
HAL Id: hal-00619573
https://hal.science/hal-00619573

Submitted on 20 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Subquadratic Sequence Alignment Algorithm for
Unrestricted Scoring Matrices

Maxime Crochemore, Gad M. Landau, Michal Ziv-Ukelson

To cite this version:
Maxime Crochemore, Gad M. Landau, Michal Ziv-Ukelson. A Subquadratic Sequence Alignment
Algorithm for Unrestricted Scoring Matrices. SIAM Journal on Computing, 2003, 32 (6), pp.1654-
1673. �10.1137/S0097539702402007�. �hal-00619573�

https://hal.science/hal-00619573
https://hal.archives-ouvertes.fr


A Sub-quadrati
 Sequen
e Alignment Algorithm for Unrestri
tedS
oring Matri
esMaxime Cro
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h CenterAbstra
tThe 
lassi
al algorithm for 
omputing the similarity between two sequen
es [45, 48℄ uses adynami
 programming matrix, and 
ompares two strings of size n in O(n2) time. We addressthe 
hallenge of 
omputing the similarity of two strings in sub-quadrati
 time, for metri
s whi
huse a s
oring matrix of unrestri
ted weights. Our algorithm applies to both lo
al and globalsimilarity 
omputations.The speed-up is a
hieved by dividing the dynami
 programming matrix into variable sizedblo
ks, as indu
ed by Lempel-Ziv parsing of both strings, and utilizing the inherent periodi
nature of both strings. This leads to an O(n2= logn) algorithm for an input of 
onstant alphabetsize. For most texts, the time 
omplexity is a
tually O(hn2= logn) where h � 1 is the entropyof the text.We also present an algorithm for 
omparing two run-length en
oded strings of length m andn, 
ompressed intom0 and n0 runs respe
tively, in O(m0n+n0m) 
omplexity. This result extendsto all distan
e or similarity s
oring s
hemes whi
h use an additive gap penalty.Keywords: alignment, dynami
 programming, text 
ompression, run length.1 Introdu
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omparing 
omplete genomes ne
essitates the 
reation of additional, more eÆ
ient 
omputationaltools.One of the most 
ommon problems in biologi
al 
omparative analysis is that of aligning two longbio-sequen
es in order to measure their similarity. The alignment is 
lassi
ally based on the trans-formation of one sequen
e into the other via operations of substitutions, insertions, and deletions(indels). Their 
osts are given by a s
oring matrix.De�nition 1 (Gus�eld [24℄) Global Alignment Problem. Given a pairwise s
oring matrixÆ over the alphabet �, the similarity of two strings A and B is de�ned as the value maxV of thealignment of A and B that maximizes the total alignment value.� The s
ore value maxV is 
alled the optimal global alignment value of A and B.� A des
ription of a maxV -s
oring transformation of A into B is 
alled a global alignment tra
e.In many appli
ations, two strings may not be highly similar in their entirety but may 
ontainregions that are highly similar. The task is to �nd and extra
t a pair of regions, one from ea
hof the two given strings, that exhibit high similarity. This is 
alled the lo
al alignment or lo
alsimilarity and is de�ned formally below.De�nition 2 (Gus�eld [24℄) Lo
al alignment problem. Given two strings A and B, �ndsubstrings � and � of A and B, respe
tively, whose similarity (optimal global alignment value) ismaximum over all pairs of substrings from A and B.� The s
ore value maxL of the most similar pair of substrings � and � is 
alled the optimallo
al alignment value.� The des
ription of a maxL-s
oring transformation of substring � into substring � is 
alled alo
al alignment tra
e.Both global and lo
al similarity problems 
an be solved in O(n2) time by dynami
 programming[24℄, [35℄, [48℄. After the optimal similarity s
ores have been 
omputed, both global alignment andlo
al alignment tra
es 
an be reported in time linear with their size [10, 25, 26℄.1.1 ResultsIn this paper data 
ompression te
hniques are employed to speed up the alignment of two strings.The 
ompression me
hanism enables the algorithm to adapt to the data and to utilize its repetitions.The periodi
 nature of the sequen
e is quanti�ed via its entropy, denoted by the real number h,0 � h � 1. Entropy is a measure of how \
ompressible" a sequen
e is (see [7℄,[12℄), and is smallwhen there is a lot of order (i.e, the sequen
e is repetitive and therefore more 
ompressible) andlarge when there is a lot of disorder (see Se
tion 2.2).Our results in
lude the following algorithms.
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1.1.1 Global Alignment� We present an O(n2= log n) algorithm for 
omputing the optimal global alignment value oftwo strings over a 
onstant alphabet (see Se
tion 3). The algorithm is even faster when thesequen
e is 
ompressible. In fa
t, for most texts, the 
omplexity of our algorithm is a
tuallyO(hn2= log n).� After the optimal s
ore is 
omputed, a single alignment tra
e 
orresponding to the optimals
ore 
an be re
overed in time 
omplexity that is linear with the size of the tra
e (see Se
tion4).� For global alignment over \dis
rete" s
oring matri
es, we explain how the spa
e 
omplexity
an be redu
ed to O(h2n2=(log n)2), without impairing the O(hn2= log n) time 
omplexity(see Se
tion 5).1.1.2 Lo
al Alignment� We des
ribe a sub-quadrati
, O(hn2= log n) algorithm for the 
omputation of the optimallo
al alignment value of two strings over a 
onstant alphabet (see Se
tion 6.1).� Given an index on A where substring � ends and an index on B where substring � ends, anoptimal lo
al alignment tra
e 
an be reported in time linear with its size (see Se
tion 6.2).1.1.3 Comparing Two Run-Length En
oded Strings� We give an algorithm for 
omparing two run-length en
oded strings of length m and n,
ompressed to m0 and n0 runs respe
tively, using any distan
e or similarity s
oring s
hemewith additive gaps, in O(m0n+ n0m) 
omplexity (see Se
tion 7).The algorithms des
ribed in this paper are the �rst to approa
h fully LZ 
ompressed (both sour
eand target strings are 
ompressed) string alignment. The methods given in this paper 
an also beused by appli
ations where both input strings are stored or transmitted in the form of an LZ78 orLZW 
ompressed sequen
e, thus providing an eÆ
ient solution to the problem of how to 
omparetwo strings without having to de
ompress them �rst.1.2 Previous ResultsThe only previously known sub-quadrati
 global alignment string 
omparison algorithm, by Masekand Paterson [39℄, is based on the Four Russians paradigm. The \Four Russians" algorithm dividesthe dynami
 programming table into uniform sized (logn by logn) blo
ks, and uses table lookupto obtain an O(n2= log n) time 
omplexity string 
omparison algorithm, based on two assumptions.One is that the sequen
e elements 
ome from a 
onstant alphabet. The other, whi
h they denote the\dis
reteness" 
ondition, is that the weights (of substitutions and indels) are all rational numbers.Our algorithms present a new approa
h and are better than the above algorithm in two aspe
ts.First, the algorithms presented here are faster for 
ompressible sequen
es. For su
h sequen
es, the
omplexity of our algorithms is O(hn2= log n), where h � 1 is the entropy of the sequen
e.3
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Figure 1: The alignment graph for 
omparing strings A = \
ta
gaga" and B = \aa
ga
ga". The s
orings
heme matrix Æ is shown in the lower left 
orner of the �gure. The highest s
oring global alignment pathsoriginate in vertex (0,0), end in vertex (8,8) and have a total weight of 3. The highest s
oring lo
al alignmentpath has a total weight of 5 and 
orresponds to the alignment of substrings a = \a
gaga" and b = \a
ga
ga".A sub-graph G 
orresponding to the blo
k for 
omparing substrings a = \ag" and b = \a
g" is shown inthe lower-right 
orner of the �gure. Also spe
i�ed are the values I for the entries of the input border for G(in white-shaded re
tangles), and the values O of the output border of G (in grey-shaded re
tangles), as setduring a lo
al alignment 
omputation.Se
ond, our algorithms are general enough to support s
oring s
hemes with real number weights.For many s
oring s
hemes, the rational number weights supported by Masek and Paterson's algo-rithm do not suÆ
e. For example, the entries of PAM similarity matri
es, as well as BLOSUMevolutionary distan
e matri
es, are de�ned to be real numbers, 
omputed as log-odds ratios - andtherefore 
ould be irrational.The paper by Masek and Paterson 
on
ludes with the following statement: \The most importantproblem remaining is �nding a better algorithm for the �nite (in our terms 
onstant) alphabet
ase without the dis
reteness 
ondition". Here, more than twenty years later, this important openquestion will �nally be answered!These advantages are based on the following fa
ts. First, our algorithm does not require any pre-
omputation of lookup-tables, and therefore 
an a�ord more 
exible weight values. Also, instead ofdividing the dynami
 programming matrix into uniform-sized blo
ks as did Masek and Paterson,we employ a variable-sized blo
k partition, as indu
ed by Lempel-Ziv fa
torization of both sour
e4



