithm is de�ned exa
t-ly for all the words \emitted" by S(AD).In what follows we suppose that the graph of the sour
eS, i.e., the graph of automaton A(AD), is strongly 
onne
t-ed. The results that we prove 
an be extended to the gen-eral 
ase by using standard te
hniques of Markov Chains(
f. [19℄, [20℄, [21℄ and [22℄). Re
all (
f. Theorem 6.4.2of [19℄) that the entropy H(S) of a deterministi
 Markovsour
e S is H(S) = ��ni;j=1�i
i;j log2(
i;j); where (
i;j) isthe sto
hasti
 matrix of S and (�1; � � � ; �n) is the stationarydistribution of S.We now state three lemmas.Lemma 1: The entropy of a balan
ed sour
e S is givenby H(S) = �i2D�i where D is the set of all states thathave two outgoing edges.Proof: By de�nitionH(S) = ��ni;j=1�i
i;j log2(
i;j):If i is a state with only one outgoing edge, by de�nitionthis edge must have probability 1. Then �j�i
i;j log2(
i;j)redu
es to �i log2(1), that is equal to 0. Hen
eH(S) = ��i2D�nj=1�i
i;j log2(
i;j):
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e from ea
h i 2 D there are exa
tly two outgoingedges having ea
h probability 1=2, one hasH(S) = ��i2D2�i(1=2) log2(1=2) = �i2D�ias stated.Lemma 2: Let w = a1 � � � am be a word in L(AD) and letq1 � � � qm+1 be the sequen
e of states in the path determinedby w in A(AD) starting from the initial state. The lengthof 
(w) is equal to the number of states qi, i = 1; : : : ;m,that belong to D, where D is the set of all states that havetwo outgoing edges.Proof: The statement is straightforward from thedes
ription of the 
ompression algorithm and the imple-mentation of the antidi
tionary with automaton A(AD).Through a well-known results on \large deviations" (
f.Problem IX.6.7 of [23℄), we get a kind of optimality of the
ompression s
heme.Let q= q1; � � � qm be the sequen
e of m states of a path ofA(AD) and let Lm;i(q) be the frequen
y of state qi in thissequen
e, i.e., Lm;i(q) = mi=m, where mi is the numberof o

urren
es of qi in the sequen
es q. Let also Xm(�) =f q j q has m states and maxi jLm;i(q)� �ij � �g; whereq represents a sequen
e of m states of a path in A(AD).In other words, Xm(�) is the set of all sequen
es of statesrepresenting path in A(AD) that \deviate" at least of � inat least one state qi from the theoreti
al frequen
y �i.Lemma 3: For any � > 0, the set Xm(�) satis�es theequality lim 1m log2Pr(Xm(�)) = �
(�); where 
(�) is a posi-tive 
onstant depending on �.We now state the main theorem of this se
tion. Theproof of it uses the three previous lemmas. It states thatfor any � the probability that the 
ompression rate �(v) =j
(v)j=jvj of a string of length n is greater thanH(S(AD))+�, goes exponentially to zero. Hen
e, as a 
orollary, almostsurely the 
ompression rate of an in�nite sequen
e emittedby S(AD) rea
hes the entropy H(S(AD)), that is the bestpossible result.Theorem 6: Let Km(�) be the set of words w of lengthmsu
h that the 
ompression rate �(v) = j
(v)j=jvj is greaterthan H(S(AD))+�. For any � > 0 there exist a real numberr(�), 0 < r(�) < 1, and an integer m(�) su
h that for anym > m(�), Pr(Km(�)) � r(�)m:Proof: Let w be a word of length m in the languageL(AD) and let q1; � � � ; qm+1 be the sequen
e of states in thepath determined by w in A(AD) starting from the initialstate. Let q= (q1; � � � ; qm) be the sequen
e of the �rst mstates. We know, by Lemma 2, that the length of 
(w)is equal to the number of states qi, i = 1 � � �m, in q thatbelong to D, where D is the set of all states having twooutgoing edges.If w belongs toKm(�), i.e., if the 
ompression rate �(v) =j
(v)j=jvj is greater than H(S(AD)) + �, then there mustexists an index j su
h that Lm;j(q) > �j + �=jDj. In fa
t,if for all j, Lm;j(q) � �j + �=jDj then, by de�nitions andby Lemma 1,�(v) = �j2DLm;j(q) � �j2D�j + � = H(S(AD)) + �;

