
Bit-parallel (δ, γ)-Matching

and Suffix Automata⋆

Maxime Crochemore a,b,1, Costas S. Iliopoulos b,

Gonzalo Navarro c,2,3, Yoan J. Pinzon b,d,2, and

Alejandro Salinger c

aInstitut Gaspard-Monge, Université de Marne-la-Vallée, France.
mac@univ-mlv.fr

bDept. of Computer Science, King’s College, London, England.
{csi,pinzon}@dcs.kcl.ac.uk

cCenter for Web Research, Dept. of Computer Science, University of Chile, Chile.
{gnavarro,asalinge}@dcc.uchile.cl

dLab. de Cómputo Especializado, Univ. Autónoma de Bucaramanga, Colombia.

Abstract

(δ, γ)-Matching is a string matching problem with applications to music retrieval.
The goal is, given a pattern P1...m and a text T1...n on an alphabet of integers, find
the occurrences P ′ of the pattern in the text such that (i) ∀1 ≤ i ≤ m, |Pi−P ′

i | ≤ δ,
and (ii)

∑
1≤i≤m |Pi − P ′

i | ≤ γ. The problem makes sense for δ ≤ γ ≤ δm. Several
techniques for (δ, γ)-matching have been proposed, based on bit-parallelism or on
skipping characters. We first present an O(mn log(γ)/w) worst-case time and O(n)
average-case time bit-parallel algorithm (being w the number of bits in the com-
puter word). It improves the previous O(mn log(δm)/w) worst-case time algorithm
of the same type. Second, we combine our bit-parallel algorithm with suffix au-
tomata to obtain the first algorithm that skips characters using both δ and γ. This
algorithm examines less characters than any previous approach, as the others do just
δ-matching and check the γ-condition on the candidates. We implemented our al-
gorithms and drew experimental results on real music, showing that our algorithms
are superior to current alternatives with high values of δ.

Key words: Bit-parallelism, approximate string matching, MIDI music retrieval.

⋆ A conference version of this paper appeared in [12].
1 Partly supported by CNRS and NATO.
2 Supported by CYTED VII.19 RIBIDI Project.
3 Funded by Millennium Nucleus Center for Web Research, Grant P01-029-F, Mide-
plan, Chile.

Preprint submitted to Elsevier Preprint

1 Introduction

The string matching problem is to find all the occurrences of a given pattern
P1...m in a large text T1...n, both being sequences of characters drawn from a
finite character set Σ. This problem is fundamental in computer science and
is a basic need of many applications, such as text retrieval, music retrieval,
computational biology, data mining, network security, etc. Several of these
applications require, however, more sophisticated forms of searching, in the
sense of extending the basic paradigm of the pattern being a simple sequence
of characters.

In this paper we are interested in music retrieval. A musical score can be
viewed as a string: at a very rudimentary level, the alphabet could simply be
the set of notes in the chromatic or diatonic notation, or the set of intervals
that appear between notes (e.g. pitch may be represented as MIDI numbers
and pitch intervals as number of semitones). It is known that exact matching
cannot be used to find occurrences of a particular melody, so one resorts to
different forms of approximate matching, where a limited amount of differences

of diverse kinds are permitted between the search pattern and its occurrence
in the text.

The approximate matching problem has been used for a variety of musical
applications [16,9,20,21,6]. Most computer-aided musical applications adopt
an absolute numeric pitch representation (most commonly MIDI pitch and
pitch intervals in semitones; duration is also encoded in numeric form). The
absolute pitch encoding, however, may be insufficient for applications in tonal
music as it disregards tonal qualities of pitches and pitch-intervals (e.g., a tonal
transposition from a major to a minor key results in a different encoding of
the musical passage and thus exact matching cannot detect the similarity
between the two passages). One way to account for similarity between closely
related but non-identical musical strings is to permit a difference of at most
δ units between the pattern character and its corresponding text character in
an occurrence, e.g., a C-major {60, 64, 65, 67} and a C-minor {60, 63, 65, 67}
sequence can be matched if a tolerance δ = 1 is allowed in the matching
process. Additionally, we require that the total number of differences across
all the pattern positions does not exceed γ, in order to limit the total number
of differences while keeping sufficient flexibility at individual positions.