and target. The 
ommon denominator between blo
ks, maximized by the 
ompression te
hnique,is then re-
y
led and used for 
omputing the relevant information for ea
h blo
k in time whi
his linear with the length of its sides. In this sense, the approa
h des
ribed in this paper 
anbe viewed as another example of speeding up dynami
 programming by keeping and 
omputingonly a relevant subset of important values, as demonstrated in [16℄, [17℄, [33℄ and [46℄. A similarunbalan
ed strategy has been su

essfully used for square dete
tion in strings [11℄ to speed up theoriginal algorithm based on a divide-and-
onquer approa
h [36℄.2 Preliminaries2.1 The Alignment GraphThe dynami
 programming solution to the string 
omparison 
omputation problem 
an be repre-sented in terms of a weighted alignment graph [24℄ (See Figure 1).The weight of a given edge 
an be spe
i�ed dire
tly on the grid graph, or as is frequently the 
asein biologi
al appli
ations, is given by a penalty matrix, denoted Æ, whi
h spe
i�es the substitution
ost for ea
h pair of 
hara
ters and the deletion 
ost for ea
h 
hara
ter from the alphabet.The two widely used 
lasses of s
oring s
hemes are distan
e s
oring, in whi
h the obje
tive is tominimize the total alignment s
ore, and similarity s
oring, in whi
h the obje
tive is to maximizethe total alignment s
ore. Within these 
lasses, s
oring s
hemes are further 
hara
terized by thetreatment of gap 
osts. A gap is the result of the deletion of one or more 
onse
utive 
hara
tersin one of the sequen
es. Additive gap 
osts assign a 
onstant weight to ea
h of the 
onse
utive
hara
ters. For other gap fun
tions whi
h have been found useful for biologi
al sequen
es, see [24℄.The solutions in this paper assume a s
oring s
heme with additive gap 
osts.Global Alignment via Dynami
 Programming The 
lassi
al dynami
 programming algo-rithm for the global 
omparison of two strings will set the value at ea
h vertex (i; j) of the alignmentgraph, row by row in a left to right order, to the s
ore between the �rst i 
hara
ters of A and the�rst j 
hara
ters of B, using the following re
urren
e:V (i; j) = max[V (i; j � 1) + Æ(�;Bj);V (i� 1; j) + Æ(Ai; �);V (i� 1; j � 1) + Æ(Ai; Bj)℄:Computing and setting the values of all verti
es in the alignment graph, using the above re
urren
e,takes O(n2) time and spa
e. After the values at ea
h vertex of the alignment graph have been
omputed and set, the optimal global alignment value maxV is found at vertex (n; n) of the graph.If ea
h vertex in the alignment graph stores the operation (insertion, deletion, substitution) sele
tedwhen its value was set, then a global alignment tra
e, 
orresponding to an optimal path in thealignment graph, 
an be re
overed in time linear with its size, starting from vertex (n; n) whi
h
ontains the maximal s
ore, and tra
ing the edges ba
k up to vertex (0; 0) in the graph.Lo
al Alignment via Dynami
 Programming Smith and Waterman [48℄, [24℄ showed thatessentially the same O(jAjjBj) dynami
 programming solution 
an be used for 
omputing lo
alsimilarity, provided that the s
ore of the alignment of two empty strings is de�ned as 0, and onlypairs whose alignment s
ores are above 0 are of interest. The Smith-Waterman algorithm for5




