
HAL Id: hal-00619573
https://hal.science/hal-00619573

Submitted on 20 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Subquadratic Sequence Alignment Algorithm for
Unrestricted Scoring Matrices

Maxime Crochemore, Gad M. Landau, Michal Ziv-Ukelson

To cite this version:
Maxime Crochemore, Gad M. Landau, Michal Ziv-Ukelson. A Subquadratic Sequence Alignment
Algorithm for Unrestricted Scoring Matrices. SIAM Journal on Computing, 2003, 32 (6), pp.1654-
1673. �10.1137/S0097539702402007�. �hal-00619573�

https://hal.science/hal-00619573
https://hal.archives-ouvertes.fr


A Sub-quadrati Sequene Alignment Algorithm for UnrestritedSoring MatriesMaxime Crohemore �Institut Gaspard-MongeUniversity of Marne-la-Vall�ee Gad M. Landau yHaifa UniversityandPolytehni University Mihal Ziv-Ukelson zHaifa UniversityandIBM T.J.W Researh CenterAbstratThe lassial algorithm for omputing the similarity between two sequenes [45, 48℄ uses adynami programming matrix, and ompares two strings of size n in O(n2) time. We addressthe hallenge of omputing the similarity of two strings in sub-quadrati time, for metris whihuse a soring matrix of unrestrited weights. Our algorithm applies to both loal and globalsimilarity omputations.The speed-up is ahieved by dividing the dynami programming matrix into variable sizedbloks, as indued by Lempel-Ziv parsing of both strings, and utilizing the inherent periodinature of both strings. This leads to an O(n2= logn) algorithm for an input of onstant alphabetsize. For most texts, the time omplexity is atually O(hn2= logn) where h � 1 is the entropyof the text.We also present an algorithm for omparing two run-length enoded strings of length m andn, ompressed intom0 and n0 runs respetively, in O(m0n+n0m) omplexity. This result extendsto all distane or similarity soring shemes whih use an additive gap penalty.Keywords: alignment, dynami programming, text ompression, run length.1 IntrodutionThe rapid progress in large-sale DNA sequening opens a new level of omputational hallengesinvolved in storing, organizing and analyzing the wealth of biologial information. One of the mostinteresting new �elds that the availability of the omplete genomes has reated is that of genomeomparison (the genome is all of the DNA sequene passed from one generation to the next).Comparing omplete genomes an give deep insights about the relationship between organisms, aswell as shedding light on the funtion of spei� genes in eah single genome. The hallenge of�Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Cit�e Desartes, Champs-sur-Marne, 77454 Marne-la-Vall�ee Cedex 2, Frane, http://www-igm.univ-mlv.fr/�ma/.yDepartment of Computer Siene, Haifa University, Haifa 31905, Israel, phone: (972-4) 824-0103, FAX: (972-4) 824-9331; Department of Computer and Information Siene, Polytehni University, Six MetroTeh Center,Brooklyn, NY 11201-3840; email: landau�poly.edu; partially supported by NSF grant CCR-0104307, by NATOSiene Programme grant PST.CLG.977017, by the Israel Siene Foundation grants 173/98 and 282/01, by theFIRST Foundation of the Israel Aademy of Siene and Humanities, and by IBM Faulty Partnership Award.zDepartment of Computer Siene, Haifa University, Haifa 31905, Israel; On Eduation Leave from the IBM T.J.W.Researh Center; email: mihal�s.haifa.il; partially supported by by the Israel Siene Foundation grants 173/98and 282/01, and by the FIRST Foundation of the Israel Aademy of Siene and Humanities.1