a 
ontradi
tion. Therefore the sequen
e of states q belongsto Xm(�=d). Hen
e Pr(Km(�)) � Pr(Xm(�=d)).By Lemma 3, there exists an integer m(�) su
h that forany m > m(�) one has1m log2Pr(Xm( �d )) � �12
( �d ):Then Pr(Km(�)) � 2�(1=2)
(�=d)m. If we set r(�) =2�(1=2)
(�=d), the statement of the theorem follows.Theorem 7: The 
ompression rate �(x) of an in�nite se-quen
e x emitted by the sour
e S(AD) rea
hes the entropyH(S(AD)) almost surely.V. How to build Antidi
tionariesIn pra
ti
al appli
ations the antidi
tionary might not begiven a priori but it must be derived either from the textto be 
ompressed or from a family of texts belonging to theassumed sour
e of the text to be 
ompressed.There exist several 
riteria to build eÆ
ient antidi
-tionaries, depending on di�erent aspe
ts or parameters thatone wishes to optimize in the 
ompression pro
ess. Ea
h
riterion gives rise to di�erent algorithms and implementa-tions.All our methods to build antidi
tionaries are based ondata stru
tures to store fa
tors of words, su
h as suÆxtries, suÆx trees, DAWGs, and suÆx and fa
tor automata(see for instan
e Theorem 15 in [10℄). In these stru
tures,it is possible to 
onsider a notion of suÆx link. This linkis essential to design eÆ
ient algorithms to build represen-tations of sets of minimal forbidden words in term of triesor trees. This approa
h leads to 
onstru
tion algorithm-s that run in linear time in the length of the text to be
ompressed.A rough solution to 
ontrol the size of antidi
tionariesis obviously to bound the length of words in the antidi
-tionary. A better solution in the stati
 
ompression s
hemeis to prune the trie of the antidi
tionary with a 
riterionbased on the tradeo� between the spa
e of the trie to besent and the gain in 
ompression, this will be developed innext se
tion. However, the �rst solution is enough to get
ompression rates that rea
h asymptoti
ally the entropyfor balan
ed sour
es, even if this is not true for generalsour
es. Both solutions 
an be designed to run in lineartime.We present in this se
tion a very simple 
onstru
tion tobuild �nite antidi
tionaries of a �nite word w. It is thebase on whi
h several variations are developed. The idea isto build the automaton a

epting the words having samefa
tors of w of length k and, from this, to build the setof minimal forbidden words of length k of the word w. It
an be used as a �rst step to build antidi
tionaries for �xedsour
es. In this 
ase our s
heme 
an be 
onsidered as a stepfor a 
ompressor generator (
ompressor 
ompiler). In thedesign of a 
ompressor generator, or 
ompressor 
ompiler,statisti
al 
onsiderations and the possibility of making "er-rors" in predi
ting the next letter play an important role,as dis
ussed in Se
tion VII.
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ribed hereafter builds the setof minimal forbidden words of length k (k > 0) of the wordw. It takes as input an automaton a

epting the wordsthat have the same fa
tors of length k (or less) as w, i.e.,a

epting the languageLk = fx 2 f0; 1g� j (u 2 F (x) and juj � k)) u 2 F (w)g:The prepro
essing of the automaton is done by the al-gorithm Build-Fa
t whose 
entral operation is des
ribedby the fun
tion Next.Build-Fa
t (word w 2 f0; 1g�, integer k > 0)1. i new state; Q fig;2. level(i) 0;3. p i;4. while not end of string w5. a next letter of w;6. p Next(p; a; k);7. return trie (Q; i;Q; Æ), fun
tion f ;Next (state p, letter a, integer k > 0)1. if Æ(p; a) de�ned2. return Æ(p; a);3. else if level (p) = k4. return Next(f(p); a; k);5. else6. q  new state; Q Q [ fqg;7. level(q) level (p) + 1;8. Æ(p; a) q;9. if (p = i) f(q) i;10. else f(q) Next(f(p); a; k);11. return q;Build-AD (trie (Q; i;Q; Æ), fun
tion f , integer k > 0)1. T  ;; Æ0  Æ;2. for ea
h p 2 Q, 0 < level(p) < k, in breadth-�rstorder3. for a 0 then 14. if Æ(p; a) is unde�ned and Æ(f(p); a) isde�ned5. q  new state; T  T [ fqg;6. Æ0(p; a) q;7. Q Q n fstates of Q from whi
h no Æ0-pathleads to Tg8. return trie (Q [ T; i; T; Æ0);The automaton is represented by both a trie and its fail-ure fun
tion f . If p is a node of the trie asso
iated withthe word av, v 2 f0; 1g� and a 2 f0; 1g, f(p) is the nodeasso
iated with v. This is a standard te
hnique used inthe 
onstru
tion of suÆx trees (see [24℄ for example). Itis used here in algorithm Build-AD (line 4) to test theminimality of forbidden words a

ording to the equalityMF (L) = AL \ LA \ (A� n L).The above 
onstru
tion gives rise to the following stat-i
 
ompression s
heme in whi
h we need to read the text

twi
e, the �rst time to 
onstru
t the antidi
tionary AD andthe se
ond time to en
ode the text.Informally, the en
oder sends a message z of the form(x; y; �(n)) to the de
oder, where x is a des
ription of theantidi
tionary AD, y is the text 
oded a