omputing lo
al similarity 
omputes the following re
urren
e, whi
h in
ludes 0 as an additionaloption, and thus restri
ts the s
ores to non-negative values:L(i; j) = max[0; L(i; j � 1) + Æ(�;Bj);L(i� 1; j) + Æ(Ai; �);L(i� 1; j � 1) + Æ(Ai; Bj)℄:The method to 
ompute the optimal lo
al alignment valuemaxL is to 
ompute all alignment graphvertex values L(i; j) in O(n2) time and spa
e, and then �nd the largest value at any vertex on thetable, say at vertex (iend; jend).Given the vertex (iend; jend) whi
h s
ore is maxL, the 
orresponding substrings � and � giving theoptimal lo
al alignment of A and B are obtained in time linear with their size, by using the storedoperations (insertion, deletion, substitution) to tra
e ba
k the edges from vertex (iend; jend) untila vertex (istart; jstart) is rea
hed that has value zero. Then the optimal lo
al alignment substringsfor vertex (iend; jend) are � = A[istart : : : iend℄ and � = B[jstart : : : jend℄ [24℄.2.2 A Blo
k Partition of the Alignment Graph based on LZ78 Fa
torizationThe traditional aim of text 
ompression is the eÆ
ient use of resour
es su
h as storage and band-width. Here, we will 
ompress the sequen
es in order to speed up the alignment pro
ess. Note thatthis approa
h, denoted \a

eleration by text-
ompression", has been re
ently applied to a relatedproblem - that of exa
t string mat
hing [29℄, [38℄, [47℄.It should also be mentioned that another related problem - that of exa
t string mat
hing in 
om-pressed text without de
oding it, whi
h is often referred to as \
ompressed pattern mat
hing",has been studied extensively [4℄, [18℄ [43℄. Along these lines, string sear
h in 
ompressed text wasdeveloped for the 
ompression paradigm of LZ78 [52℄, and its subsequent variant LZW [50℄, asdes
ribed in [30℄, [44℄. A more 
hallenging problem is that of \fully 
ompressed" pattern mat
hingwhen both the pattern and text strings are 
ompressed [21℄, [22℄.For the LZ78-LZW paradigm, 
ompressed mat
hing has been extended and generalized to thatof approximate pattern mat
hing (�nding all o

urren
es of a short sequen
e within a long oneallowing up to k 
hanges) in [28℄, [42℄.The LZ 
ompression methods are based on the idea of self referen
e: while the text �le is s
anned,substrings or phrases are identi�ed and stored in a di
tionary, and whenever, later in the pro
ess,a phrase or 
on
atenation of phrases is en
ountered again, this is 
ompa
tly en
oded by suitablepointers [34℄, [51℄, [52℄.Of the several existing versions of the method, we will use the ones whi
h are denoted LZ78 family[50℄, [52℄. The main feature whi
h distinguishes LZ78 fa
torization from previous LZ 
ompressionalgorithms is in the 
hoi
e of 
odewords. Instead of allowing pointers to referen
e any string thathas appeared previously, the text seen so far is parsed into phrases, where ea
h phrase is thelongest mat
hing phrase seen previously plus one 
hara
ter. For example, the string \S = aa
ga
g"is divided into fours phrases: a, a
, g, a
g. Ea
h phrase is en
oded as an index to its pre�x, plusthe extra 
hara
ter. The new phrase is then added to the list of phrases that may be referen
ed.Sin
e ea
h phrase is distin
t from others, the following upper bound applies to the possible numberof phrases obtained by LZ78 fa
torization.Theorem 2.2.1 (Lempel and Ziv 1976 [34℄) Given a sequen
e S of size n over a 
onstant al-6
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Figure 2: The blo
k partition of the alignment graph, and the tries 
orresponding to LZ78 parsing of stringsA = \
ta
gaga" and B = \aa
ga
ga". Note that for the blo
k G in this example, � = \ag", � = \a
g",`r = 2, `
 = 3, i = 5 and j = 4. (The new 
ell of G, whi
h does not appear in any of the pre�x blo
ks, is therightmost 
ell at the bottom row of G, and 
an be distinguished by its white 
olor.) This �gure 
ontinuesFigure 1.phabet. The maximal number of distin
t phrases in S is O( nlog n).Even though the upper bound above applies to any possible sequen
e over a 
onstant alphabet, ithas been shown that in many 
ases we 
an do better than that.Intuitively, the LZ78 algorithm 
ompresses the sequen
e be
ause it is able to dis
over some repeatedpatterns. Therefore, in order to 
ompute a tighter upper bound on the number of phrases obtainedby LZ78 fa
torization for \
ompressible" sequen
es, the repetitive nature of the sequen
e needs tobe quanti�ed. One of the fundamental ideas in information theory is that of entropy, denoted bythe real number h, 0 � h � 1, whi
h measures the amount of disorder or randomness, or inversely,the amount of order or redundan
y in a sequen
e. Entropy is small when there is a lot of order(i.e, the sequen
e is repetitive) and large when there is a lot of disorder. The entropy of a sequen
eshould ideally re
e
t the ratio between the size of the sequen
e after it has been 
ompressed, andthe length of the un
ompressed sequen
e.The number of distin
t phrases obtained by LZ78 fa
torization has been shown to be O(hn= log n)for most texts [7℄, [12℄, [34℄, [52℄. Note that for any text over a 
onstant alphabet, the upper boundabove still applies by setting h to 1.3 Computing the Optimal Global Similarity Value3.1 De�nitions and Basi
 ObservationsThe alignment graph will be partitioned as follows. Strings A and B will be parsed using LZ78fa
torization. This indu
es a partition of the alignment graph for 
omparing A with B into variable-7



sized blo
ks (see Figure 2). Ea
h blo
k will 
orrespond to a 
omparison of an LZ phrase of A withan LZ phrase of B.Let xa denote a phrase in A obtained by extending a previous phrase x of A with 
hara
ter a, andyb denote a phrase in B, obtained by extending a previous phrase of B with 
hara
ter b.From now on we will fo
us on the 
omputations ne
essary for a single blo
k of the alignment graph.Consider the blo
k G whi
h 
orresponds to the 
omparison of xa and yb. We de�ne input border Ias the left and top borders of G, and output border O as the bottom and right borders of G. (Thenode entries on the input border are numbered in a 
lo
kwise dire
tion, and the node entries onthe output border are numbered in a 
ounter-
lo
kwise dire
tion.)Rather than �lling in the values of ea
h vertex in G, as does the 
lassi
al dynami
 programmingalgorithm, the only values 
omputed for ea
h blo
k will be those on its I=O borders (see Figures 1and 5A). Intuitively, this is the reason behind the eÆ
ien
y gain.Let `r denote the number of rows in G, `r = jxaj. Let `
 denote the number of 
olumns in G,`
 = jybj. Let t = `r + `
. Clearly, jIj = jOj = t.We de�ne the following three prefix blo
ks of G.1. The left prefix of G denotes the blo
k 
omparing phrase xa of A and phrase y of B.2. The diagonal prefix of G denotes the blo
k 
omparing phrase x of A and phrase y of B.3. The top prefix of G denotes the blo
k 
omparing phrase x of A and phrase yb of B.Observation 1 When traversing the blo
ks of an LZ78 parsed alignment graph in a left-to-right, top-to-bottom order, the blo
ks for the left pre�x, diagonal pre�x and top pre�x of G areen
ountered prior to blo
k G.Note that the graph for the left pre�x of G is identi
al to the subgraph of G 
ontaining all 
olumnsbut the last one. More spe
i�
ally, both the stru
ture and the weights of edges of these two graphsare identi
al, but the weights to be assigned to verti
es during the similarity 
omputation may varya

