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Introduction

Let L A be a factorial language, i.e., a language containing all factors of its words. A word w 2 A is called a minimal forbidden word for L if w = 2 L and all proper factors of w belong to L. We denote by MF(L) the language of minimal forbidden words for L.

The study of combinatorial properties of MF(L) helps investigate the structure of the language L or of the system it describes. For instance, locally testable factorial languages (cf 8]) are characterized by the fact that the corresponding languages of minimal forbidden words are nite. In the context of Symbolic Dynamics they correspond to systems of nite type.

Another example is given by a language L that is the set of factors of an in nite word: in this case, as shown in 2], the elements of MF(L) are closely related to the bispecial factors (cf. 6], 7] and 3]) of the in nite word.
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A measure of complexity of the language L is introduced in 2] based on the function F L , that counts, for any n, the number of words of length n in MF(L). Authors prove that the growth of F L (n) as well as the topological entropy of MF(L) are topological invariants of the dynamical system de ned by L. This result provides a usefull tool to show that some systems are not isomorphic, which comes in addition to other notions like the ordinary notion of entropy and the zeta function, for example.

Finally, 5] considers properties of languages de ned by nite forbidden sets of words. Authors de ne the M obius function for these languages.

In this paper we focus on the transformations between L and MF(L). We rst design an automaton accepting L and that is built from the language M = MF(L). When M is a nite set the transformation is e ective. Moreover, if M is given by its digital tree, that is, its tree-like deterministic automaton, the algorithm is very similar to the algorithm of Aho and Corasick that builds a pattern-matching machine for a nite set of words 1].

In a second part we consider the particular situation of a language that is the set of factors of a single word v. The construction of its factor automaton, the minimal deterministic automaton accepting the factors of v (see 4]) is known to be rather intricate. It is remarkable that the preceding transformation yields exactly the factor automaton of v when the input if the set M of minimal forbidden words of v. We also give an algorithm that realizes the converse transformation, building the trie of M from the factor automaton of v. A corollary of the algorithm is a non-trivial upper bound on the number of minimal forbidden words of a word.

The complexities of algorithms described in this paper are all linear in the size of their input or output. Therefore, the design of possible faster algorithms relies on di erent representations of objects, which is not the aim of the paper.

Avoiding an anti-factorial language

Let A be a nite alphabet and A be the set of nite words drawn from the alphabet A, the empty word included. Let L A be a factorial language, i.e. a language satisfying: 8u; v 2 A uv 2 L =) u; v 2 L. The complement language L c = A n L is a (two-sided) ideal of A . Denote by MF (L) the base of this ideal, we have L c = A MF (L)A .

The set MF(L) is called the set of minimal forbidden words for L. A word v 2 A is forbidden for the factorial language L if v = 2 L, which is equivalent to say that v occurs in no word of L. In addition, v is minimal if it has no proper factor that is forbidden.

One can note that the set MF (L) uniquely characterizes L, just because L = A n A MF (L)A :

(1) The following simple observation provides a basic characterization of minimal forbidden words.

Remark 1 A word v = a 1 a 2 a n belongs to MF (L) i the two conditions hold: v is forbidden, (i.e., v = 2 L), both a 1 a 2 a n 1 2 L and a 2 a 3 a n 2 L (the pre x and the su x of v of length n 1 belong to L). The remark translates into the equality:

MF (L) = AL \ LA \ (A n L):
(2) As a consequence of both equalities (1) and (2) we get the following proposition.

Proposition 1 For a factorial language L, languages L and MF (L) are simultaneously rational, that is, L 2 Rat(A ) i MF (L) 2 Rat(A ).

The set MF (L) is an anti-factorial language or a factor code, which means that it satis es: 8u; v 2 MF (L) u 6 = v =) u is not a factor of v, property that comes from the minimality of words of MF (L).

We introduce a few more de nitions.