The formalization of the above problem is called (δ, γ)-matching. The problem
is defined as follows: the alphabet Σ is assumed to be a set of integer numbers,
Σ ⊂ Z. Apart from the pattern P and the text T , two extra parameters,
δ, γ ∈ N, are given. The goal is to find all the occurrences P ′ of P in T such
that (i) ∀1 ≤ i ≤ m, |Pi − P ′

i | ≤ δ, and (ii)
∑

1≤i≤m |Pi − P ′
i | ≤ γ. Note that

the problem makes sense for δ ≤ γ ≤ δm: If γ > δ then the limit on the sum of

2

differences is larger than the limit on any difference, so one should set δ ← γ;
and if γ > δm then condition (i) implies (ii) and we should set γ ← δm.

Several recent algorithms exist to solve this problem. These can be classified
as follows:

Bit-parallel: The idea is to take advantage of the intrinsic parallelism of the
bit operations inside a computer word of w bits [1], so as to pack several
values in a single word and manage to update them all in one shot. In [7,8]
this approach was used to obtain Shift-Plus, an O(n m log(δm)/w) worst-
case time algorithm. The algorithm packs m counters whose maximum value
is mδ, hence it needs m⌈log2(δm + 1)⌉ bits overall and O(m log(δm)/w)
computer words have to be updated for each text character.

Occurrence heuristics: Inspired by Boyer-Moore techniques [5,22], they skip
some text characters according to the position of some characters in the
pattern. In [7], several algorithms of this type were proposed for δ-matching
(a restricted case where γ = δm), and they were extended to general (δ, γ)-
matching in [10]. The extension is done by checking the γ-condition on
each candidate that δ-matches the pattern. These algorithms are Tuned-

Boyer-Moore, Skip-Search and Maximal-Shift, each of which has a
counterpart in exact string matching. These algorithms are faster than the
bit-parallel ones, as they are simple and skip text characters.

Substring heuristics: Based on suffix automata [14,13], these algorithms skip
text characters according to the position of some pattern substrings. In
[10,11], three algorithms of this type, called δ-BM1, δ-BM2 and δ-BM3, are
proposed. They try to generalize the suffix automata to δ-matching, but they
obtain only an approximation that accepts more occurrences than necessary,
and these have to be verified later. They also verify the γ-condition over each
δ-matching candidate.

In this paper we present two new (δ, γ)-matching algorithms:

• We improve Shift-Plus in two aspects. First, we show that its worst case
complexity can be reduced to O(n m log(γ)/w) by means of a more sophisti-
cated counter management scheme that needs only ⌈1+log2(γ+1)⌉ bits per
counter. Second, we show how its average-case complexity can be reduced
to O(n).
• We combine our bit-parallel algorithm with suffix automata, as already done

with other string matching problems [18,19], so as to obtain the first algo-
rithm able of skipping text characters based both on δ- and γ- conditions. All
previous algorithms skip characters using the δ-condition only. Moreover,
our suffix automaton accepts exactly the suffixes of strings that (δ, γ)-match
our pattern, so no candidate verification is necessary at all. Our algorithm
examines less characters than any previous technique.

3

The algorithms are very efficient and simple to implement. Our experimental
results on real music data show that they improve previous work when δ is
large (so that their dependence on γ rather than on δ shows up). For short
patterns, of length up to 20, the character skipping algorithm is the best,
otherwise our simple bit-parallel algorithm dominates.

2 Basic Concepts

In this section we present the concepts our paper builds on: bit-parallelism
and suffix automata. We start by introducing some terminology.

A string x ∈ Σ∗ is a factor (or substring) of P if P can be written P = uxv,
u, v ∈ Σ∗. A factor x of P is called a suffix (prefix) of P if P = ux (P = xu),
u ∈ Σ∗.