ording to the input border values. Similarly, for the top pre�x and diagonal pre�x graphs. Theonly new 
ell in G, whi
h does not appear in any of its pre�x blo
k graphs, is the 
ell for 
omparinga and b.3.2 I=O Propagation A
ross G.The work for ea
h blo
k 
onsists of two stages (a similar approa
h is shown in [8, 27, 32, 33℄).1. en
oding : Study the stru
ture of G and represent it in an eÆ
ient way.2. propagation: Given I and the en
oding of G, 
onstru
ted in the previous stage, 
ompute Ofor G.The stru
ture of G is en
oded by 
omputing weights of optimal paths 
onne
ting ea
h entry of itsinput border with ea
h entry of its output border. The following DIST matrix is used (see Figure3).De�nition 3 DIST[i; j℄ stores the weight of the optimal path from entry i of the input border ofG to entry j of its output border. 8



DIST matrixI0 = 1 0 �1 �2 �3 4 4I1 = 2 �1 �1 �2 �1 �3 4I2 = 3 �2 0 0 1 �1 �3I3 = 2 4 �2 �2 0 �2 �2I4 = 1 4 4 �2 0 �1 �1I5 = 3 4 4 4 �2 �1 0OUT matrix1 0 �1 �2 �1 �11 1 0 1 �1 �11 3 3 4 2 0�12 0 0 2 0 0�13 �13 �1 1 0 0�14 �14 �14 1 2 3O0 O1 O2 O3 O4 O51 3 3 4 2 3
olumn numbers0 1 2 3 4 5Figure 3: The DIST matrix whi
h 
orresponds to the subsequen
es \a
g", \ag", the OUT matrix obtainedby adding the values of I to the rows of DIST, and the O 
ontaining the row maxima of OUT. This �gure
ontinues Figures 1 and 2.DIST matri
es have also been used in [5℄, [8℄, [27℄, [33℄ and [46℄.Given input row I and the DIST for G, the weight of output row vertex Oj 
an be 
omputed asthe maximum among the sums Ir + DIST[r; j℄, if there is indeed a path 
onne
ting input borderentry r with output border entry j.Vertex Oj is the maximum of 
olumn j of the following OUT matrix, whi
h merges the informationfrom input row I and DIST. (See Figure 3).De�nition 4 OUT[i; j℄ = Ii +DIST[i; j℄.Aggarwal and Park [3℄ and S
hmidt [46℄ observed that DIST matri
es are Monge arrays [41℄.De�nition 5 A matrix M [0 : : : m; 0 : : : n℄ is Monge if either 
ondition 1 or 2 below holds for alla; b = 0 : : : m; 
; d = 0 : : : n:1. 
onvex 
ondition: M [a; 
℄ +M [b; d℄ �M [b; 
℄ +M [a; d℄ for all a < b and 
 < d.2. 
on
ave 
ondition: M [a; 
℄ +M [b; d℄ �M [b; 
℄ +M [a; d℄ for all a < b and 
 < d.9



Sin
e DIST is Monge, so is OUT, whi
h is a DIST with 
onstants added to its rows.An important property of Monge arrays is that of being totally monotone.De�nition 6 A matrix M [0 : : : m; 0 : : : n℄ is totally monotone if either 
ondition 1 or 2 belowholds for all a; b = 0 : : : m; 
; d = 0 : : : n:1. 
onvex 
ondition: M [a; 
℄ �M [b; 
℄ =)M [a; d℄ �M [b; d℄ for all a < b and 
 < d.2. 
on
ave 
ondition: M [a; 
℄ �M [b; 
℄ =)M [a; d℄ �M [b; d℄ for all a < b and 
 < d.Note that the Monge property implies total monotoni
ity, but the 
onverse is not true. Therefore,both DIST and OUT are totally monotone by the 
on
ave 
ondition.Aggarwal et al [2℄ gave a re
ursive algorithm, ni
knamed SMAWK in the literature, whi
h 
an
ompute in O(n) time all row and 
olumn maxima of an n � n totally monotone matrix, byquerying only O(n) elements of the array. Hen
e, one 
an use SMAWK to 
ompute the output rowO by querying only O(n) elements of OUT. Clearly, if both the full DIST and all entries of I areavailable, then 
omputing an element of OUT is O(1) work.For various solutions to related problems, whi
h also utilize Monge and Total Monotoni
ity prop-erties, we refer the interested reader to [14℄, [15℄, [19℄, [20℄, [31℄ and [33℄. In order to eÆ
ientlyutilize these properties here, we need to address the following two problems.1. How to eÆ
iently 
ompute DIST and represent it in a format whi
h allows dire
t a

ess toits entries. This will be done in Se
tion 3.4.2. SMAWK is intended for a full, re
tangular matrix. However, both DIST and its 
orrespondingOUT are not re
tangular. Sin
e paths in an alignment graph 
an only assume a left-to-right,top-to-bottom dire
tion, 
onne
tions between some input border verti
es and some outputborder verti
es are impossible. Therefore, the matri
es are missing both a lower left triangleand upper right triangle (see Figure 3). The question is addressed in Se
tion 3.3.3.3 Addressing the Re
tangle ProblemThe unde�ned entries of OUT 
an be 
omplemented in 
onstant time ea
h, as follows.1 The missing upper right triangle entries 
an be 
ompleted by setting the value of any entryOUT[i; j℄ in this triangle to �1.2 Let k denote the maximal absolute value of a s
ore in Æ. The missing lower left triangle entries
an be 
ompleted by setting the value of any OUT[i; j℄ in this triangle to �(n+ i+ 1) � k.Lemma 3.3.1 Complementing the unde�ned entries as des
ribed above preserves the 
on
ave totalmonotoni
ity 
ondition of OUT, and does not introdu
e new row-maxima.Proof:1 Upper Right Triangle: All similarity s
ores in the alignment graph are �nite. Therefore, nonew 
olumn maxima are introdu
ed. Suppose OUT[a; 
℄ � OUT[b; 
℄, a < b, and OUT[a; 
℄has been set to �1. Due to the shape of the rede�ned upper-right triangle, on
e a �1 valuein row a is en
ountered, all future values in row a are also �1. The future values of row b
ould either be �nite or �1. Therefore, OUT[a; d℄ � OUT[b; d℄ for all d > 
.10