omparing omplete genomes neessitates the reation of additional, more eÆient omputationaltools.One of the most ommon problems in biologial omparative analysis is that of aligning two longbio-sequenes in order to measure their similarity. The alignment is lassially based on the trans-formation of one sequene into the other via operations of substitutions, insertions, and deletions(indels). Their osts are given by a soring matrix.De�nition 1 (Gus�eld [24℄) Global Alignment Problem. Given a pairwise soring matrixÆ over the alphabet �, the similarity of two strings A and B is de�ned as the value maxV of thealignment of A and B that maximizes the total alignment value.� The sore value maxV is alled the optimal global alignment value of A and B.� A desription of a maxV -soring transformation of A into B is alled a global alignment trae.In many appliations, two strings may not be highly similar in their entirety but may ontainregions that are highly similar. The task is to �nd and extrat a pair of regions, one from eahof the two given strings, that exhibit high similarity. This is alled the loal alignment or loalsimilarity and is de�ned formally below.De�nition 2 (Gus�eld [24℄) Loal alignment problem. Given two strings A and B, �ndsubstrings � and � of A and B, respetively, whose similarity (optimal global alignment value) ismaximum over all pairs of substrings from A and B.� The sore value maxL of the most similar pair of substrings � and � is alled the optimalloal alignment value.� The desription of a maxL-soring transformation of substring � into substring � is alled aloal alignment trae.Both global and loal similarity problems an be solved in O(n2) time by dynami programming[24℄, [35℄, [48℄. After the optimal similarity sores have been omputed, both global alignment andloal alignment traes an be reported in time linear with their size [10, 25, 26℄.1.1 ResultsIn this paper data ompression tehniques are employed to speed up the alignment of two strings.The ompression mehanism enables the algorithm to adapt to the data and to utilize its repetitions.The periodi nature of the sequene is quanti�ed via its entropy, denoted by the real number h,0 � h � 1. Entropy is a measure of how \ompressible" a sequene is (see [7℄,[12℄), and is smallwhen there is a lot of order (i.e, the sequene is repetitive and therefore more ompressible) andlarge when there is a lot of disorder (see Setion 2.2).Our results inlude the following algorithms.
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1.1.1 Global Alignment� We present an O(n2= log n) algorithm for omputing the optimal global alignment value oftwo strings over a onstant alphabet (see Setion 3). The algorithm is even faster when thesequene is ompressible. In fat, for most texts, the omplexity of our algorithm is atuallyO(hn2= log n).� After the optimal sore is omputed, a single alignment trae orresponding to the optimalsore an be reovered in time omplexity that is linear with the size of the trae (see Setion4).� For global alignment over \disrete" soring matries, we explain how the spae omplexityan be redued to O(h2n2=(log n)2), without impairing the O(hn2= log n) time omplexity(see Setion 5).1.1.2 Loal Alignment� We desribe a sub-quadrati, O(hn2= log n) algorithm for the omputation of the optimalloal alignment value of two strings over a onstant alphabet (see Setion 6.1).� Given an index on A where substring � ends and an index on B where substring � ends, anoptimal loal alignment trae an be reported in time linear with its size (see Setion 6.2).1.1.3 Comparing Two Run-Length Enoded Strings� We give an algorithm for omparing two run-length enoded strings of length m and n,ompressed to m0 and n0 runs respetively, using any distane or similarity soring shemewith additive gaps, in O(m0n+ n0m) omplexity (see Setion 7).The algorithms desribed in this paper are the �rst to approah fully LZ ompressed (both soureand target strings are ompressed) string alignment. The methods given in this paper an also beused by appliations where both input strings are stored or transmitted in the form of an LZ78 orLZW ompressed sequene, thus providing an eÆient solution to the problem of how to omparetwo strings without having to deompress them �rst.1.2 Previous ResultsThe only previously known sub-quadrati global alignment string omparison algorithm, by Masekand Paterson [39℄, is based on the Four Russians paradigm. The \Four Russians" algorithm dividesthe dynami programming table into uniform sized (logn by logn) bloks, and uses table lookupto obtain an O(n2= log n) time omplexity string omparison algorithm, based on two assumptions.One is that the sequene elements ome from a onstant alphabet. The other, whih they denote the\disreteness" ondition, is that the weights (of substitutions and indels) are all rational numbers.Our algorithms present a new approah and are better than the above algorithm in two aspets.First, the algorithms presented here are faster for ompressible sequenes. For suh sequenes, theomplexity of our algorithms is O(hn2= log n), where h � 1 is the entropy of the sequene.3
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Figure 1: The alignment graph for omparing strings A = \tagaga" and B = \aagaga". The soringsheme matrix Æ is shown in the lower left orner of the �gure. The highest soring global alignment pathsoriginate in vertex (0,0), end in vertex (8,8) and have a total weight of 3. The highest soring loal alignmentpath has a total weight of 5 and orresponds to the alignment of substrings a = \agaga" and b = \agaga".A sub-graph G orresponding to the blok for omparing substrings a = \ag" and b = \ag" is shown inthe lower-right orner of the �gure. Also spei�ed are the values I for the entries of the input border for G(in white-shaded retangles), and the values O of the output border of G (in grey-shaded retangles), as setduring a loal alignment omputation.Seond, our algorithms are general enough to support soring shemes with real number weights.For many soring shemes, the rational number weights supported by Masek and Paterson's algo-rithm do not suÆe. For example, the entries of PAM similarity matries, as well as BLOSUMevolutionary distane matries, are de�ned to be real numbers, omputed as log-odds ratios - andtherefore ould be irrational.The paper by Masek and Paterson onludes with the following statement: \The most importantproblem remaining is �nding a better algorithm for the �nite (in our terms onstant) alphabetase without the disreteness ondition". Here, more than twenty years later, this important openquestion will �nally be answered!These advantages are based on the following fats. First, our algorithm does not require any pre-omputation of lookup-tables, and therefore an a�ord more exible weight values. Also, instead ofdividing the dynami programming matrix into uniform-sized bloks as did Masek and Paterson,we employ a variable-sized blok partition, as indued by Lempel-Ziv fatorization of both soure4



and target. The ommon denominator between bloks, maximized by the ompression tehnique,is then re-yled and used for omputing the relevant information for eah blok in time whihis linear with the length of its sides. In this sense, the approah desribed in this paper anbe viewed as another example of speeding up dynami programming by keeping and omputingonly a relevant subset of important values, as demonstrated in [16℄, [17℄, [33℄ and [46℄. A similarunbalaned strategy has been suessfully used for square detetion in strings [11℄ to speed up theoriginal algorithm based on a divide-and-onquer approah [36℄.2 Preliminaries2.1 The Alignment GraphThe dynami programming solution to the string omparison omputation problem an be repre-sented in terms of a weighted alignment graph [24℄ (See Figure 1).The weight of a given edge an be spei�ed diretly on the grid graph, or as is frequently the asein biologial appliations, is given by a penalty matrix, denoted Æ, whih spei�es the substitutionost for eah pair of haraters and the deletion ost for eah harater from the alphabet.The two widely used lasses of soring shemes are distane soring, in whih the objetive is tominimize the total alignment sore, and similarity soring, in whih the objetive is to maximizethe total alignment sore. Within these lasses, soring shemes are further haraterized by thetreatment of gap osts. A gap is the result of the deletion of one or more onseutive haratersin one of the sequenes. Additive gap osts assign a onstant weight to eah of the onseutiveharaters. For other gap funtions whih have been found useful for biologial sequenes, see [24℄.The solutions in this paper assume a soring sheme with additive gap osts.Global Alignment via Dynami Programming The lassial dynami programming algo-rithm for the global omparison of two strings will set the value at eah vertex (i; j) of the alignmentgraph, row by row in a left to right order, to the sore between the �rst i haraters of A and the�rst j haraters of B, using the following reurrene:V (i; j) = max[V (i; j � 1) + Æ(�;Bj);V (i� 1; j) + Æ(Ai; �);V (i� 1; j � 1) + Æ(Ai; Bj)℄:Computing and setting the values of all verties in the alignment graph, using the above reurrene,takes O(n2) time and spae. After the values at eah vertex of the alignment graph have beenomputed and set, the optimal global alignment value maxV is found at vertex (n; n) of the graph.If eah vertex in the alignment graph stores the operation (insertion, deletion, substitution) seletedwhen its value was set, then a global alignment trae, orresponding to an optimal path in thealignment graph, an be reovered in time linear with its size, starting from vertex (n; n) whihontains the maximal sore, and traing the edges bak up to vertex (0; 0) in the graph.Loal Alignment via Dynami Programming Smith and Waterman [48℄, [24℄ showed thatessentially the same O(jAjjBj) dynami programming solution an be used for omputing loalsimilarity, provided that the sore of the alignment of two empty strings is de�ned as 0, and onlypairs whose alignment sores are above 0 are of interest. The Smith-Waterman algorithm for5