ording to AD, asdes
ribed in Se
tion II, and �(n) is the usual binary 
odeof the length n of the text. The de
oder �rst re
onstru
t-s from x the antidi
tionary and then de
odes y a

ordingto the algorithm in Se
tion II. The antidi
tionary AD is
omposed in this simple 
ompression s
heme by all mini-mal forbidden words of length k of w, but other intelligent
hoi
es of subsets of AD are possible. We 
an des
ribe theantidi
tionary AD for instan
e by 
oding with standardte
hniques the trie asso
iated with AD to obtain the wordx. A basi
 question is how fast must grow the number kas fun
tion of the length n of the word w. In this simple
ompression s
heme we 
hoose k to be any fun
tion su
hthat one has that jxj = o(n), but other 
hoi
es are possible.Sin
e the 
ompression rate is the size jzj of z divided bythe length n of the text, we have that jzj=n = jyj=n+o(n).Assuming that for n and k large enough the sour
e S(AD),as in Se
tion IV, approximates the sour
e of the text, then,by the results of Se
tion IV, the 
ompression rate is \opti-mal".For instan
e, suppose that w is emitted by an balan
edMarkov sour
e S with memory h, and let L be the formallanguage 
omposed of all �nite words that 
an be emit-ted by S. By Theorem 4 there exists a �nite antifa
toriallanguage N su
h that L = L(N). Moreover, sin
e S hasmemory h, the words in N have length smaller than or e-qual to h+1. If jwj is su
h that k > h then AD 
ontains Nand, therefore H(S(AD)) � H(S(N)) = H(S). By Corol-lary 1 we 
an dedu
e that this simple 
ompression s
hemeturns out to be universal for the family of balan
ed Markovsour
es with �nite memory (
f. [25℄).Let w= a1a2 � � � be a binary in�nite word that is periodi
(i.e., there exists integer P > 0 su
h that for any index ithe letter ai is equal to the letter ai+P ), and let wn be thepre�x of w of length n. We want to 
ompress the word wnfollowing our simple s
heme informally des
ribed above.It is not diÆ
ult to prove that the 
ompression rate forwn is jzj=n = O(�(n)) = O(log2(n)), whi
h means that thes
heme 
an a
hieve an exponential 
ompression.VI. Pruning Antidi
tionariesIn this se
tion, as well as in previous se
tion, we 
onsidera stati
 
ompression s
heme in whi
h we need to read thetext twi
e: the �rst time to 
onstru
t the antidi
tionaryAD and the se
ond time to en
ode the text.In this se
tion, however, we suppose that we have enoughresour
es to build, in linear time, a suÆx or a fa
tor au-tomaton (or their 
ompa
ted version, 
f. [26℄) of the �nitetext string to be 
ompressed. From these stru
tures we
an obtain in linear time a trie representating of all mini-mal forbidden words of the text (
f. [10℄). It 
an be shownthat the total length of all minimal forbidden words 
an bequadrati
 in the size of the original text. However the trierepresenting these words is of linear size. It is 
lear that if
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ompression ratios not all the minimalforbidden words should be 
onsidered.The �rst idea developed in this se
tion is to prune thetrie of the antidi
tionary with some 
riteria based on thetradeo� between the spa
e of the trie to be sent and thegain in 
ompression. Clearly, the spa
e of the trie to besent stri
tly depend on how we en
ode the trie.Using a 
lassi
al approa
h, in this se
tion we re
all thata binary tree that has k nodes 
an be en
oded using twobits for ea
h node, whi
h gives 2k bits for the whole tree.Indeed, depending on whether a subtree S of a binary treeT has both subtrees, only the right subtree, only the leftsubtree, or no subtree, the root of S 
an be en
oded respe
-tively by the strings 11, 10, 01, 00. This is done re
ursivelyin a pre�x traversal of the whole tree. All the results p-resented in this se
tion 
an be easily extended to the 
asewhen a node of the trie 
an be en
oded using � bits forea
h node, where � is a positive real number.The se
ond idea presented afterwards is to 
ompressthe words retained in the antidi
tionary using the anti-di
tionary itself.The two operations, pruning and self 
ompressing, 
anbe applied iteratively on antidi
tionaries. They lead tovery 
ompa
t representations of antidi
tionaries, produ
inghigher 
ompression ratios.A. Pruned Antidi
tionaryA linear-time algorithm for obtaining the trie T of allminimal forbidden word of a �xed text t 
an be found in[10℄. Hen
e we suppose here that we have this trie T .In order to make a tradeo� between the spa
e of thetrie to be sent and the gain in 
ompression, we have toknow how mu
h ea
h forbidden word 
ontributes to the
ompression. Minimal forbidden words of text t 
orrespondin a bije
tive way to the leaves of the trie T , i.e. withany leave q of the tree we 
an asso
iate the 
orrespondingminimal forbidden word w(q). Indeed if we identify, asin Se
tion III, the nodes of the trie T to the pre�xes ofthe minimal forbidden words, then the fun
tion w is theidentity.We de�ne a 
ost fun
tion 
 that asso
iates with any leaf qof T the number of bits 
(q) that the word w(q) 
ontributesto erase during the 
ompression of the text t. This number
(q) is also the number of times that the longest properpre�x of w(q) appears in text t as a fa
tor but not as asuÆx. In another words, the number 
(q) is the numberof times that a state p is traversed while reading the textt in the automaton A(AD), where p leads to state q bysome letter a (
f. Se
tion III and Theorem 1). Indeedthe last letter of the text is not 
onsidered in this pro
essbe
ause there is nothing to erase after it. By Theorem 1,the fun
tion 
 