2 Lower Left Triangle: The worst s
ore appearing in the alignment graph is lower bounded by�nk. Sin
e i is always greater than or equal to zero, the 
omplemented values in the lowerleft triangle are upper-bounded by �(n+ 1) � k and no new 
olumn maxima are introdu
ed.Also, for any 
omplemented entry OUT[b; 
℄ in the lower left triangle, OUT[b; 
℄ < OUT[a; 
℄for all a < b, and therefore the 
on
ave total monotoni
ity 
ondition holds.3.4 In
remental Update of the new DIST Information for GIn this se
tion we show how to eÆ
iently 
ompute the new DIST information for G, using the DISTrepresentations previously 
omputed for its pre�x blo
ks, plus the information of its new 
ell.When pro
essing a new blo
k G, we 
ompute the s
ores of t new optimal paths, leading from theinput border to the new vertex (`r; `
) in the lowest, rightmost 
orner of G. These values 
orrespondto 
olumn `
 of the DIST matrix for G, and 
an be 
omputed as follows.Entry [i℄ in 
olumn `
 of the DIST for G 
ontains the weight of the optimal path from entry i in theinput border of G to vertex (`r; `
). This path must go through one of the three verti
es (`r�1; `
),(`r � 1; `
 � 1) or (`r; `
 � 1). Therefore, the weight of the optimal path from entry i in the inputborder of G to (`r; `
) is equal to the maximum among the following three values:1 Entry [i℄ of 
olumn `
 � 1 of the DIST for the left pre�x of G, plus the weight of the horizontaledge leading into (`r; `
).2 Entry [i℄ of 
olumn `
�1 of the DIST for the diagonal pre�x of G, plus the weight of the diagonaledge leading into (`r; `
).3 Entry [i℄ of 
olumn `
 of the DIST for the top pre�x of G, plus the weight of the verti
al edgeleading into (`r; `
).3.4.1 Maintaining Dire
t A

ess to DIST ColumnsIn order to 
ompute an entry of OUT in 
onstant time during the exe
ution of SMAWK, dire
ta

ess to DIST entries is ne
essary. This is not straightforward, sin
e as shown in the previousse
tion, for ea
h blo
k only one new DIST 
olumn has been 
omputed and stored. All other 
olumnsbesides 
olumn `
 of the DIST for G need to be obtained from G's pre�x an
estor blo
ks.Therefore, before the exe
ution of SMAWK begins, a ve
tor with pointers to all t+1 
olumns of theDIST for G is 
onstru
ted (see Figure 4). This ve
tor is no longer needed after the 
omputationsfor G have been 
ompleted, and its spa
e 
an be freed.The pointers to all 
olumns of the DIST for G are assembled as follows. Column `
 is set to thenewly 
onstru
ted ve
tor for G. All 
olumns of indi
es smaller than `
 are obtained via `
 re
ursive
alls to left pre�x blo
ks of G. All 
olumns of indi
es greater than `
 are obtained via `r re
ursive
alls to top pre�x blo
ks of G.3.4.2 Querying a Pre�x Blo
k and Obtaining its DIST Column in Constant timeThe LZ78 phrases form a trie (see Figure 2), and the string to be 
ompressed is en
oded as asequen
e of names of pre�xes of the trie. Ea
h node in the trie 
ontains the serial number of thephrase it represents. Sin
e ea
h blo
k 
orresponds to a 
omparison of a phrase from A with a11
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Figure 4: A table 
ontaining an entry for ea
h blo
k of the alignment graph. Entry (i; j) of the tablerepresents the blo
k whi
h 
orresponds to node i in the trie for A and node j in the trie for B. The entry forea
h blo
k in the table points to the start of its new DIST 
olumn. Also shown is the ve
tor whi
h 
ontainspointers to all 
olumns of the DIST for blo
k (5; 4), as obtained from its an
estor pre�x blo
ks. This �gure
ontinues Figures 1, 2 and 3.phrase from B, ea
h blo
k will be identi�ed by a pair of numbers, 
omposed of the serial numbersfor its 
orresponding phrases in the tries for A and B.Another data stru
ture to be 
onstru
ted is a Blo
k Table (see Figure 4), 
ontaining an entry forea
h partitioned blo
k of the alignment graph. The entry for ea
h blo
k in the table points to thestart of its new DIST 
olumn, and 
an be dire
tly a

essed via the blo
k's phrase number indexpair.The left pre�x of G 
an be identi�ed in 
onstant time as a pair of phrase numbers, the �rst identi
alto the serial number of xa, and the se
ond 
orresponding to the serial number of y, whi
h is thedire
t an
estor of yb in the trie for B. Similarly, the top pre�x of G 
an be identi�ed in 
onstanttime. Given the pair of identi�
ation numbers for a blo
k, a pointer to the 
orresponding DIST
olumn 
an then be dire
tly obtained from the Blo
k Table.Time and Spa
e Analysis Assuming sequen
e size n and sequen
e entropy h � 1. The LZ78fa
torization algorithm parses the strings and 
onstru
ts the tries for A and B in O(n) time. Theresulting number of phrases in both A and B is O(hn= log n). The number of resulting blo
ks inthe alignment graph is equal to the number of phrases in A times number of phrases in B, and istherefore O(h2n2=(log n)2). For ea
h blo
k G, the following information (1{3) is 
omputed, in timeand spa
e 
omplexity linear with the size of its I=O borders:1. Updating the En
oding Stru
ture for G. The pre�x blo
ks of G 
an be a

essed in 
onstanttime. The ve
tors of DIST 
olumn pointers for the pre�x blo
ks have already been freed. However,sin
e ea
h pre�x blo
k dire
tly points to its newly 
omputed DIST 
olumn, all values needed forthe 
omputations are still available. Sin
e ea
h entry of the new DIST 
olumn for G is set to the12