omputing loal similarity omputes the following reurrene, whih inludes 0 as an additionaloption, and thus restrits the sores to non-negative values:L(i; j) = max[0; L(i; j � 1) + Æ(�;Bj);L(i� 1; j) + Æ(Ai; �);L(i� 1; j � 1) + Æ(Ai; Bj)℄:The method to ompute the optimal loal alignment valuemaxL is to ompute all alignment graphvertex values L(i; j) in O(n2) time and spae, and then �nd the largest value at any vertex on thetable, say at vertex (iend; jend).Given the vertex (iend; jend) whih sore is maxL, the orresponding substrings � and � giving theoptimal loal alignment of A and B are obtained in time linear with their size, by using the storedoperations (insertion, deletion, substitution) to trae bak the edges from vertex (iend; jend) untila vertex (istart; jstart) is reahed that has value zero. Then the optimal loal alignment substringsfor vertex (iend; jend) are � = A[istart : : : iend℄ and � = B[jstart : : : jend℄ [24℄.2.2 A Blok Partition of the Alignment Graph based on LZ78 FatorizationThe traditional aim of text ompression is the eÆient use of resoures suh as storage and band-width. Here, we will ompress the sequenes in order to speed up the alignment proess. Note thatthis approah, denoted \aeleration by text-ompression", has been reently applied to a relatedproblem - that of exat string mathing [29℄, [38℄, [47℄.It should also be mentioned that another related problem - that of exat string mathing in om-pressed text without deoding it, whih is often referred to as \ompressed pattern mathing",has been studied extensively [4℄, [18℄ [43℄. Along these lines, string searh in ompressed text wasdeveloped for the ompression paradigm of LZ78 [52℄, and its subsequent variant LZW [50℄, asdesribed in [30℄, [44℄. A more hallenging problem is that of \fully ompressed" pattern mathingwhen both the pattern and text strings are ompressed [21℄, [22℄.For the LZ78-LZW paradigm, ompressed mathing has been extended and generalized to thatof approximate pattern mathing (�nding all ourrenes of a short sequene within a long oneallowing up to k hanges) in [28℄, [42℄.The LZ ompression methods are based on the idea of self referene: while the text �le is sanned,substrings or phrases are identi�ed and stored in a ditionary, and whenever, later in the proess,a phrase or onatenation of phrases is enountered again, this is ompatly enoded by suitablepointers [34℄, [51℄, [52℄.Of the several existing versions of the method, we will use the ones whih are denoted LZ78 family[50℄, [52℄. The main feature whih distinguishes LZ78 fatorization from previous LZ ompressionalgorithms is in the hoie of odewords. Instead of allowing pointers to referene any string thathas appeared previously, the text seen so far is parsed into phrases, where eah phrase is thelongest mathing phrase seen previously plus one harater. For example, the string \S = aagag"is divided into fours phrases: a, a, g, ag. Eah phrase is enoded as an index to its pre�x, plusthe extra harater. The new phrase is then added to the list of phrases that may be referened.Sine eah phrase is distint from others, the following upper bound applies to the possible numberof phrases obtained by LZ78 fatorization.Theorem 2.2.1 (Lempel and Ziv 1976 [34℄) Given a sequene S of size n over a onstant al-6
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Figure 2: The blok partition of the alignment graph, and the tries orresponding to LZ78 parsing of stringsA = \tagaga" and B = \aagaga". Note that for the blok G in this example, � = \ag", � = \ag",`r = 2, ` = 3, i = 5 and j = 4. (The new ell of G, whih does not appear in any of the pre�x bloks, is therightmost ell at the bottom row of G, and an be distinguished by its white olor.) This �gure ontinuesFigure 1.phabet. The maximal number of distint phrases in S is O( nlog n).Even though the upper bound above applies to any possible sequene over a onstant alphabet, ithas been shown that in many ases we an do better than that.Intuitively, the LZ78 algorithm ompresses the sequene beause it is able to disover some repeatedpatterns. Therefore, in order to ompute a tighter upper bound on the number of phrases obtainedby LZ78 fatorization for \ompressible" sequenes, the repetitive nature of the sequene needs tobe quanti�ed. One of the fundamental ideas in information theory is that of entropy, denoted bythe real number h, 0 � h � 1, whih measures the amount of disorder or randomness, or inversely,the amount of order or redundany in a sequene. Entropy is small when there is a lot of order(i.e, the sequene is repetitive) and large when there is a lot of disorder. The entropy of a sequeneshould ideally reet the ratio between the size of the sequene after it has been ompressed, andthe length of the unompressed sequene.The number of distint phrases obtained by LZ78 fatorization has been shown to be O(hn= log n)for most texts [7℄, [12℄, [34℄, [52℄. Note that for any text over a onstant alphabet, the upper boundabove still applies by setting h to 1.3 Computing the Optimal Global Similarity Value3.1 De�nitions and Basi ObservationsThe alignment graph will be partitioned as follows. Strings A and B will be parsed using LZ78fatorization. This indues a partition of the alignment graph for omparing A with B into variable-7