A bit mask of length r is simply a sequence of bits, denoted br . . . b1. We
use exponentiation to denote bit repetition (e.g. 031 = 0001). The length of
the computer word is w bits, so the mask of length r ≤ w is stored some-
where inside the computer word. Also, we write [x]r to denote the binary
representation of number x < 2r using r bits. We also use C-like syntax
for operations on the bits of computer words: “|” is the bitwise-or, “&” is
the bitwise-and, and “∼” complements all the bits. The shift-left operation,
“<<”, moves the bits to the left and enters zeros from the right, that is,
bmbm−1 . . . b2b1 << r = bm−r . . . b2b10

r. Finally, we can perform arithmetic
operations on the bits, such as addition and subtraction, which operate the
masks as numbers. For instance, br . . . bx10000− 1 = br . . . bx01111.

2.1 Bit-Parallelism

In [2,24], a new approach to text searching was proposed. It is based on bit-

parallelism [1], a technique consisting in taking advantage of the intrinsic par-
allelism of the bit operations inside a computer word. By using cleverly this
fact, the number of operations that an algorithm performs can be cut down
by a factor of at most w, the number of bits in the computer word. Since in
current architectures w is 32 or 64, the speedup is very significant in practice.

The Shift-And algorithm [24] uses bit-parallelism to simulate the operation
of a nondeterministic automaton that searches the text for the pattern (see
Fig. 1). A plain simulation of that automaton takes time O(mn), and Shift-
And achieves O(mn/w) worst-case time (optimal speedup).

The algorithm first builds a table B which for each character c ∈ Σ stores a

4

3 4
a b c d e f g

Σ

1 2 5 6 70

Fig. 1. A nondeterministic automaton to search a text for the pattern P =
"abcdefg". The initial state is 0.

bit mask B[c] = bm . . . b1, so that bi = 1 if and only if Pi = c. The state of
the search is kept in a bit mask D = dm . . . d1, where di = 1 whenever the
state numbered i in Fig. 1 is active. That is, after having scanned text position
j, we have di = 1 whenever P1...i = Tj−i+1...j . Therefore, we report a match
whenever dm is set.

We start with D = 0m and, for each new text character Tj , update D using
the formula

D ← ((D << 1) | 0m−11) & B[Tj]

because each state may be activated by the previous state as long as Tj matches
the corresponding arrow. The “| 0m−11” after the shift corresponds to the self-
loop at the beginning of the automaton (as state 0 is not represented in D).
Seen another way, the i-th bit is set if and only if the (i−1)-th bit was set for
the previous text character and the new text character matches the pattern at
position i. In other words, Tj−i+1...j = P1...i if and only if Tj−i+1...j−1 = P1...i−1

and Tj = Pi.

The cost of this algorithm is O(n). For patterns longer than the computer word
(m > w), the algorithm uses ⌈m/w⌉ computer words for the simulation, with
a worst-case cost of O(mn/w). By managing to update only those computer
words that have some active state, an average case cost of O(n) is achieved.

It is very easy to extend Shift-And to handle classes of characters, where each
pattern position does not match just a single character but a set thereof. If Ci

is the set of characters at position i in the pattern, then we set the i-th bit of
B[c] for all c ∈ Ci.

2.2 Suffix Automata

We describe the BDM pattern matching algorithm [13,14], which is based on
a suffix automaton. A suffix automaton on a pattern P1...m is a determinis-
tic finite automaton that recognizes the suffixes of P . The nondeterministic
version of this automaton has a very regular structure (see in Fig. 2).

The (deterministic) suffix automaton is well known [13]. Its size, counting
both nodes and edges, is O(m), and it can be built in O(m) time [13]. A very
important fact is that this automaton can also be used to recognize the factors
of P : The automaton is active as long as we have read a factor of P .

5

a b c d e f g
1 2 3 4 5 6 70

I
ε ε ε ε ε ε ε ε

Fig. 2. A nondeterministic suffix automaton for the pattern P = "abcdefg". Dashed
lines represent ε-transitions. The initial state is I.