De nition 1 A word v 2 A avoids the set M, M A , if no word of M is a factor of v, (i.e., if v = 2 A MA ). A language L avoids M if every word of L avoids M. From the de nition of MF (L), it readily comes that L is the largest (according to the subset relation) factorial language that avoids MF (L). This shows that for any anti-factorial language M there exists a unique factorial language L(M) for which M = MF (L). The next remark summarizes the relation between factorial and anti-factorial languages.

Remark 2 There is a one-to-one correspondence between factorial and antifactorial languages. If L and M are factorial and anti-factorial languages respectively, both equalities hold: MF (L(M)) = M and L(MF(L)) = L.

We also refer to the next de nition that is to be considered in the context of dynamical systems (see 9] for example).

De nition 2

The factorial language L is said to be of nite type when MF (L) is nite.

Finally, with an anti-factorial nite language M we associate the nite automaton A(M) as described below. The automaton is deterministic and complete, and, as shown at the end of the section by Theorem 3, the automaton accepts the language L(M).

The automaton A(M) is the tuple (Q; A; i; T; F) where the set Q of states is fw j w is a pre x of a word in Mg, A is the current alphabet, the initial state i is the empty word , the set T of terminal states is Q n M. States of A(M) that are words of M are sink states. The set F of transitions is partitioned into the three (pairwise disjoint) sets F 1 , F 2 , and F 3 de ned by: F 1 = f(u; a; ua) j ua 2 Q; a 2 Ag (forward edges or tree edges), F 2 = f(u; a; v) j u 2 Q n M; a 2 A; ua = 2 Q; v longest su x of ua in Qg (backward edges), F 3 = f(u; a; u) j u 2 M; a 2 Ag (loops on sink states). The transition function de ned by the set F of arcs of A(M) is noted . Remark 3 One can easily prove from de nitions that 1. if q 2 Q n (M f g), all transitions arriving on state q are labeled by the same letter a 2 A, 2. from any state q 2 Q we can reach a sink state, i.e., q can be extended to a word of M.

De nition 3 For any v 2 A , q v denotes the state ( ; v), target of the unique path in A(M) starting at the initial state and labeled by v.

Since A(M) is a complete automaton, q v is always de ned. In the automaton A(M) states are words, but to avoid misunderstandings we sometimes write \the word corresponding to q v " instead of just \the word q v ".

Remark 4 Note that if v is a state of A(M) we have q v = v.

We are now ready to state and prove the next lemma that is used in the proof of Theorem 3, the main result of the section.

Lemma 2 Let M be an anti-factorial language and consider A(M). Let v 2 A be such that, for any proper pre x u of v, q u is not a sink state (q u = 2 M). Then, 1. the word q v is a su x of v, 2. q v is the longest su x of v that is also a state of A(M) (or 8q 2 Q q su x of v =) q su x of q v ). Proof. By induction on jvj.

Base of the induction, jvj = 0. Then, v = = q v and points 1 and 2 are trivially satis ed.

Inductive step jvj > 0. We can write v = ua; a 2 A; hence, q v = (q u ; a) or equivalently (q u ; a; q v ) 2 F. By induction, q u is a su x of u and, if q 2 Q is a su x of u, q is also a su x of q u . By hypothesis, the transition (q u ; a; q v ) cannot belong to F 3 because q u is not a sink state. We have two cases:

(i) (q u ; a; q v ) 2 F 1 , (ii) (q u ; a; q v ) 2 F 2 .