sized bloks (see Figure 2). Eah blok will orrespond to a omparison of an LZ phrase of A withan LZ phrase of B.Let xa denote a phrase in A obtained by extending a previous phrase x of A with harater a, andyb denote a phrase in B, obtained by extending a previous phrase of B with harater b.From now on we will fous on the omputations neessary for a single blok of the alignment graph.Consider the blok G whih orresponds to the omparison of xa and yb. We de�ne input border Ias the left and top borders of G, and output border O as the bottom and right borders of G. (Thenode entries on the input border are numbered in a lokwise diretion, and the node entries onthe output border are numbered in a ounter-lokwise diretion.)Rather than �lling in the values of eah vertex in G, as does the lassial dynami programmingalgorithm, the only values omputed for eah blok will be those on its I=O borders (see Figures 1and 5A). Intuitively, this is the reason behind the eÆieny gain.Let `r denote the number of rows in G, `r = jxaj. Let ` denote the number of olumns in G,` = jybj. Let t = `r + `. Clearly, jIj = jOj = t.We de�ne the following three prefix bloks of G.1. The left prefix of G denotes the blok omparing phrase xa of A and phrase y of B.2. The diagonal prefix of G denotes the blok omparing phrase x of A and phrase y of B.3. The top prefix of G denotes the blok omparing phrase x of A and phrase yb of B.Observation 1 When traversing the bloks of an LZ78 parsed alignment graph in a left-to-right, top-to-bottom order, the bloks for the left pre�x, diagonal pre�x and top pre�x of G areenountered prior to blok G.Note that the graph for the left pre�x of G is idential to the subgraph of G ontaining all olumnsbut the last one. More spei�ally, both the struture and the weights of edges of these two graphsare idential, but the weights to be assigned to verties during the similarity omputation may varyaording to the input border values. Similarly, for the top pre�x and diagonal pre�x graphs. Theonly new ell in G, whih does not appear in any of its pre�x blok graphs, is the ell for omparinga and b.3.2 I=O Propagation Aross G.The work for eah blok onsists of two stages (a similar approah is shown in [8, 27, 32, 33℄).1. enoding : Study the struture of G and represent it in an eÆient way.2. propagation: Given I and the enoding of G, onstruted in the previous stage, ompute Ofor G.The struture of G is enoded by omputing weights of optimal paths onneting eah entry of itsinput border with eah entry of its output border. The following DIST matrix is used (see Figure3).De�nition 3 DIST[i; j℄ stores the weight of the optimal path from entry i of the input border ofG to entry j of its output border. 8



DIST matrixI0 = 1 0 �1 �2 �3 4 4I1 = 2 �1 �1 �2 �1 �3 4I2 = 3 �2 0 0 1 �1 �3I3 = 2 4 �2 �2 0 �2 �2I4 = 1 4 4 �2 0 �1 �1I5 = 3 4 4 4 �2 �1 0OUT matrix1 0 �1 �2 �1 �11 1 0 1 �1 �11 3 3 4 2 0�12 0 0 2 0 0�13 �13 �1 1 0 0�14 �14 �14 1 2 3O0 O1 O2 O3 O4 O51 3 3 4 2 3olumn numbers0 1 2 3 4 5Figure 3: The DIST matrix whih orresponds to the subsequenes \ag", \ag", the OUT matrix obtainedby adding the values of I to the rows of DIST, and the O ontaining the row maxima of OUT. This �gureontinues Figures 1 and 2.DIST matries have also been used in [5℄, [8℄, [27℄, [33℄ and [46℄.Given input row I and the DIST for G, the weight of output row vertex Oj an be omputed asthe maximum among the sums Ir + DIST[r; j℄, if there is indeed a path onneting input borderentry r with output border entry j.Vertex Oj is the maximum of olumn j of the following OUT matrix, whih merges the informationfrom input row I and DIST. (See Figure 3).De�nition 4 OUT[i; j℄ = Ii +DIST[i; j℄.Aggarwal and Park [3℄ and Shmidt [46℄ observed that DIST matries are Monge arrays [41℄.De�nition 5 A matrix M [0 : : : m; 0 : : : n℄ is Monge if either ondition 1 or 2 below holds for alla; b = 0 : : : m; ; d = 0 : : : n:1. onvex ondition: M [a; ℄ +M [b; d℄ �M [b; ℄ +M [a; d℄ for all a < b and  < d.2. onave ondition: M [a; ℄ +M [b; d℄ �M [b; ℄ +M [a; d℄ for all a < b and  < d.9