This structure is used in [13,14] to design a pattern matching algorithm
called BDM, which is optimal on average (O(n log|Σ|(m)/m) time on uni-
formly distributed text). To search a text T for P , the suffix automaton of
P r = PmPm−1 . . . P1 (the pattern read backwards) is built. A window of length
m is slid along the text, from left to right. The algorithm reads the window
right to left and feeds the suffix automaton with the characters read. During
this process, if a final state is reached, this means that the window suffix we
have traversed is a prefix of P (because suffixes of P r are reversed prefixes
of P). Then we store the current window position in a variable last, possibly
overwriting its previous value. The backward window traversal ends in two
possible forms:

(1) We fail to recognize a factor, that is, we reach a character σ that does not
have a transition in the automaton (see Fig. 3). In this case the window
suffix read is not a factor of P and therefore it cannot be contained in
any occurrence. We can actually shift the window to the right, aligning
its starting position to last, which corresponds to the longest prefix of P
seen in the window. We cannot miss an occurrence because in that case
the suffix automaton would have found its prefix in the window.

New search

Window

Search for a factor with the suffix automaton

σ

u

Fail to recognize a factor at σ.

σ

New window

Safe shift

Fig. 3. Basic search with the suffix automaton

(2) We reach the beginning of the window, therefore recognizing the pattern
P . We report the occurrence, and shift the window exactly as in the
previous case (we have the previous last value).

It is possible to simulate the suffix automaton in nondeterministic form by us-
ing bit-parallelism [18,19], so as to obtain very efficient and simple algorithms.

6

3 Improving the Bit-Parallel Algorithm

First of all, notice that δ-matching is trivial under the bit-parallel approach, as
it can be accommodated using the ability to search for classes of characters.
We define that pattern character c matches text characters c − δ . . . c + δ.
Hence, if B[c] = bm . . . b1, we set bi = 1 if and only if |Pi − c| ≤ δ. The rest of
the algorithm is unchanged and the same complexities are obtained.

The real challenge is to do (δ, γ)-matching. The solution we present is an
improvement over that of [7,8] and it has some resemblances with that of [3]
for Hamming distance.

Let us focus for a moment on γ-matching alone. Instead of storing just one bit
di to tell whether P1...i matches Tj−i+1...j , we store a counter ci to record the
sum of the absolute differences between the corresponding characters. That is

ci =
∑

1≤k≤i

|Pk − Tj−i+k| (1)

and we wish to report text positions where cm ≤ γ.

The next Lemma shows how to update the ci values for a new text position,
and suggests an O(mn) time γ-matching algorithm.

Lemma 1. Assume that we want to compute the counters c1 . . . cm according
to Eq. (1) for text position j, and have computed c′1 . . . c′m for position j − 1.
The ci values satisfy

ci =
∑

1≤k≤i

|Pk − Tj−i+k| = c′i−1 + |Pi − Tj|

assuming c′0 = 0.

Proof. Immediate by substitution of c′i−1 according to Eq. (1). 2

The update technique given in Lemma 1 is good for a bit-parallel approach.
Let us assume that each ci counter will be represented using ℓ bits, where ℓ
will be specified later. Hence the state of the search will be expressed using
the bit mask

D = [cm]ℓ [cm−1]ℓ . . . [c2]ℓ [c1]ℓ. (2)

We precompute a mask B[c] of counters [bm]ℓ . . . [b1]ℓ, so that bi = |Pi − c|.
Then, the following Lemma establishes the bit-parallel formula to update D.

Lemma 2. Assume that we want to compute bit mask D according to

7

Eq. (2) for text position j, and have computed D′ for position j − 1. Then

D = (D′ << ℓ) + B[Tj]. (3)

Proof. The i-th counter of D′ is c′i. After the shift-left (“<<”) the i-th
counter becomes c′i−1. The i-th counter of B[Tj] is |Pi − Tj |. Hence the i-th
counter of the right hand side of the equality is c′i−1 + |Pi − Tj |. According to
Lemma 1, this is ci. 2

This gives us a solution for γ-matching. Start with D = ([γ + 1]ℓ)
m (to avoid

matching before reading Tm) and update it according to Eq. (3). Every time
we have cm ≤ γ, report the last text position processed as the end of an
occurrence.