an be 
omputed in linear time.We further de�ne the gain (saving) of a subtree S of thetrie T representing an antidi
tionary T as g(S) = �(
(q) jq leaf of S)� 2mS where mS is the number of nodes of S.Indeed the number of bits that have to be sent after
ompression is 
omposed of: 2blogn
 bits to en
ode the

length n of the text t (
f. the 
as
ading lengths te
hniquein [4℄ and referen
es therein); 2mT bits for a des
riptionof the antidi
tionary T ; j
(t)j bits for the text 
ompressedusing T . The overall size is2blogn
+ 2mT + j
(t)j = 2blogn
+ n� g(T )by de�nition of g(T ).Sin
e 2blogn
+ n is �xed and sin
e the gain g(T ) is thesum of the gain of its subtrees minus 2 bits (for en
odingthe root), then pruning subtrees of T that have a negativegain in
reases the gain of T and, 
onsequently, de
reasesthe overall number of bits that have to be sent after 
om-pression.Suppose however that S2 is a subtree of S1 whi
h is, inturn, a subtree of the trie T . Suppose further that S2 hasa negative gain and the same holds for S1, but that S1 hasa positive gain if S2 is pruned from it. In this 
ase, in orderto obtain better 
ompression ratios, the best thing to dois to prune S2 and not the whole S1. It is thus naturalto 
onsider the optimization problem related to an absta
tnon-negative fun
tion 
 (de�ned on leaves of T ) where oneinstan
e is a trie T representing a pre�x 
ode C, and asolution is a trie T 0 that represents a subset of C and thatmaximizes the gain g(T 0).In what follows we show that a bottom-up approa
h givesa linear-time solution to this problem.With any subtree S of T we asso
iate the fun
tion g0,
alled the pruned gain, that is de�ned byg0(S) = 8><>: 0 if S is empty
(S)� 2 if S is a leafg0(S1)� 2 if S has one 
hild S1Mwhere M = max(g0(S1); g0(S2); g0(S1) + g0(S2)) � 2, withS1 and S2 
hildren of S.From the above de�nition it is not diÆ
ult to see thatit is possible to 
ompute fun
tion g0 in linear time withrespe
t to the size of the trie T , in a bottom-up traversalof the trie.We 
an now present the simple pruning algorithm.Simple Pruning (trie T , fun
tion 
)1. 
ompute g0(S) for ea
h subtree S of T ;2. eliminate subtrees S of T for whi
h g0(S) � 0;3. return modi�ed trie T ;The following proposition is a 
onsequen
e of the de-s
riptions given above, and the next theorem shows thatthe output of the algorithm gives a solution to the opti-mization problem des
ribed above.Proposition 1: Algorithm Simple Pruning 
an be per-formed in linear time.Theorem 8: Let T be a trie representing a pre�x 
ode Cand let 
 be a non-negative fun
tion de�ned on leaves of T .The output T 0 of algorithm Simple Pruning representsa subset of C and g0(T 0) is maximum. Moreover we havethat g(T 0) = g0(T 0).
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laim that the trie T 0 outputby algorithm Simple Pruning represents a subset of C.Indeed, by the de�nition of g0 it follows that if a subtreeS of T is not a leaf and if g0(S) > 0, then S must have atleast one 
hild S1 with positive pruned gain, i.e. g0(S1) >0. This fa
t implies that all leaves of T 0 are leaves of T ,proving the 
laim.The rest of the proof is done by indu
tion on the height ofT . If T is empty there is nothing to prove. If T has height0 then T is a leaf and we already have g(T ) = g0(T ). Ifg(T ) > 0, T itself is equal to T 0, otherwise T 0 is the emptytree. In both 
ases the statement of the theorem is satis�ed.Suppose now that T has height > 0. Either it has justone 
hild S1 or it has two 
hildren S1 and S2.Suppose that T has two 
hildren S1 and S2. Si; theyare both tries and we 
an asso
iate to them the restri
tionof the fun
tion gain to all subtrees. By applying algorithmSimple Pruning with input Si, i = 1; 2, and fun
tion 
(restri
ted to leaves of 
orresponding subtrees), we obtainas output a modi�ed trie S0i. By indu
tion we know thatg(S0i) = g0(S0i) and that this value maximizes the fun
tiongain. Therefore, if both g(S01) and g(S02) are positive, a trieT 0 representing a subset of C and maximizing the fun
tiongain is the trie that has the same root as T and has 
hildrenS01 and S02. Moreover g(T 0) = g0(T 0) and algorithm SimplePruning does not prune S1 and S2 from T 0 so the theoremis proved in this 
ase.The other 
ases, (g(S1) � 0 and g(S2) > 0), (g(S1) >0 and g(S2) � 0), (g(S1) � 0 and g(S2) � 0), and the
ase when T has only one 
hild S1 are dealt in analogousmanner.Remark that the statement of Theorem 8 holds essen-tially be
ause pruning a subtree S of T does not a�e
t thevalue of fun
tion gain over all other subtrees of T . This fa
-t is not true anymore with the self-
ompressing approa
hused in next subse
tion.B. Self-
ompressing the antidi
tionaryLet AD be an antifa
torial antidi
tionary for text t. Sin
eAD is antifa
torial then, for any v 2 AD the set ADnfvg isan antidi
tionary for v. Therefore it is possible to 
ompressv using AD n fvg or a subset of it.One 
an think of a strategy that sends to the de
oder, ina stati
 approa
h, all words v ofAD 
ompressed by algorith-m En
oder with a subset of ADnfvg and v as input. Thiswould a
hieve better 
ompression. We 
all this approa
hself-
ompression; it is the subje
t of this subse
tion.Let us �rst try to 
ompress any word v 2 AD by using thewhole AD n fvg and let us denote by 
1(v) the 
ompressedversion of v by using ADnfvg. Noti
e that the words of ADthat are used in 
ompressing v have length � jvj. Further,if u 2 AD with juj = jvj is used to erase the last letter ofv, then u must 
oin
ide with v ex
ept for the last letter,that is, u = xa, v = xb and a 6= b. In addition it is easyto see that 
1(u) = 
1(v). This word is also equal to 
1(x)that has been 
ompressed by using the antidi
tionary of allwords of AD having length shorter than jvj = juj.