Sine DIST is Monge, so is OUT, whih is a DIST with onstants added to its rows.An important property of Monge arrays is that of being totally monotone.De�nition 6 A matrix M [0 : : : m; 0 : : : n℄ is totally monotone if either ondition 1 or 2 belowholds for all a; b = 0 : : : m; ; d = 0 : : : n:1. onvex ondition: M [a; ℄ �M [b; ℄ =)M [a; d℄ �M [b; d℄ for all a < b and  < d.2. onave ondition: M [a; ℄ �M [b; ℄ =)M [a; d℄ �M [b; d℄ for all a < b and  < d.Note that the Monge property implies total monotoniity, but the onverse is not true. Therefore,both DIST and OUT are totally monotone by the onave ondition.Aggarwal et al [2℄ gave a reursive algorithm, niknamed SMAWK in the literature, whih anompute in O(n) time all row and olumn maxima of an n � n totally monotone matrix, byquerying only O(n) elements of the array. Hene, one an use SMAWK to ompute the output rowO by querying only O(n) elements of OUT. Clearly, if both the full DIST and all entries of I areavailable, then omputing an element of OUT is O(1) work.For various solutions to related problems, whih also utilize Monge and Total Monotoniity prop-erties, we refer the interested reader to [14℄, [15℄, [19℄, [20℄, [31℄ and [33℄. In order to eÆientlyutilize these properties here, we need to address the following two problems.1. How to eÆiently ompute DIST and represent it in a format whih allows diret aess toits entries. This will be done in Setion 3.4.2. SMAWK is intended for a full, retangular matrix. However, both DIST and its orrespondingOUT are not retangular. Sine paths in an alignment graph an only assume a left-to-right,top-to-bottom diretion, onnetions between some input border verties and some outputborder verties are impossible. Therefore, the matries are missing both a lower left triangleand upper right triangle (see Figure 3). The question is addressed in Setion 3.3.3.3 Addressing the Retangle ProblemThe unde�ned entries of OUT an be omplemented in onstant time eah, as follows.1 The missing upper right triangle entries an be ompleted by setting the value of any entryOUT[i; j℄ in this triangle to �1.2 Let k denote the maximal absolute value of a sore in Æ. The missing lower left triangle entriesan be ompleted by setting the value of any OUT[i; j℄ in this triangle to �(n+ i+ 1) � k.Lemma 3.3.1 Complementing the unde�ned entries as desribed above preserves the onave totalmonotoniity ondition of OUT, and does not introdue new row-maxima.Proof:1 Upper Right Triangle: All similarity sores in the alignment graph are �nite. Therefore, nonew olumn maxima are introdued. Suppose OUT[a; ℄ � OUT[b; ℄, a < b, and OUT[a; ℄has been set to �1. Due to the shape of the rede�ned upper-right triangle, one a �1 valuein row a is enountered, all future values in row a are also �1. The future values of row bould either be �nite or �1. Therefore, OUT[a; d℄ � OUT[b; d℄ for all d > .10



2 Lower Left Triangle: The worst sore appearing in the alignment graph is lower bounded by�nk. Sine i is always greater than or equal to zero, the omplemented values in the lowerleft triangle are upper-bounded by �(n+ 1) � k and no new olumn maxima are introdued.Also, for any omplemented entry OUT[b; ℄ in the lower left triangle, OUT[b; ℄ < OUT[a; ℄for all a < b, and therefore the onave total monotoniity ondition holds.3.4 Inremental Update of the new DIST Information for GIn this setion we show how to eÆiently ompute the new DIST information for G, using the DISTrepresentations previously omputed for its pre�x bloks, plus the information of its new ell.When proessing a new blok G, we ompute the sores of t new optimal paths, leading from theinput border to the new vertex (`r; `) in the lowest, rightmost orner of G. These values orrespondto olumn ` of the DIST matrix for G, and an be omputed as follows.Entry [i℄ in olumn ` of the DIST for G ontains the weight of the optimal path from entry i in theinput border of G to vertex (`r; `). This path must go through one of the three verties (`r�1; `),(`r � 1; ` � 1) or (`r; ` � 1). Therefore, the weight of the optimal path from entry i in the inputborder of G to (`r; `) is equal to the maximum among the following three values:1 Entry [i℄ of olumn ` � 1 of the DIST for the left pre�x of G, plus the weight of the horizontaledge leading into (`r; `).2 Entry [i℄ of olumn `�1 of the DIST for the diagonal pre�x of G, plus the weight of the diagonaledge leading into (`r; `).3 Entry [i℄ of olumn ` of the DIST for the top pre�x of G, plus the weight of the vertial edgeleading into (`r; `).3.4.1 Maintaining Diret Aess to DIST ColumnsIn order to ompute an entry of OUT in onstant time during the exeution of SMAWK, diretaess to DIST entries is neessary. This is not straightforward, sine as shown in the previoussetion, for eah blok only one new DIST olumn has been omputed and stored. All other olumnsbesides olumn ` of the DIST for G need to be obtained from G's pre�x anestor bloks.Therefore, before the exeution of SMAWK begins, a vetor with pointers to all t+1 olumns of theDIST for G is onstruted (see Figure 4). This vetor is no longer needed after the omputationsfor G have been ompleted, and its spae an be freed.The pointers to all olumns of the DIST for G are assembled as follows. Column ` is set to thenewly onstruted vetor for G. All olumns of indies smaller than ` are obtained via ` reursivealls to left pre�x bloks of G. All olumns of indies greater than ` are obtained via `r reursivealls to top pre�x bloks of G.3.4.2 Querying a Pre�x Blok and Obtaining its DIST Column in Constant timeThe LZ78 phrases form a trie (see Figure 2), and the string to be ompressed is enoded as asequene of names of pre�xes of the trie. Eah node in the trie ontains the serial number of thephrase it represents. Sine eah blok orresponds to a omparison of a phrase from A with a11
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Figure 4: A table ontaining an entry for eah blok of the alignment graph. Entry (i; j) of the tablerepresents the blok whih orresponds to node i in the trie for A and node j in the trie for B. The entry foreah blok in the table points to the start of its new DIST olumn. Also shown is the vetor whih ontainspointers to all olumns of the DIST for blok (5; 4), as obtained from its anestor pre�x bloks. This �gureontinues Figures 1, 2 and 3.phrase from B, eah blok will be identi�ed by a pair of numbers, omposed of the serial numbersfor its orresponding phrases in the tries for A and B.Another data struture to be onstruted is a Blok Table (see Figure 4), ontaining an entry foreah partitioned blok of the alignment graph. The entry for eah blok in the table points to thestart of its new DIST olumn, and an be diretly aessed via the blok's phrase number indexpair.The left pre�x of G an be identi�ed in onstant time as a pair of phrase numbers, the �rst identialto the serial number of xa, and the seond orresponding to the serial number of y, whih is thediret anestor of yb in the trie for B. Similarly, the top pre�x of G an be identi�ed in onstanttime. Given the pair of identi�ation numbers for a blok, a pointer to the orresponding DISTolumn an then be diretly obtained from the Blok Table.Time and Spae Analysis Assuming sequene size n and sequene entropy h � 1. The LZ78fatorization algorithm parses the strings and onstruts the tries for A and B in O(n) time. Theresulting number of phrases in both A and B is O(hn= log n). The number of resulting bloks inthe alignment graph is equal to the number of phrases in A times number of phrases in B, and istherefore O(h2n2=(log n)2). For eah blok G, the following information (1{3) is omputed, in timeand spae omplexity linear with the size of its I=O borders:1. Updating the Enoding Struture for G. The pre�x bloks of G an be aessed in onstanttime. The vetors of DIST olumn pointers for the pre�x bloks have already been freed. However,sine eah pre�x blok diretly points to its newly omputed DIST olumn, all values needed forthe omputations are still available. Sine eah entry of the new DIST olumn for G is set to the12