maximum among up to three sums of pairs, the new DIST 
olumn for G 
an be 
onstru
ted inO(t) time and spa
e.2. Maintaining Dire
t A

ess to DIST 
olumns. Sin
e pre�x blo
ks and their DIST 
olumns
an be a

essed in 
onstant time, the ve
tor with pointers to 
olumns of the DIST for G 
an be setin O(t) time.3. Propagating I=O values a
ross the blo
k. Using the information 
omputed for G, andgiven the I for G obtained from the O ve
tors for the blo
k above G and the blo
k to its left, thevalues of O for G are 
omputed via SMAWK Matrix Sear
hing in O(t) time.Total Complexity Sin
e the work and spa
e for ea
h blo
k is linear with the size of its I=Oborders, the total time and spa
e 
omplexity is linear with the total size of the borders of theblo
ks. The blo
k borders form O(hn= log n) rows of size jBj ea
h, and O(hn= log n) 
olumns ofsize jAj ea
h, in the alignment graph (see Figure 2). Therefore, the total time and spa
e 
omplexityis O(hn2= log n).4 Global Similarity Optimal Alignment Tra
e Re
overyThe re
overy of an optimal global alignment tra
e between A and B starts at vertex (n; n). Theseries of blo
k 
rossing paths is then tra
ed ba
k until vertex (0; 0) is rea
hed. For ea
h blo
k
rossed, the internal alignment tra
e is reported, starting from the output border sink, and ba
kto the optimal origin sour
e vertex in the 
orresponding input border. In order to support there
overy of blo
k-
rossing paths in time linear with their size, the 
omputation and storage of thefollowing additional information for a given blo
k G is required.1. During the Propagation stage, for ea
h entry j in the output border of G, the index of theinput border entry i, whi
h is the sour
e of the highest s
oring path to output border entryj, is saved.2. During En
oding, an additional O(t) sized ve
tor of pointers, the an
estors ve
tor, is 
om-puted for G. For any output border entry O[j = 0 : : : t℄, an
estors[j℄ points to the an
estorblo
k of G for whi
h this entry is its new vertex. (The value of an
estors[`
℄ is set to G. All
olumns of indi
es smaller than `
 are obtained via `
 re
ursive 
alls to left pre�x blo
ks of G.All 
olumns of indi
es greater than `
 are obtained via `r re
ursive 
alls to top pre�x blo
ksof G.)3. During En
oding, G's new vertex (`r; `
) is annotated with an additional O(t) sized ve
torof pointers, denoted dire
tion. These pointers are set during the DIST 
olumn 
omputationdes
ribed in Se
tion 3.4, as follows. The value of dire
tion[i℄ is set a

ording to the dire
tionof the last edge in the optimal path originating at entry i of G's input border and ending atvertex (`r; `
).Given that the optimal path enters through entry j of the output border of G, the tra
e-ba
k of thepart of the path going through G pro
eeds in two stages. The �rst stage is a destination and origininitialization stage. This stage in
ludes the fet
hing of the input row sour
e entry i, whi
h wasstored as the origin for the highest s
oring path to G's output border entry j (see 1 above). Entry13



i serves as the destination for the alignment tra
e-ba
k. In addition, the an
estor pre�x blo
k Pof G, pointed to by an
estors[j℄ is fet
hed (see 2 above). The edge re
overy begins in blo
k P .During the se
ond stage, the origin and destination information 
omputed in the �rst stage is usedto tra
e ba
k the part of the path 
ontained in P , from entry j on P 's output border (the newvertex of P ), to entry i on its input border. This is done by ba
ktra
king through a dynasty ofpre�x an
estor blo
ks internal to P , using the dire
tion ve
tor 
omputed for ea
h of the traversedblo
ks (see 3 above). If dire
tion[i℄ of the traversed blo
k spe
i�es a horizontal edge, then thetra
e-ba
k retreats to the left pre�x of P , and an \insertion" operation is reported in the alignmenttra
e. Correspondingly, \substitution" and \deletion" are reported when ba
ktra
king to diagonaland top pre�x blo
ks. The re
overy 
ontinues through a series of pre�x blo
ks of P until the fulloptimal alignment tra
e is re
overed.Time and Spa
e Analysis The two additional ve
tors for G, dire
tion and an
estors, and theinput border sour
e entry i, 
an be 
omputed and stored during en
oding and propagation stagesin O(t) time and spa
e.The work for the �rst stage in the tra
e-ba
k 
an be done in 
onstant time. In the se
ond stage,ea
h edge in the re
overed alignment path results in a traversal to a single pre�x blo
k. Sin
e pre�xblo
ks and their 
orresponding dire
tion ve
tors 
an be a