As as a spe
ial 
ase of the next proposition, a set fu; vghaving these properties 
an o

ur at most on
e in any an-tidi
tionary AD of a text t.A pair of words (v; v1) is 
alled stopping pair if v =ua; v1 = u1b 2 AD, with a; b 2 f0; 1g, a 6= b, and u isa suÆx of u1.Proposition 2: Let AD be an antifa
torial antidi
tionaryof a text t. If there exists a stopping pair (v; v1) withv1 = u1b, b 2 f0; 1g, then u1 is a suÆx of t and does notappear elsewhere in t. Moreover there exists at most onepair of words having these properties.Proof: Sin
e u1b 2 AD, u1 is a fa
tor of t. Supposethat u1
 appears as a fa
tor of t, with 
 2 f0; 1g. Sin
eu is a suÆx of u1, letter 
 is not letter a (be
ause ua isforbidden) and is not letter b (be
ause u1b is forbidden), a
ontradi
tion. Hen
e u1 is a suÆx of t and does not appearelsewhere in t.Sin
e u1 is a suÆx of t, then also u is a suÆx of t. Sup-pose that there exists another pair (v0 = u0
; v01 = u01d) 6=(v; v1) of words in AD with 
; d 2 f0; 1g, a 6= b, and u0 isa suÆx of u01. Then u01 and u0 are also suÆxes of t and itis not diÆ
ult to prove by 
ases that one of the four wordsamong v; v1; v0; v01 is a fa
tor of another, 
ontradi
ting theantifa
toriality of AD.Let us suppose now that v1; : : : ; vk is a sequen
e of allwords in AD su
h that for any i, 1 � i � k�1, jvij � jvi+1j.If one knows that there exists no vj su
h that jvj j = jvijand vj has been used to erase the last letter of vi, thenthe set AD1 = fv1; : : : vi�1g is the antidi
tionary used for
ompressing vi to get 
1(v), and vi 
an be re
overed fromboth 
(vi) and jvij using algorithm De
oder. If thereexists vj su
h that jvj j = jvij and vj has been used to erasethe last letter of vi then the set AD1 = fv1; : : : vi�1g is theantidi
tionary used for obtaining the 
ompressed version
1(x) = 
1(vi) of the longest 
ommon pre�x x of vi andvj , with jxj = jvij � 1. Also in this 
ase x and thereforevi and vj , 
an be re
overed from both 
1(x) = 
1(vi) andjxj = jvij � 1 using algorithm De
oder.By the above dis
ussion, it follows that if one knowsthe sequen
e (
1(v1); jv1j), (
1(v2); jv2j), : : :, (
1(vk); jvk j),together with the 
ouple (i; j) su
h that vi and vj havebeen used to mutually erase their last letter (i = j = 0 ifthere is no su
h a pair), then the de
oder 
an re
onstru
t,in this order, words v1, v2, : : :, vk. That is, de
oder 
anre
onstru
t the whole antidi
tionary AD.Unfortunately, while AD, being antifa
torial, is also apre�x 
ode and 
an be represented by a trie, this is nottrue anymore for the set X1 = f
1(v) j v 2 ADg. Forexample, the reader 
an easily verify that if AD = f11;000; 10101; 00100100; 1010010100101g then X1 = f11;000; 111; 0000; 1111; g. Also, if AD = f10; 110; � � � ; 1n0gthen, for any n � 0, X1 = f10g. Consequently the spa
esaved by self 
ompressing the antidi
tionary 
ould be lostin en
oding the set X1.We propose a di�erent approa
h that makes use ofthe same idea and leads to simple algorithms for self-
ompressing and re
overing the antidi
tionary AD. Thesealgorithms run in linear time in the size of the trie T repre-
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torial antidi
tionary AD and, moreover,the 
ompression ratios obtained with the pruning te
hnique
an only be improved by the next self 
ompression te
h-nique.We present a formal des
ription of the te
hnique. Givena word v 2 AD, we 
ompress it using an antidi
tionary AD0that dynami
ally 
hanges at any step of the while loop online 2 of algorithm En
oder. While dealing with a properpre�x u of v and the letter a following it, the antidi
tionaryAD0 is 
omposed of all words belonging to AD with lengthnot greater than juj. Letter a is erased if and only if thereexists a word u0b 2 AD, b 6= a, with u0 a proper suÆx ofu. Let us 
all 
2(v) the 
ompressed version of v obtainedin this way and let X2 = f
2(v) j v 2 ADg.This kind of self-
ompression 
an be performed in lineartime by next algorithm Self-
ompress. It has as inputboth the trie T that represents AD and the fun
tion Æ ofautomaton A(AD) (
f. algorithm L-automaton). Noti
ethat Æ is de�ned on nodes of T . Its output T 0 is the triea