maximum among up to three sums of pairs, the new DIST olumn for G an be onstruted inO(t) time and spae.2. Maintaining Diret Aess to DIST olumns. Sine pre�x bloks and their DIST olumnsan be aessed in onstant time, the vetor with pointers to olumns of the DIST for G an be setin O(t) time.3. Propagating I=O values aross the blok. Using the information omputed for G, andgiven the I for G obtained from the O vetors for the blok above G and the blok to its left, thevalues of O for G are omputed via SMAWK Matrix Searhing in O(t) time.Total Complexity Sine the work and spae for eah blok is linear with the size of its I=Oborders, the total time and spae omplexity is linear with the total size of the borders of thebloks. The blok borders form O(hn= log n) rows of size jBj eah, and O(hn= log n) olumns ofsize jAj eah, in the alignment graph (see Figure 2). Therefore, the total time and spae omplexityis O(hn2= log n).4 Global Similarity Optimal Alignment Trae ReoveryThe reovery of an optimal global alignment trae between A and B starts at vertex (n; n). Theseries of blok rossing paths is then traed bak until vertex (0; 0) is reahed. For eah blokrossed, the internal alignment trae is reported, starting from the output border sink, and bakto the optimal origin soure vertex in the orresponding input border. In order to support thereovery of blok-rossing paths in time linear with their size, the omputation and storage of thefollowing additional information for a given blok G is required.1. During the Propagation stage, for eah entry j in the output border of G, the index of theinput border entry i, whih is the soure of the highest soring path to output border entryj, is saved.2. During Enoding, an additional O(t) sized vetor of pointers, the anestors vetor, is om-puted for G. For any output border entry O[j = 0 : : : t℄, anestors[j℄ points to the anestorblok of G for whih this entry is its new vertex. (The value of anestors[`℄ is set to G. Allolumns of indies smaller than ` are obtained via ` reursive alls to left pre�x bloks of G.All olumns of indies greater than ` are obtained via `r reursive alls to top pre�x bloksof G.)3. During Enoding, G's new vertex (`r; `) is annotated with an additional O(t) sized vetorof pointers, denoted diretion. These pointers are set during the DIST olumn omputationdesribed in Setion 3.4, as follows. The value of diretion[i℄ is set aording to the diretionof the last edge in the optimal path originating at entry i of G's input border and ending atvertex (`r; `).Given that the optimal path enters through entry j of the output border of G, the trae-bak of thepart of the path going through G proeeds in two stages. The �rst stage is a destination and origininitialization stage. This stage inludes the fething of the input row soure entry i, whih wasstored as the origin for the highest soring path to G's output border entry j (see 1 above). Entry13