In case (i) condition 1 readily comes from the inductive hypothesis because q v = (q u ; a). Let us suppose that q is a state su x of v. If q = then 2 is trivially satis ed; otherwise, if q 6 = , q = (q 0 ; a) for some state q 0 2 Q. Since v = ua, q 0 is a su x of u and, by induction, q 0 is a su x of q u . Since q v = (q u ; a) and q (= (q 0 ; a)) is a su x of q v , which proves that 2 is satis ed. In case (ii), since by de nition q v is a su x of (q u ; a), and since by induction q u is a su x of u, q v is a su x of ua = v and 1 holds. If q 2 Q is a su x of v with q 6 = (otherwise 2 trivially holds), then q = q 0 a for some q 0 su x of u, and by induction q 0 is a su x of q u and moreover q is a su x of (q u ; a). By de nition q v is the longest su x of (q u ; a) that is also a state, and consequently q is a su x of q v .

./

Denoting by Lang (A) the language accepted by an automaton A, we get the main theorem of the section.

Theorem 3 For any anti-factorial language M, Lang (A(M)) = L(M).

Proof. We rst prove L(M) Lang (A(M)). We have to show that if v is a word that avoids M then v 2 Lang (A(M)). Assume ab absurdo that v = 2 Lang (A(M)); therefore q v is a sink state. Let u be the shortest pre x of v for which q u is a sink state (note that q u = q v ). By lemma 2 statement 1, q u is a su x of u, but q v is by de nition an element of M, and so v does not avoid M, a contradiction.

We then prove Lang (A(M)) L(M). Let v 2 Lang (A(M)). Let us suppose ab absurdo that v does not avoid M, i.e., v = uwz for some w 2 M; u; z 2 A . We choose uw as the shortest pre x of v that belongs to A M. Since w 2 M it is by de nition a state of A(M); since w is a state that is a su x of uw, by Lemma 2 statement 2, w is a su x of q uw . But q uw , which is by de nition a state of A(M), is a pre x of an element w 0 of M (note that w 0 is not empty).

Since w is a su x of a pre x of w 0 , w is a factor of w 0 , a contradiction because M is anti-factorial.

./

The above de nition of A(M) turns into the algorithm below, called Lautomaton, that builds the automaton from a nite anti-factorial set of words.

The input is the trie T that represents M. It is a tree-like automaton accepting the set M and, as such, it is noted (Q; A; i; T; 0 ). The procedure can be adapted to test whether T represents an anti-factorial set, or even to generate the trie of the anti-factorial language associated with a set of words.

In view of Equality 1, the design of the algorithm remains to adapt the construction of a pattern matching machine (see 1] or 4]). The algorithm uses a function f called a failure function and de ned on states of T as follows. States of the trie T are identi ed with the pre xes of words in M. For a state au (a 2 A, u 2 A ), f(au) is 0 (i; u), quantity that may happen to be u itself.

Note that f(i) is unde ned, which justi es a speci c treatment of the initial state in the algorithm. Example. Figure 1 displays the trie that accepts M = faa; bbab; bbbg. It is an anti-factorial language. The automaton produced from the trie by algorithm L-automaton is shown in Figure 2. It accepts the pre xes of (ab b)(ab) ba that are all the words avoiding M.

Theorem 4 Let T be the trie of an anti-factorial language M. Algorithm Lautomaton builds a complete deterministic automaton accepting L(M).

Proof. The automaton produced by the algorithm has the same set of states as the input trie. It is clear that the automaton is deterministic and complete.

Let u 2 A + and p = (i; u). A simple induction on juj shows that the word corresponding to f(p) is the longest proper su x of u that is a pre x of some word in M. This notion comes up in the de nition of the set of transitions F 2 in the automaton A(M). Therefore, the rest of the proof just remains to check that instructions implement the de nition of A(M). 3 Factor automaton of a single word

In this section we specialize the previous results to the language of factors of a single word. It is proved below that the contruction of Section 2 yields the factor automaton (minimal deterministic automaton accepting the factors) of the word (see Theorem 7). The minimality of the automaton seems to be exceptional because, for example, the same construction applied to the set faa; abg does not provide a minimal automaton. The reverse construction that produces the trie of minimal forbidden words from the factor automaton is described in the next section.

We consider a xed word v 2 A and denote by F(v) the language of factors of v. Proposition 6 The language F(v) is of nite type.