epting the set X2 = f
2(v) j v 2 ADg. The algorithmperforms breadth-�rst traversal of T implemented by thequeue Q. During the traversal, it 
reates a self-
ompressedversion T 0 of T that represents the set X2.Self-
ompress (trie T , fun
tion Æ))1. i root of T ;2. 
reate root i0;3. add (i; i0) to empty queue Q;4. while Q 6= ;5. extra
t (p; p0) from Q;6. if q0 and q1 are 
hildren of p7. 
reate q00 and q01 as 
hildren of p0;8. add (q0; q00) and (q1; q01) to Q;9. else if q is a unique 
hild of p andq = Æ(p; a), a 2 A10. if Æ(p;:a) is a leaf11. add (q; p0) to Q;12. else 
reate q0 as a-
hild of p0;13. add (q; q0) to Q;14. return trie having root i0;The 
orre
tness of algorithm Self-
ompress relies onthe following proposition and the dis
ussion thereafter.Proposition 3: If a node p in the trie T has two 
hildrenq0 and q1 then its 
orresponding node p0 in the output trieT 0 also has two 
hildren.Proof: If q0 and q1 are both leaves, they representtwo minimal forbidden words ua and ub, a 6= b. There isno minimal forbidden words in the form u0a or u0b with u0a proper suÆx of u be
ause AD is antifa
torial. Thereforeneither letter a nor letter b 
an be erased by the te
hnique.If q0 and q1 are not leaves, they represent two wordsua and ub, a 6= b, that are fa
tors of text t. There is nominimal forbidden words in the form u0a or u0b with u0 aproper suÆx of u be
ause these words are also fa
tors of t.Therefore neither letter a nor letter b 
an be erased by thete
hnique.Let us suppose now that only one node among q0 and q1is a leaf. For instan
e, let us assume that q0 is a leaf and