In order to include δ-matching in the picture, we change slightly the definition
of B[c]. The goal is that if, at any position, it holds |Pi−Tj | > δ, then we ensure
that the corresponding occurrence is discarded. For this sake, it is enough to
redefine B[c] = [bm]ℓ . . . [b1]ℓ as follows:

bi = if |Pi − c| ≤ δ then |Pi − c| else γ + 1. (4)

The next Lemma establishes the suitability of the above formulas for (δ, γ)
matching.

Lemma 3. If the update formula of Eq. (3) is applied and B[c] is defined
according to Eq. (4), then after processing text position j it holds that cm ≤ γ
if and only if Tj−m+1...j (δ, γ)-matches P .

Proof. By Lemmas 1 and 2 and Eq. (1) we have that, if the original definition
bi = |Pi − c| is used, then cm =

∑
1≤k≤m |Pk − Tj−m+k| after processing text

position j. The only difference if the definition of Eq. (4) is used is that, if
any of the |Pk − Tj−m+k| was larger than δ, then bk > γ for B[Tj−m+k], and
therefore ck > γ after processing text position j −m + k. Since counters only
increase as they get shifted and added in Eq. (3), that counter ck at position
j − m + k will become counter cm at position j, without decreasing. Thus
cm > γ after processing text position j. Therefore cm ≤ γ if and only if
Tj−m+1...j (δ, γ)-matches P . 2

Let us consider now the ℓ value. In principle, using B[c] as in Eq. (4), counter
cm can be as large as m(γ + 1), since bi ≤ γ + 1 (recall that δ ≤ γ). However,
recall that counter values never decrease as they get shifted over D. This
means that, once they become larger than γ, we do not need to know how
larger they are. Thus, instead of storing the real ci value, we would rather
store min(ci, γ + 1), and then need only ⌈log2(γ + 2)⌉ bits per counter.

8

In principle, whenever ci exceeds γ, we store γ + 1 for it. The problem is how
to restore this invariant after adding B[c] to the counters, and also how to
avoid overflows in that summation. We show now that we can handle both
problems by using the following number of bits per counter:

ℓ = 1 + ⌈log2(γ + 1)⌉. (5)

Thus, our bit mask D needs mℓ = m(1+⌈log2(γ+1)⌉) bits and our simulation
needs O(m log(γ)/w) computer words.

Instead of representing counter ci as [ci]ℓ, we represent it as

ci −→ [ci + 2ℓ−1 − (γ + 1)]ℓ. (6)

This guarantees that the highest bit of the counter will be set if and only if
ci ≥ γ + 1, as its representation will be ≥ 2ℓ−1.

Before adding B[Tj], we will record all those highest bits in a bit mask
H = D & (10ℓ−1)m, and clear those highest bits from D. Once its high-
est bit is cleared, every counter representation is smaller than 2ℓ−1 and we can
safely add bi without overflowing the counters, since the resulting value is at
most 2ℓ−1 − 1 + (γ + 1) = 2ℓ−1 + γ ≤ 2γ + 1 because of Eq. (5). And again
because of Eq. (5), a counter can hold up to value 2(γ +1)−1 = 2γ +1. After
adding B[Tj] we restore those highest bits set in H .

Note that it is not strictly true that we maintain min(ci, γ + 1), but it is true
that the highest bit of the representation of ci is set if and only if ci > γ,
and this is enough for the correctness of the algorithm. The next Lemma
establishes this correctness.

Lemma 4. Assume that ci is represented as in Eq. (6) if ci ≤ γ, and as
[2ℓ−1+x]ℓ otherwise, for some x ≥ 0. Then, if the update formula of Lemma 2 is
applied with the exception that the highest bits set in the counters are removed
before and restored after adding B[Tj], then it holds that the representation
is maintained after processing Tj .

Proof. If ci already exceeded γ before adding bi, it will exceed γ after adding
bi. In this case, the representation of ci was 2ℓ−1 + x and thus it already had
its highest bit set. This bit will be restored after adding bi. Thus, regardless
of which value actually stores, the representation will correctly maintain its
highest bit set, that is, it will be of the form 2ℓ−1 + x for some x ≥ 0.