i serves as the destination for the alignment trae-bak. In addition, the anestor pre�x blok Pof G, pointed to by anestors[j℄ is fethed (see 2 above). The edge reovery begins in blok P .During the seond stage, the origin and destination information omputed in the �rst stage is usedto trae bak the part of the path ontained in P , from entry j on P 's output border (the newvertex of P ), to entry i on its input border. This is done by baktraking through a dynasty ofpre�x anestor bloks internal to P , using the diretion vetor omputed for eah of the traversedbloks (see 3 above). If diretion[i℄ of the traversed blok spei�es a horizontal edge, then thetrae-bak retreats to the left pre�x of P , and an \insertion" operation is reported in the alignmenttrae. Correspondingly, \substitution" and \deletion" are reported when baktraking to diagonaland top pre�x bloks. The reovery ontinues through a series of pre�x bloks of P until the fulloptimal alignment trae is reovered.Time and Spae Analysis The two additional vetors for G, diretion and anestors, and theinput border soure entry i, an be omputed and stored during enoding and propagation stagesin O(t) time and spae.The work for the �rst stage in the trae-bak an be done in onstant time. In the seond stage,eah edge in the reovered alignment path results in a traversal to a single pre�x blok. Sine pre�xbloks and their orresponding diretion vetors an be aessed in onstant time, a highest soringglobal alignment between strings A and B an be reovered in time linear in its size.5 Reduing the Spae ComplexityWhen omputing the optimal global alignment value with soring matries whih follow the \dis-reteness" ondition (see Setion 1), the eÆient alignment stage algorithm desribed in [33℄ anbe extended to support full propagation from the leftmost and upper boundaries to the bottomand right most boundaries of G.This extended propagation algorithm an then be used to ompute the values of the global alignmentO for G, given the I for G and a minimal enoding of the DIST forG. The advantage of this minimalenoding of DIST is that rather than saving an O(t) sized DIST olumn per blok, we only need tosave a onstant number of values per blok. The enoding for the new DIST olumn of eah blokan be omputed and stored in onstant time and spae from the information stored for the left,diagonal and top pre�x bloks of G, using the tehnique desribed in Setion 6 of [46℄.This redues the spae omplexity to O(h2n2=(log n)2), while preserving the O(hn2= log n) timeomplexity.6 The Loal Alignment Algorithm6.1 Computing the Optimal Loal Similarity ValueWhen omputing the optimal loal similarity value, an optimal path ould either be ontainedentirely in one blok (type C), or ould be a blok-rossing path (see �gure 5). A blok rossingpath onsists of a (possibly empty) S-path, followed by any number of paths leading from the inputborder of a blok to its output border, and ending in an E-path with a highest soring last vertex.Sine an optimal path ould begin inside any blok, vetor O needs to be updated to onsider the14
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Figure 5: A. The I=O path weight vetors omputed for eah blok in the global alignment solution.DIST[i; j℄ will be set to the highest soring path onneting vertex i in the input border with vertex j in theoutput border. B,C. The vetors of optimal path weights onsidered for the loal alignment omputation.additional paths originating inside G. Also, sine an optimal path ould end inside any blok, extrabookkeeping is needed in order to keep trak of the highest soring paths ending in eah blok.Therefore, in addition to the DIST desribed in Setion 3, we ompute for eah blok G the followingdata strutures (see Figures 5B and 5C).1. E is a vetor of size t. E[i℄ ontains the value of the highest soring path whih starts atvertex i of the input border of G and ends inside G. E[i℄ is omputed as the maximumbetween E[i℄ for the left pre�x of G, E[i℄ for the top pre�x of G, and DIST[i; `℄.2. S is a vetor of size t. S[i℄ ontains the value of the highest soring path whih starts insideG and ends at vertex i of the output border of G.The only new value omputed for S is the loal alignment sores for the new vertex of G,S[`℄. Given the sores S[`�1℄ obtained from the diagonal pre�x, S[`�1℄ obtained from theleft pre�x and S[`℄ obtained from the top pre�x of G, and the weights of the 3 edges leadinginto vertex (`r; `), S[`℄ an be omputed in O(1) time omplexity, using the reursion givenin Setion 2.1.The values of all other entries of S are then set as follows. The �rst ` values of S are opiedfrom the �rst ` values of the S omputed for the left pre�x of G. The last `r values areopied from the last `r values of the S vetor for the top pre�x of G.3. C is the value of the highest soring path ontained in G, that is, the highest soring pathwhih originates inside G and ends inside G. C is omputed as the maximum between the Cvalue for the left pre�x of G, the C value for the top pre�x of G, and the newly omputedS[`℄ as desribed above. 15



The S vetor omputed for G is used to update the values of the output border O, while E and Cwill be used to ompute the weight of the highest soring path ending in G.Vetor O is �rst omputed from the I and DIST for G as desribed in Setion 3.2. At this pointentry O[i℄ reets the weight of the optimal path starting anywhere outside G and ending at entry iof the output border. It needs to be updated with the weights of the highest soring paths startinginside G. This is ahieved by resetting O[i℄ to the maximum between O[i℄ and S[i℄.The weight of the highest soring path ending in G is omputed as max(Maxti=0fI[i℄ +E[i℄g; C).After the omputations for eah blok have been ompleted, the overall highest loal alignmentsore for omparing A and B an be omputed as the maximum among the values of the highestsoring path ending in eah blok.Time and Spae Analysis Sine, as shown in Setion 3.4.1, eah pre�x blok of G an beaessed in onstant time, the values of the S and E vetors for G an be omputed and stored inO(t) time and spae, and the C value for G an be omputed in onstant time and spae.Given the S, E and C vetors for G, the values of O and the weight of the highest soring pathending in G an be omputed in O(t) time eah as desribed above.The weight of the highest soring path in the alignment graph an then be omputed in an additionalO(h2n2=(log n)2) time as the maximum value among the best values omputed for eah blok.Sine the work and spae for eah blok is linear with the size of its I=O borders, the total timeand spae omplexity of omputing the optimal loal alignment value is O(hn2= log n).6.2 Optimal Alignment Trae Reovery for the Loal Alignment SolutionSimilarly to the alignment trae de�ned in Setion 4, given a maxL vertex (iend; jend) whih wasobtained in the previous setion, we show how to reover the optimal path ending in this vertex. byreporting a trae-bak of the edges from vertex (iend; jend) until a start-point vertex (istart; jstart)is reahed that has value zero.A blok rossing optimal path onsists of a (possibly empty) S-path, followed by any number ofpaths leading from the input border of a blok to its output border, and ending in an E-path whoselast vertex is (iend; jend).The reovery starts at vertex (iend; jend) and ontinues bak to the optimal path origin in threestages.1. Reovering the E-path part.During enoding, whenever the E[i℄ value of a blok is updated by its new vertex, a pointerto the updating blok is saved together with the new E[i℄ value.During alignment reovery, given that vertex (iend; jend) ends an E[i℄ path in G, the orre-sponding blok an be fethed, and the path from its new vertex to entry i on its input borderreovered, as desribed in Setion 4.2. Reovering all paths leading from the input border of a blok to its output border.The part of the path ontained in eah one of these bloks an be reovered as desribed inSetion 4. 16