q1 is not a leaf. They represent respe
tively two words uaand ub, a 6= b. Letter a 
annot be erased be
ause in theantidi
tionary there is no word in the form u0b with u0 aproper suÆx of u, ub being a fa
tor of t. Letter b 
annotbe erased be
ause in the antidi
tionary there is no word inthe form u0a with u0 a proper suÆx of u, sin
e ua is in theantidi
tionary and the antidi
tionary is antifa
torial.The previous proposition explains why the algorithm 
re-ates two nodes q00 and q01 at line 7.We next 
onsider lines 10{13, in whi
h node p of T hasonly one 
hild q = Æ(p; a). The node Æ(p;:a) 
annot havehigher level than p be
ause p has only one 
hild. Hen
e,letter a is erased if and only if Æ(p;:a) is a leaf, by de�nitionof the te
hnique.Finally, if p has no 
hildren, i.e. p is a leaf, nothingis done by the algorithm but extra
ting (p; p0) from thequeue.Corollary 1: Tries T and T 0 have the same number ofinternal nodes that have two 
hildren and, 
onsequently,have the same number of leaves. Trie T 0 represents thepre�x 
ode X2.The 
orollary implies that X2 = f
2(v) j v 2 ADg 
anbe uniquely re
onstru
ted from T 0. There is an additionalproperty that allows re
onstru
ting AD from X2 without
onsidering lengths of words in AD. This simpli�es thepro
edure. The next proposition follows readily from de�-nitions.Proposition 4: If there exists no stopping pair in AD thenfor any v 2 AD, the last letter of v is not erased during theself-
ompression to get 
2(v).If the de
oder has the additional information that thelast letter of t was not erased at 
ompression time then it
an use this fa
t as a stop 
riterion. This is also possibleeven if the antidi
tionary 
hanges dynami
ally. Indeed thede
oder just has to stop after pro
essing the last letter ofthe 
ompressed text. Therefore there is no need to use thelength of the text to stop de
oding.To ensure that the last letter of any v 2 AD is not erasedand to meet the above hypothesis, it is suÆ
ient to elim-inate the only possible stopping pair (
f. Proposition 2).To do that, we delete from AD the longest word v1 of su
ha pair. By Proposition 2 this word does not 
ontributeto erasing letters in text t during the 
ompression be
ausethere is nothing to erase after the last letter.Hen
e we suppose that in our antidi
tionary AD thisword is not in
luded, or, equivalently, that the bran
h oftrie T that has this word as unique leaf is pruned. In otherwords, we suppose from now on that antidi
tionary AD(and obviously all its subsets) has no stopping pair.Algorithm Self-automaton uses the previous hypoth-esis to re
onstru
t AD from T 0. More pre
isely, its input isa trie T 0, self-
ompressed from trie T , with its transitionfun
tion Æ0. Its output is the automaton A(AD), where ADis the antidi
tionary represented by trie T . It is similar toalgorithm L-automaton. Indeed it makes a breadth-�rsttraversal on states of the trie T . It is possible to do thisbe
ause, any time a state is rea
hed, if a 
hild was \erased"during the exe
ution of Self-
ompress, it is now 
reated
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reate a new 
hild,fun
tion Æ must be previously restored, as done in algorith-m L-automaton, by using the failure fun
tion f . Whena leaf is rea
hed in the self-
ompressed trie, the new stop
riterion tells us that there is nothing more to re
onstru
tin that bran
h.Trie T 
an be obtained from the automaton A(AD), out-put of next algorithm, by using a linear time algorithmdes
ribed in [10℄.The 
urrent situation in the next algorithm is as follows:when a node p is popped from the queue, trie T has beende
ompressed up to the level of p in T , f(p) is de�ned andfun
tion Æ is de�ned for all previous nodes, whi
h in
ludesnodes at previous level. After pro
essing p, Æ is also de�nedfor p and the failure fun
tion f is de�ned on its 
hildren.Self-automaton (trie T 0)1. i0  root of T 0;2. Q ;;3. for ea
h a 2 A4. if Æ0(i0; a) is de�ned5. Æ(i0; a) Æ0(i0; a);6. f(Æ(i0 ; a)) i0;7. add Æ(i0 ; a) to Q;8. else9. Æ(i0; a) i0;10. while Q 6= ;11. extra
t p from Q;12. if p is not a leaf13. if Æ(f(p); a) is a leaf for a 2 A14. 
reate p1;15. for ea
h b 2 A16. if Æ0(p; b) is de�ned17. Æ0(p1; b) Æ0(p; b);18. Æ(p;:a) p1;19. Æ(p; a) Æ(f(p); a));20. f(p1) Æ(f(p);:a));21. add p1 to Q;22. else23. for ea
h a 2 A24. if Æ0(p; a) is de�ned25. Æ(p; a) Æ0(p; a));26. f(Æ(p; a)) Æ(f(p); a));27. add Æ(p; a) to Q;28. else29. Æ(p; a) Æ(f(p); a));30. else31. for ea
h a 2 A32. Æ(p; a) p;33. return (Q;A; i0;Q n fleavesg; Æ);Sin
e there is a bije
tion between leaves of T and leavesof T 0, we 
an asso
iate with any leaf q0 of T 0 the samevalue 
(q) of the 
orresponding leaf q in T . This is thenumber of bits that the word w(q) leads to erase duringthe 
ompression of text t. Analogously, as in the previoussubse
tion, we 
an de�ne fun
tions gain and pruned gainand, as a �rst step, we 
an run algorithm Simple Pruningon T 0. At the same time we prune 
orresponding subtreesin T and obtain a trie T1. Doing so, the modi�ed trie T1represents a subset of AD. As a se
ond step, we 
an useagain algorithm Self-
ompress on T1 to get T 01. Notethat T 01 
an be di�erent from the pruned trie T 0 be
ausepruning subtrees 
an a�e
t self-
ompression.We 
an iterate the above two steps for a �xed number oftimes or until the trie stabilizes.