On the other hand, if ci did not exceed γ before adding bi, then its repre-
sentation was ci + 2ℓ−1 − (γ + 1) and the highest bit was not set. Thus the
manipulation of highest bits will not affect its result. After the summation the
representation will hold ci +bi +2ℓ−1− (γ +1). This is a correct representation

9

for the new value ci + bi, either if ci + bi ≤ γ or if ci + bi > γ, as in the latter
case the representation is of the form 2ℓ−1 +x, where x = ci + bi− (γ +1) ≥ 0.
2

Fig. 4 depicts the algorithm. It is called Forward-Scan to distinguish it from
our next algorithms that scan windows backward. The preprocessing consists
of computing ℓ according to Eq. (5) and table B according to Eq. (4). Pattern
P is processed backwards so as to arrange B[c] in the right order [bm]ℓ . . . [b1]ℓ.
Line 10 initializes the search by setting ci = γ + 1 in D, according to the
representation of Eq. (6). Occurrences are reported in lines 12–13, whenever
cm ≤ γ, that is, the highest bit of the representation of cm is not set. Line
14 is the equivalent to D ← D << ℓ, except that the counter c0 = 0 that is
moved to the position of c1 must be represented as 2ℓ−1 − (γ + 1) according
to Eq. (6). Line 15 computes H as explained, to record the highest bits. Line
16 completes the computation of Eq. (3), by removing bits set in H from D
and restoring them after the summation with B[Tj].

Assuming that the bit masks fit in a computer word, that is, mℓ ≤ w, the
algorithm complexity is O(m|Σ|+n). If several computer words are needed, the
search complexity becomes O(mn log(γ)/w). However, we defer the details of
handling longer bit masks to Section 5, as it is possible to obtain O(n) search
time on average.

Forward-Scan (P1...m, T1...n, δ, γ)
1. Preprocessing

2. ℓ← 1 + ⌈log2(γ + 1)⌉
3. for c ∈ Σ do

4. B[c]← ([0]ℓ)
m

5. for i ∈ m . . . 1 do

6. if |c− Pi| ≤ δ then

7. B[c]← (B[c] << ℓ) | (|c− Pi|)
8. else B[c]← (B[c] << ℓ) | (γ + 1)
9. Search

10. D ← (10ℓ−1)m

11. for j ∈ 1 . . . n do

12. if D & 10mℓ−1 = 0mℓ then

13. Report an occurrence at j −m + 1
14. D ← (D << ℓ) | (2ℓ−1 − (γ + 1))
15. H ← D & (10ℓ−1)m

16. D ← ((D & ∼ H) + B[Tj]) | H

Fig. 4. Bit-parallel algorithm for (δ, γ)-matching. Constant values are precomputed.

10

4 Using Suffix Automata

As demonstrated in [18,19], the suffix automaton approach of Section 2.2 can
be extended to search for more complex patterns by combining it with bit-
parallelism. In this section we combine our bit-parallel approach of Section 3
with the suffix automaton concept to obtain an algorithm that does not inspect
all the text characters.

Imagine that we process a text window Tpos+1...pos+m right to left. Our goal is
that, after having processed Tpos+j, we have computed

ci =
∑

0≤k≤m−j

|P r
i−(m−j)+k−Tpos+m−k| =

∑

0≤k≤m−j

|P2m+1−i−j−k−Tpos+m−k|

(7)
for m − j + 1 ≤ i ≤ m. This can be obtained by initializing ci = 0 before
starting processing the window and then updating the ci values according to
the following Lemma.

Lemma 5. Assume that we have values c′i computed for Tpos+j+1 according
to Eq. (7). Then values ci for Tpos+j satisfy

ci = c′i−1 + |P r
i − Tpos+j|.