3. Reovering the S-path part.During enoding, when omputing the S-sore of the new vertex of eah blok, the diretionof the edge optimizing the sore S[`℄ of the new vertex of G, denoted sdiretion, is savedwith the sore.During the termination of the propagation stage, when setting the sore values for eah entryin O, a �eld is set, indiating whether the newly set sore value for this entry orresponds to apath originating insideG (an S-path), or a path rossing G. In suh a ase, the reovery of theS-path part utilizes the tehnique desribed in Setion 4, with a slight modi�ation. Insteadof the diretion vetor, the sdiretion �eld is used for the edge trae-bak. The reovery haltswhen an anestor blok is reahed whose S[`℄ value is zero.A speial ase ours when vertex (iend; jend) is the end point of a C-path. A C-path is, in essene,a halted S-path. During enoding, whenever the C value of a blok is updated by its new vertex,a pointer to the updating blok is saved together with the new C value. The reovery of the Cpath in G starts at the new vertex of its orresponding blok and ontinues similarly to the S pathreovery, as desribed in 3 above.Time and Spae Analysis In addition to the values desribed in Setion 4, an additionalO(t) information (pointers to the E[i℄ updating bloks) is omputed and stored for E-paths, andan additional O(1) information per blok is omputed and stored for C and S paths. Duringpropagation termination, an addition O(t) information is stored with the O vetor.During reovery, eah edge in the reovered alignment path results in a traversal to a single pre�xblok, for eah one of the three path parts. Both pre�x bloks and their orresponding diretionvetors an be aessed in onstant time. Therefore, in addition to the basi O(hn2= log n) time andspae needed for omputing the optimal loal alignment sore maxL, an alignment trae ending ata given maxL-soring vertex an be reported in time linear with the size of the trae.7 Appliations to the Problem of Comparing Two Run LengthEnoded stringsA string S is run-length enoded if it is desribed as an ordered sequene of pairs (�; i), often denoted\�i," eah onsisting of an alphabet symbol, �, and an integer, i. Eah pair orresponds to a run inS, onsisting of i onseutive ourrenes of �. For example, the string aabbbbb an be enodedas a2b53. Suh a run-length enoded string an be signi�antly shorter than the expanded stringrepresentation after eÆiently enoding the integers (see [13℄ for example).Run-length enoding serves as a popular image ompression tehnique, sine many lasses of images(e.g., binary images in fasimile transmission or for use in optial harater reognition) typiallyontain large pathes of identially-valued pixels.Let m and n be the lengths of two run-length enoded strings X and Y , of enoded lengthsm0 and n0, respetively. Previous algorithms for the problem ompared two run-length enodedstrings using the Levenshtein Edit Distane [35℄ and the LCS similarity measure [25℄. For theLCS metri, Bunke and Csirik [9℄ presented an O(mn0 + nm0) time algorithm, while Apostolio,Landau, and Skiena [6℄ desribed an O(m0n0 log(m0n0)) time algorithm. Mithell [40℄ has obtainedan O((d +m0 + n0) log(d +m0 + n0)) time algorithm for a more general string mathing problem17



in run-length enoded strings, where d is the number of mathes of ompressed haraters. BothArbell et al [1℄ and M�akinen et al [37℄ independently obtained an O(m0n+n0m) time algorithm foromputing the edit distane between two run-length enoded strings for the Levenshtein distanemetri.M�akinen et al. [37℄ posed as an open problem the hallenge of extending these results to moregeneral soring shemes, sine in those appliations whih are related to image ompression, thehange from a pixel value to the next is smooth. Here, we will show how to extend the results toapply them to any distane or similarity soring sheme with additive gap sores.In this solution, the alignment graph is also partitioned into bloks. But rather than using theLZ78 partition desribed in Setion 2, eah blok here onsists of two runs { one of X and one ofY . This results in the partition of the alignment graph into m0n0 bloks. The algorithm suggestedalso propagates aumulated sores from the left and upper boundaries of eah blok, to its bottomand right boundaries.Consider the blok R for omparing the run �i of X with the run �j of Y . An edge in R ould beassigned one of three possible weight values: D(diagonal), H(horizontal) and V (vertial).Let �h and �w denote the di�erene in row index values and olumn index values respetively,between entry i on the input border of R, and entry j on the output border of R.We show how to ompute DIST[i; j℄ (whih is the ost of the best soring path from entry i in theinput border of the blok, to entry j in the output border of the blok) in onstant time, given �hand �w for the input and output entries, and the values D, H and V .� H+V � D. Clearly, an optimal path from i to j an use all possible diagonal edges and onlythen the minimal number of remaining H and V edges neessary to reah j.Therefore, DIST[i; j℄ obtains one of three values:1. If �w = �h, then DIST[i; j℄ = D ��h.2. If �w > �h, then DIST[i; j℄ = D ��h +H � (�w ��h).3. If �w < �h, then DIST[i; j℄ = D ��w + V � (�h ��w).� H + V < D. In this ase, an optimal path never uses any diagonal edge. The path inludesonly the minimal number of H edges, and the minimal number of V edges neessary to reahj from i. in this ase, DIST[i; j℄ = H ��w + V ��h.Therefore, DIST[i; j℄ an be easily omputed in onstant time when using the general soring shemedesribed in Setion 2.1.Time and Spae Analysis The O vetor for eah blok is omputed using SMAWK. Vetor Ifor blok R an be easily obtained from the O vetors for the blok above R and the blok to itsleft, in time linear with the sides of R. The \retangle" problem an be solved similarly to Setion3.2. Therefore, any value OUT[i; j℄ = I[i℄ +DIST[i; j℄ an be omputed in onstant time.Sine the work and spae for eah blok is linear with the size of its I=O borders, the total time andspae omplexity is linear with the total size of the borders of the bloks, whih is O(m0n+ n0m).
18
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