Proof. Indeed, factors of v, of lengths less than jvj+1, avoid all words of length exactly jvj + 1. Therefore, every minimal forbidden word of F(v) has length at most jvj + 1.

./ For instance, for the word v = abbab, the set of minimal forbidden words of F(abbab) is faa; aba; babb; bbb; cg (see Figures 3 and4).

The result of the previous proposition is made more precise in the next section, but an immediate consequence of it and of the de nition of the automaton A(M) for an anti-factorial language M, the automaton A(MF (F(v))) has a nite number of states. The next statement gives a complete characterization of the automaton as the factor automaton of v.

Theorem 7 For any v 2 A , the automaton obtained from A(MF (F(v))) by removing its sink states is the minimal deterministic nite automaton accepting the language F(v) of factors of v. Proof. The automaton A(MF(F(v))) is already a deterministic nite automaton that accepts the language F(v) by Theorem 3. We only have to prove that it is minimal after removing the sink states.

Suppose ab absurdo that there exist two equivalent non-sink states p; q in Q. By the standard equivalence relation of undistinginshability and by construction p; q 2 F(v). Hence, v = xpy and v = x 0 qy 0 and we can choose x and x 0 of minimal length. We consider two cases:

(i) jxpj 6 = jx 0 qj, (ii) jxpj = jx 0 qj. Case (i). We can suppose for example that jxpj < jx 0 qj (the case jxpj > jx 0 qj is handled symmetrically). Then, xpy 2 F(v) implies that (p; y) is not a sink state, hence, by the equivalence (q; y) is not a sink state, that is, qy 2 F(v) by Remark 4. Therefore, v = x"qyz where jx"j jx 0 j by the choice of x 0 (of minimal length). Hence, jvj jx 0 j + jqj + jyj + jzj > jxpj + jyj = jvj, a contradiction.

Case (ii). The equality jxpj = jx 0 qj implies either that p is a su x of q or the converse. Let us suppose for example that p = sq for some word s 6 = . By Remark 3 statement 2, there exists w = pz that belongs to MF (F(v)). By the equivalence, qz is also a sink state and, again by the equivalence, for no proper pre x u of qz, q u is a sink state. Hence, by Lemma 2.1, q qz is an element of MF (F(v)), that is, a su x of qz. Since p = sq; s 6 = , q qz is a proper su x of pz against the anti-factorial property of MF (F(v)). A contradiction again.

After cases (i) and (ii) it appears that there cannot exist two di erent nonsink states p; q in Q that are equivalent. Therefore the automaton without sink states is minimal, which ends the proof.

./ The property stated by Theorem 7 does not generalize to any nite set words.

For example, consider the set M = faa; bag. Its trie has three internal nodes and then the automaton A(M) has three states after removing sink states. But the language L(M) is b + ab and its minimal automaton has only two states. else if (p; a) = q and q not already treated 5. set 0 (p; a) = q;

Minimal forbidden words of a word

6. return (Q; A; i; fsinksg; 0 );

The input of algorithm MF-trie is the factor automaton of word v. It is the minimal deterministic automaton accepting the factors of v. It includes the failure function de ned on the states of the automaton and called s. This function is a by-product of e cient algorithms that build the factor automaton (see 4]). It is de ned as follows. Let u 2 A + and p = (i; u). Then, s(p) = (i; u 0 ) where u 0 is the longest su x of u for which (i; u) 6 = (i; u 0 ). It can be shown that the de nition of s(p) does not depend on the choice of u.

Example Consider the word v = abbab on the alphabet fa; b; cg. Its factor automaton is displayed in Figure 3. The failure function s de ned on states has values: s(1) = s(5) = 0, s(2) = s(3) = 5, s(4) = 1, s(6) = 2. Algorithm MF-trie produces the trie of Figure 4 that represents the set of ve words faa; aba; babb; bbb; cg.