Proof. It is immediate by rewriting c′i−1 according to Eq. (7). 2

If we maintain values ci computed according to Eq. (7), then, after process-
ing Tpos+j, (i) if cm ≤ γ, then

∑
0≤k≤m−j |P1+m−j−k − Tpos+m−k| ≤ γ, that

is, P1...m−j+1 γ-matches window suffix Tpos+j...pos+m; (ii) if ci > γ for all
m − j + 1 ≤ i ≤ m, then the window suffix Tpos+j...pos+m does not γ-match
any pattern substring Pm−i+1...(m−i+1)+m−j , and therefore no occurrence can
contain Tpos+j...pos+m.

Therefore, a BDM-like algorithm would be as follows. Process text window
Tpos+1...pos+m by reading it right to left and maintaining ci values. Every time
cm ≤ γ, mark the current window position last so as to remember the last
time a window suffix γ-matched a pattern prefix. If, at some moment, ci > γ
for all i, then shift the window to start at position last and restart. If all the
window is traversed and still cm ≤ γ, then report the window as an occurrence
and also shift it to start at position last. The correctness of this scheme should
be obvious from Section 2.2.

A bit-parallel computation of the ci values is very similar to the one developed
in Section 3, as the update formulas of Lemmas 1 and 5 are so close. In order
to work on P r, we simply store B[c] in reverse fashion. Vector ci is initialized
at ci = 0 according to Eq. (7). To determine whether cm ≤ γ we simply test

11

the highest bit of its representation. To determine whether ci > γ for all i we
test all highest bits simultaneously. To account also for δ-matching we change
the preprocessing of B[c] just as in Eq. (4).

Fig. 5 depicts the algorithm, called “backward-scanning” because of the way
windows are processed. The preprocessing is identical to Fig. 4 except that
the pattern is processed left to right. D is initialized in line 13 with ci = 0
considering the representation of Eq. (6). Line 14 continues processing the
window as long as ci ≤ γ for some i. The update to D is as in Fig. 4, except
that the first shift left (“<<”) of each window is omitted to avoid losing the
first c1 value. Condition cm ≤ γ is tested in line 18. When it holds, we update
last unless we have processed all the window, in which case it means that
we found an occurrence and also must maintain the previous last value. Line
21 shifts D and introduces values γ + 1 from the right, to ensure that the
relevant i values are m− j + 1 ≤ i ≤ m and that the loop will terminate after
m iterations. Finally, the window is shifted by last.

Backward-Scan (P1...m, T1...n, δ, γ)
1. Preprocessing

2. ℓ← 1 + ⌈log2(γ + 1)⌉
3. for c ∈ Σ do

4. B[c]← ([0]ℓ)
m

5. for i ∈ 1 . . .m do

6. if |c− Pi| ≤ δ then

7. B[c]← (B[c] << ℓ) | (|c− Pi|)
8. else B[c]← (B[c] << ℓ) | (γ + 1)
9. Search

10. pos← 0
11. while pos ≤ n−m do

12. j ← m, last← m
13. D ← ([2ℓ−1 − (γ + 1)]ℓ)

m

14. while D & (10ℓ−1)m 6= (10ℓ−1)m do

15. H ← D & (10ℓ−1)m

16. D ← ((D & ∼ H) + B[Tj]) | H
17. j ← j − 1
18. if D & 10mℓ−1 = 0mℓ then

19. if j > 0 then last← j
20. else Report an occurrence at pos + 1
21. D ← (D << ℓ) | 10ℓ−1

22. pos← pos + last

Fig. 5. Backward scanning algorithm for (δ, γ)-matching. Constant values are pre-
computed.

Note that, given the invariants we maintain, we can report occurrences with-

12

out any further verification. Moreover, we shift the window as soon as the
window suffix read does not (δ, γ)-match a pattern substring. This is the first
character-skipping algorithm with these properties. Previous ones only approx-
imate this property and require verifying candidate occurrences. Consequently,
we inspect less characters than previous algorithms.

5 Handling Longer Patterns

Both algorithms presented are limited by the length of the computer word.
They work for m(1+ ⌈log(γ +1)⌉) ≤ w. However, in most cases this condition
is not fulfilled, so we must handle longer patterns.