essed in 
onstant time, a highest s
oringglobal alignment between strings A and B 
an be re
overed in time linear in its size.5 Redu
ing the Spa
e ComplexityWhen 
omputing the optimal global alignment value with s
oring matri
es whi
h follow the \dis-
reteness" 
ondition (see Se
tion 1), the eÆ
ient alignment stage algorithm des
ribed in [33℄ 
anbe extended to support full propagation from the leftmost and upper boundaries to the bottomand right most boundaries of G.This extended propagation algorithm 
an then be used to 
ompute the values of the global alignmentO for G, given the I for G and a minimal en
oding of the DIST forG. The advantage of this minimalen
oding of DIST is that rather than saving an O(t) sized DIST 
olumn per blo
k, we only need tosave a 
onstant number of values per blo
k. The en
oding for the new DIST 
olumn of ea
h blo
k
an be 
omputed and stored in 
onstant time and spa
e from the information stored for the left,diagonal and top pre�x blo
ks of G, using the te
hnique des
ribed in Se
tion 6 of [46℄.This redu
es the spa
e 
omplexity to O(h2n2=(log n)2), while preserving the O(hn2= log n) time
omplexity.6 The Lo
al Alignment Algorithm6.1 Computing the Optimal Lo
al Similarity ValueWhen 
omputing the optimal lo
al similarity value, an optimal path 
ould either be 
ontainedentirely in one blo
k (type C), or 
ould be a blo
k-
rossing path (see �gure 5). A blo
k 
rossingpath 
onsists of a (possibly empty) S-path, followed by any number of paths leading from the inputborder of a blo
k to its output border, and ending in an E-path with a highest s
oring last vertex.Sin
e an optimal path 
ould begin inside any blo
k, ve
tor O needs to be updated to 
onsider the14
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Figure 5: A. The I=O path weight ve
tors 
omputed for ea
h blo
k in the global alignment solution.DIST[i; j℄ will be set to the highest s
oring path 
onne
ting vertex i in the input border with vertex j in theoutput border. B,C. The ve
tors of optimal path weights 
onsidered for the lo
al alignment 
omputation.additional paths originating inside G. Also, sin
e an optimal path 
ould end inside any blo
k, extrabookkeeping is needed in order to keep tra
k of the highest s
oring paths ending in ea
h blo
k.Therefore, in addition to the DIST des
ribed in Se
tion 3, we 
ompute for ea
h blo
k G the followingdata stru
tures (see Figures 5B and 5C).1. E is a ve
tor of size t. E[i℄ 
ontains the value of the highest s
oring path whi
h starts atvertex i of the input border of G and ends inside G. E[i℄ is 
omputed as the maximumbetween E[i℄ for the left pre�x of G, E[i℄ for the top pre�x of G, and DIST[i; `
℄.2. S is a ve
tor of size t. S[i℄ 
ontains the value of the highest s
oring path whi
h starts insideG and ends at vertex i of the output border of G.The only new value 
omputed for S is the lo
al alignment s
ores for the new vertex of G,S[`
℄. Given the s
ores S[`
�1℄ obtained from the diagonal pre�x, S[`
�1℄ obtained from theleft pre�x and S[`
℄ obtained from the top pre�x of G, and the weights of the 3 edges leadinginto vertex (`r; `
), S[`
℄ 
an be 
omputed in O(1) time 
omplexity, using the re
ursion givenin Se
tion 2.1.The values of all other entries of S are then set as follows. The �rst `
 values of S are 
opiedfrom the �rst `
 values of the S 
omputed for the left pre�x of G. The last `r values are
opied from the last `r values of the S ve
tor for the top pre�x of G.3. C is the value of the highest s
oring path 
ontained in G, that is, the highest s
oring pathwhi
h originates inside G and ends inside G. C is 
omputed as the maximum between the Cvalue for the left pre�x of G, the C value for the top pre�x of G, and the newly 
omputedS[`
℄ as des
ribed above. 15



The S ve
tor 
omputed for G is used to update the values of the output border O, while E and Cwill be used to 
ompute the weight of the highest s
oring path ending in G.Ve
tor O is �rst 
omputed from the I and DIST for G as des
ribed in Se
tion 3.2. At this pointentry O[i℄ re
e
ts the weight of the optimal path starting anywhere outside G and ending at entry iof the output border. It needs to be updated with the weights of the highest s
oring paths startinginside G. This is a
hieved by resetting O[i℄ to the maximum between O[i℄ and S[i℄.The weight of the highest s
oring path ending in G is 
omputed as max(Maxti=0fI[i℄ +E[i℄g; C).After the 
omputations for ea
h blo
k have been 
ompleted, the overall highest lo
al alignments
ore for 
omparing A and B 
an be 
omputed as the maximum among the values of the highests
oring path ending in ea
h blo
k.Time and Spa
e Analysis Sin
e, as shown in Se
tion 3.4.1, ea
h pre�x blo
k of G 
an bea

essed in 
onstant time, the values of the S and E ve
tors for G 
an be 
omputed and stored inO(t) time and spa
e, and the C value for G 
an be 
omputed in 
onstant time and spa
e.Given the S, E and C ve
tors for G, the values of O and the weight of the highest s
oring pathending in G 
an be 
omputed in O(t) time ea
h as des
ribed above.The weight of the highest s
oring path in the alignment graph 
an then be 
omputed in an additionalO(h2n2=(log n)2) time as the maximum value among the best values 
omputed for ea
h blo
k.Sin
e the work and spa
e for ea
h blo
k is linear with the size of its I=O borders, the total timeand spa
e 
omplexity of 
omputing the optimal lo
al alignment value is O(hn2= log n).6.2 Optimal Alignment Tra
e Re
overy for the Lo
al Alignment SolutionSimilarly to the alignment tra
e de�ned in Se
tion 4, given a maxL vertex (iend; jend) whi
h wasobtained in the previous se
tion, we show how to re
over the optimal path ending in this vertex. byreporting a tra
e-ba
k of the edges from vertex (iend; jend) until a start-point vertex (istart; jstart)is rea
hed that has value zero.A blo
k 
rossing optimal path 
onsists of a (possibly empty) S-path, followed by any number ofpaths leading from the input border of a blo
k to its output border, and ending in an E-path whoselast vertex is (iend; jend).The re
overy starts at vertex (iend; jend) and 
ontinues ba
k to the optimal path origin in threestages.1. Re
overing the E-path part.During en
oding, whenever the E[i℄ value of a blo
k is updated by its new vertex, a pointerto the updating blo
k is saved together with the new E[i℄ value.During alignment re
overy, given that vertex (iend; jend) ends an E[i℄ path in G, the 
orre-sponding blo
k 
an be fet
hed, and the path from its new vertex to entry i on its input borderre
overed, as des
ribed in Se
tion 4.2. Re
overing all paths leading from the input border of a blo
k to its output border.The part of the path 
ontained in ea
h one of these blo
ks 
an be re
overed as des
ribed inSe
tion 4. 16



3. Re
overing the S-path part.During en
oding, when 
omputing the S-s
ore of the new vertex of ea
h blo
k, the dire
tionof the edge optimizing the s
ore S[`
℄ of the new vertex of G, denoted sdire
tion, is savedwith the s
ore.During the termination of the propagation stage, when setting the s
ore values for ea
h entryin O, a �eld is set, indi
ating whether the newly set s
ore value for this entry 
orresponds to apath originating insideG (an S-path), or a path 
rossing G. In su
h a 
ase, the re
overy of theS-path part utilizes the te
hnique des
ribed in Se
tion 4, with a slight modi�
ation. Insteadof the dire
tion ve
tor, the sdire
tion �eld is used for the edge tra
e-ba
k. The re
overy haltswhen an an
estor blo
k is rea
hed whose S[`
℄ value is zero.A spe
ial 
ase o