Theorem 8 Let A be the factor automaton of a word v 2 A . (It accepts the language F(v).) Algorithm MF-trie builds the tree-like deterministic automaton accepting the set of minimal forbidden words of F(v), that is MF(F(v)).

Proof. The transitions de ned at line 5 duplicates the transition of the widthrst search tree, which is the tree of shortest paths from the the initial state of A. This fact is used in the proof. All other transitions are created at line 3 and lead to a sink state. Let A 0 be the automaton produced by the algorithm. Consider a word ua (a 2 A) accepted by A 0 . (A 0 accepts only non-empty words.) Let p = 0 (i; u). By the remark above, u is the shortest word for which (i; u) = p. Therefore, if u = by with b 2 A, we have (i; y) = s(p) by de nition of the su x function s. When the test \ (s(p); a) de ned" is satis ed, this implies that ya 2 F(v). Thus, bya 6 2 F(v), while by; ya 2 F(v). So, after Remark 1, bya = ua is a minimal forbidden word for F(v).

If u is the empty word, p = i. The transition from i to the sink labeled by a is created under the condition \ (p; a) unde ned", which means that the letter a does not occur in v. The word a is again a minimal forbidden word for F(v) in this case. This proves that any word accepted by A 0 is in MF (F(v)). Conversely, let ua 2 MF (F(v)). If u is the empty word, this means that a does not occur in v, therefore there is no transition labeled by a in A. Lines 3 and 4 cope with this situation by creating a 0 -transition from the initial state to accept a.

Assume now that u = by with b 2 A. The word u is a factor of v, so let p = (i; u). Note that u is the shortest word for which p = (i; u), because all such words are su xes of each others in the factor automaton A. The word ua is not a factor of v, so the condition \ (p; a) unde ned" is satis ed. Let q = s(p). We have q = (i; y) because of the minimality of length of u and the de nition of s. By the choice of ua = bya, ya is a factor of v. Thus, the condition \ (s(p); a) de ned" at line 3 is satis ed which yields the creation of a transition at line 4 to make A 0 accept ua as wanted. This ends the whole proof.

./ Corollary 9 A word v 2 A has no more than 2(jvj 2)(jA v j 1)+jAj minimal forbidden words if jvj 3, where A v is the set of letters occurring in v. The bound becomes jAj + 1 if jvj < 3.

Proof. The number of words in MF (F(v)) is the number of sink states created during the execution of algorithm MF-trie. These states have exactly one

Figure 1 :

 1 Figure 1: Trie of the factor code faa; bbab; bbbg on the alphabet fa; bg. Squares represent terminal states.

Figure 2 :

 2 Figure 2: Automaton accepting the words that avoid the set faa; bbab; bbbg.Squares represent non-terminal states (sink states).

Figure 3 :Figure 4 :

 34 Figure 3: Factor automaton of abbab; all states are terminal.

ingoing arc originated at a state of the factor automaton A of v. So, we have to count these arcs.

From the initial state of A there is exactly jAj jA v j such arcs. From the (unique) state of A without outgoing arc, there are at most jA v j such arcs. From other states there are at most jA v j 1 such arcs.

For jvj 3, it is known that A has at most 2jvj 2 states (see 4]). Therefore, jMF(F(v))j (jAj jA v j)+jA v j+(2jvj 4)(jA v j 1) = 2(jvj 2)(jA v j 1)+jAj.

When jvj < 3, it can be checked directly that jMF(F(v))j jAj + 1. ./ Proposition 10 Algorithm MF-trie runs in time O(jvj jAj) on input word v if transition functions are implemented by transition matrices.

Proof. As for the proof of Proposition 5, the hypothesis on implementation implies that the running time of the algorithm is proportional to jQj jAj. Thus, the result is a consequence of the linear size of A: the factor automaton of v has no more than 2jvj states (see 4] for instance).

./