VII. Con
lusionWe have des
ribed DCA, a text 
ompression method thatuses some \negative" information about the text, repre-sented in terms of antidi
tionaries. The advantages of thes
heme are:� it is fast at de
ompressing data,� it is fast at 
ompressing data for �xed sour
es,� it has a syn
hronization property in the 
ase of �nite an-tidi
tionaries, property that leads to eÆ
ient parallel 
om-pression and to sear
h engines on 
ompressed data.In the previous se
tions we presented some stati
 DCAs
hemes in whi
h the text to be 
ompressed needs to bes
anned twi
e. Starting from these stati
 s
hemes, severalvariations and improvements 
an be proposed. These vari-ations are all based on 
lever 
ombinations of two elementsthat 
an be introdu
ed in our model:� statisti
 
onsiderations,� dynami
 approa
hes.These are 
lassi
al features that are often in
luded in otherdata 
ompression methods.Statisti
al 
onsiderations are used in the 
onstru
tionof antidi
tionaries. If a forbidden word is responsible for\erasing" few bits of the text in the 
ompression algorithmof Se
tion II and if its \des
ription" as an element of theantidi
tionary is \expensive" then the 
ompression ratioimproves if it is not in
luded in the antidi
tionary. Thisidea has been partially exploited in previous se
tion. Onthe 
ontrary, one 
an introdu
e into the antidi
tionary aword that is not forbidden but that o

urs very rarely inthe text. In this 
ase, the 
ompression algorithm will pro-du
e some \errors" or \mistakes" in predi
ting the nextletter. In order to have a lossless 
ompression, en
oder andde
oder must be adapted to manage su
h errors. Typi
alerrors o

ur in the 
ase of antidi
tionaries built for �xedsour
es as well as in the dynami
 approa
h.Even with errors, assuming that they are rare with re-spe
t to the maximum length of words of the antidi
-tionary, our 
ompression s
heme preserves the syn
hroniza-tion property of Theorem 3. The use of errors be
omesne
essary for some arti�
ial strings like 1m0 if one wantsto use a stati
 aproa
h. Without errors and with a stati
approa
h, the algorithms des
ribed in previous se
tion areunable to 
ompress su
h strings.Antidi
tionaries for �xed sour
es have also an intrinsi
interest. A 
ompressor generator, or 
ompressor 
ompil-er, 
an 
reate, starting from words obtained from a sour
eS, an antidi
tionary that 
an be used to 
ompress all oth-er words from the same sour
e S. Error management isessential for this kind of appli
ation. Having a �xed anti-di
tionary makes the 
ompression fast be
ause basi
 oper-ations are just table lookups.In the dynami
 approa
h, we 
onstru
t the antidi
-tionary and en
ode the text at the same time. The an-tidi
tionary is 
onstru
ted (also with statisti
al 
onsidera-tion) by 
onsidering the whole text previously s
anned orjust a part of it. The antidi
tionary 
an 
hange at anystep and the algorithmi
 rules for its 
onstru
tion must besyn
hronized between en
oder and de
oder.
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ompressed size(in bytes) (in bytes)bib 111261 35535book1 768771 295966book2 610856 214476geo 102400 79633news 377109 161004obj1 21504 13094obj2 246814 111295paper1 53161 21058paper2 382199 2282pi
 513216 70240prog
 39611 15736progl 71646 20092progp 49379 13988trans 93695 22695Fig. 3. Compression ratios on �les of the Calgary Corpus.We have realized prototypes of the 
ompression and de-
ompression algorithms. They also implement the dynami
version of the method. They have been tested on the Cal-gary Corpus (see Figure 3), and experiments show that weget 
ompression ratios equivalent to those of most 
ommon
ompressors (su
h as pkzip for example).We are 
onsidering several generalizations:� Compressor s
hemes and implementations of antidi
-tionaries on more general alphabets or on other types ofdata (images, sounds, et
.),� Use of lossy 
ompression espe
ially to deal with images,� Combination of DCA with other 
ompression s
hemes;for instan
e, using both di
tionaries and antidi
tionarieslike positive and negative sets of examples as in LearningTheory,� Design of 
hips dedi
ated to �xed sour
es.Several problems 
on
erning the data 
ompression s
he-me are still open. We list some of them.� Are balan
ed sour
es dense inside the family of Markovsour
es? A positive answer would raise the question ofadapting the s
heme so that it be
omes universal forMarkov or ergodi
 sour
es. Can self 
ompression be usedto settle this question?� Are there eÆ
ient algorithms to build good antidi
tionar-ies for synta
ti
 sour
es, generated for instan
e by gram-mars? This raises a question of 
oding on a binary alpha-bet.� What is the average of the maximum length of minimalforbidden words in texts of length n generated by an er-godi
 sour
e having entropy H?� How many times on the average should pruning and self
ompressing be iterated before the pro
ess stabilizes (seeprevious se
tion)? We would expe
t a maximum of lognsteps. Is the stabilized trie optimal?A
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