urs when vertex (iend; jend) is the end point of a C-path. A C-path is, in essen
e,a halted S-path. During en
oding, whenever the C value of a blo
k is updated by its new vertex,a pointer to the updating blo
k is saved together with the new C value. The re
overy of the Cpath in G starts at the new vertex of its 
orresponding blo
k and 
ontinues similarly to the S pathre
overy, as des
ribed in 3 above.Time and Spa
e Analysis In addition to the values des
ribed in Se
tion 4, an additionalO(t) information (pointers to the E[i℄ updating blo
ks) is 
omputed and stored for E-paths, andan additional O(1) information per blo
k is 
omputed and stored for C and S paths. Duringpropagation termination, an addition O(t) information is stored with the O ve
tor.During re
overy, ea
h edge in the re
overed alignment path results in a traversal to a single pre�xblo
k, for ea
h one of the three path parts. Both pre�x blo
ks and their 
orresponding dire
tionve
tors 
an be a

essed in 
onstant time. Therefore, in addition to the basi
 O(hn2= log n) time andspa
e needed for 
omputing the optimal lo
al alignment s
ore maxL, an alignment tra
e ending ata given maxL-s
oring vertex 
an be reported in time linear with the size of the tra
e.7 Appli
ations to the Problem of Comparing Two Run LengthEn
oded stringsA string S is run-length en
oded if it is des
ribed as an ordered sequen
e of pairs (�; i), often denoted\�i," ea
h 
onsisting of an alphabet symbol, �, and an integer, i. Ea
h pair 
orresponds to a run inS, 
onsisting of i 
onse
utive o

urren
es of �. For example, the string aabbbbb


 
an be en
odedas a2b5
3. Su
h a run-length en
oded string 
an be signi�
antly shorter than the expanded stringrepresentation after eÆ
iently en
oding the integers (see [13℄ for example).Run-length en
oding serves as a popular image 
ompression te
hnique, sin
e many 
lasses of images(e.g., binary images in fa
simile transmission or for use in opti
al 
hara
ter re
ognition) typi
ally
ontain large pat
hes of identi
ally-valued pixels.Let m and n be the lengths of two run-length en
oded strings X and Y , of en
oded lengthsm0 and n0, respe
tively. Previous algorithms for the problem 
ompared two run-length en
odedstrings using the Levenshtein Edit Distan
e [35℄ and the LCS similarity measure [25℄. For theLCS metri
, Bunke and Csirik [9℄ presented an O(mn0 + nm0) time algorithm, while Apostoli
o,Landau, and Skiena [6℄ des
ribed an O(m0n0 log(m0n0)) time algorithm. Mit
hell [40℄ has obtainedan O((d +m0 + n0) log(d +m0 + n0)) time algorithm for a more general string mat
hing problem17



in run-length en
oded strings, where d is the number of mat
hes of 
ompressed 
hara
ters. BothArbell et al [1℄ and M�akinen et al [37℄ independently obtained an O(m0n+n0m) time algorithm for
omputing the edit distan
e between two run-length en
oded strings for the Levenshtein distan
emetri
.M�akinen et al. [37℄ posed as an open problem the 
hallenge of extending these results to moregeneral s
oring s
hemes, sin
e in those appli
ations whi
h are related to image 
ompression, the
hange from a pixel value to the next is smooth. Here, we will show how to extend the results toapply them to any distan
e or similarity s
oring s
heme with additive gap s
ores.In this solution, the alignment graph is also partitioned into blo
ks. But rather than using theLZ78 partition des
ribed in Se
tion 2, ea
h blo
k here 
onsists of two runs { one of X and one ofY . This results in the partition of the alignment graph into m0n0 blo
ks. The algorithm suggestedalso propagates a

umulated s
ores from the left and upper boundaries of ea
h blo
k, to its bottomand right boundaries.Consider the blo
k R for 
omparing the run �i of X with the run �j of Y . An edge in R 
ould beassigned one of three possible weight values: D(diagonal), H(horizontal) and V (verti
al).Let �h and �w denote the di�eren
e in row index values and 
olumn index values respe
tively,between entry i on the input border of R, and entry j on the output border of R.We show how to 
ompute DIST[i; j℄ (whi
h is the 
ost of the best s
oring path from entry i in theinput border of the blo
k, to entry j in the output border of the blo
k) in 
onstant time, given �hand �w for the input and output entries, and the values D, H and V .� H+V � D. Clearly, an optimal path from i to j 
an use all possible diagonal edges and onlythen the minimal number of remaining H and V edges ne
essary to rea
h j.Therefore, DIST[i; j℄ obtains one of three values:1. If �w = �h, then DIST[i; j℄ = D ��h.2. If �w > �h, then DIST[i; j℄ = D ��h +H � (�w ��h).3. If �w < �h, then DIST[i; j℄ = D ��w + V � (�h ��w).� H + V < D. In this 
ase, an optimal path never uses any diagonal edge. The path in
ludesonly the minimal number of H edges, and the minimal number of V edges ne
essary to rea
hj from i. in this 
ase, DIST[i; j℄ = H ��w + V ��h.Therefore, DIST[i; j℄ 
an be easily 
omputed in 
onstant time when using the general s
oring s
hemedes
ribed in Se
tion 2.1.Time and Spa
e Analysis The O ve
tor for ea
h blo
k is 
omputed using SMAWK. Ve
tor Ifor blo
k R 
an be easily obtained from the O ve
tors for the blo
k above R and the blo
k to itsleft, in time linear with the sides of R. The \re
tangle" problem 
an be solved similarly to Se
tion3.2. Therefore, any value OUT[i; j℄ = I[i℄ +DIST[i; j℄ 
an be 
omputed in 
onstant time.Sin
e the work and spa
e for ea
h blo
k is linear with the size of its I=O borders, the total time andspa
e 
omplexity is linear with the total size of the borders of the blo
ks, whi
h is O(m0n+ n0m).
18



Open ProblemsThe algorithms presented in this paper are perhaps 
lose to optimal in time 
omplexity. However,an important 
on
ern is the spa
e 
omplexity of the algorithms. If only the similarity s
ore valueis required, the 
lassi
al, quadrati
 time sequen
e alignment algorithm 
an easily be implementedto run in linear spa
e, by keeping only two rows of the dynami
 programming table alive at ea
hstep. If the re
overy of either global or lo
al optimal alignment tra
es is required, quadrati
-timeand linear-spa
e algorithms 
an be obtained by applying Hirs
hberg's re�nement to the 
lassi
alsequen
e alignment algorithms [10, 25, 26℄. We post as an open problem the 
hallenge of furtherredu
ing the spa
e requirement of the algorithms des
ribed in this paper, without impairing theirsub-quadrati
 time 
omplexity.A
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