5.1 Active Computer Words

The first idea is just to use as many computer words as needed to represent
D. In each computer word we store the maximum amount of counters that
fully fit into w bits. So we keep κ = ⌊w/ℓ⌋ counters in each word (except
the last one, that may be underfilled), needing ⌈m/⌊w/ℓ⌋⌉ words to represent
D. Each time we update D we have to process all the words simulating the
bit-parallel operations. With this approach, the forward scanning takes time
O(nm log(γ)/w). We remark that previous forward scanning algorithms [7,8]
required O(nm log(mδ)/w) time, which is strictly worse than our complexity.
The difference is that we have managed to keep the counters below 2(γ +
1) instead of letting them grow up to mδ. This alternative is called simply
“Forward” in the experiments.

A key improvement can be made to the forward scanning algorithm by notic-
ing that it is not necessary to update all the computer words at each iteration.
As counter ci stores the sum of all the differences between characters P1...i and
their corresponding characters in the text (Eq. (1)), depending on the values
of δ and γ and on the size of the alphabet, most of the time the highest coun-
ters will have surpassed γ. Once a counter surpasses γ we only require that it
stays larger than γ (recall Section 3 and Lemma 4), so it is not even necessary
to update it. Let us say that a computer word is active when at least one of
its counters stores some ci ≤ γ. The improvement works as follows:

• At each iteration of the algorithm we update the computer words only until
the one we have marked as the last active word.
• As we update each word we check whether it is active or not, remembering

the new last active word.

13

• Finally, we check if the last counter of the last active word is ≤ γ. In that
case, the word that follows the last active word must be the new last active
word, as in the next iteration its first counter may become less than γ + 1,
and hence we may need to process it.

This algorithm has the same worst-case complexity of the basic one, but the
average case is significantly improved. Consider a random text and pattern
following a zero-order model (that is, character probabilities are independent
of the neighbor characters). Say that ps is the probability of the s-th character
of the alphabet. Then the probability that Pi δ-matches a random text char-
acter is πi =

∑
Pi−δ≤s≤Pi+δ ps. The probability of P1...i δ-matching Tj−i+1...j for

a random text position j is wi = Π1≤k≤iπk.

The first computer word will be always active; the second will be active only
if P1...κ matches Tj−κ+1...j ; the third will be active only if P1...2κ matches
Tj−2κ+1...j ; and so on. Hence the average number of computer words active
at a random text position is at most

1 + wκ + w2κ + . . . =
∑

i≥0

wiκ

and this is O(1) provided π = max1≤i≤m πi < 1, as in this case wi ≤ πi and
the average number of active words is

∑
i≥0 wiκ ≤

∑
i≥0 πiκ = 1/(1− πκ). 4

Hence, as we update O(1) computer words on average, the average search time
is O(n). Note that this holds even without considering γ, which in practice
reduces the constant factor. The lower the values of δ and γ are, the bet-
ter the performance will be. This alternative is called “Forward last” in the
experiments.

Yet another improvement can be made to this algorithm by combining it with
the basic single-word algorithm. We store the first word used to represent D in
a register and run the algorithm using just this word, as long as this one is the
only active word. Whenever the second word becomes active, we switch to the
multiple word algorithm. We switch back to the basic algorithm whenever the
first word becomes the last active word. The use of a register to store the first
word yields a better performance, as we have to make less memory accesses.
The more time the first word is the only active word, the more significant is the
improvement. This alternative is called “Forward register” in the experiments.

Unfortunately this idea cannot be applied to the backward-scanning algo-
rithm, as in this one we will have counters ≤ γ uniformly distributed across
all the computer words. This happens because ci ≤ γ after reading Tpos+j if
Pm−i+1...(m−i+1)+m−j (δ, γ)-matches Tpos+j...pos+m (Eq. (7)), and this probabil-
ity does not necessarily decrease with i (actually it is independent of i on a

4 This holds also if there are O(1) i values such that πi = 1.

14

uniform distribution). The plain multi-word backward scanning algorithm is
called simply “Backward” in the experiments.

5.2 Pattern Partitioning

Another idea to handle long patterns is to partition them into pieces short
enough to be handled with the basic algorithm. Notice that if P (δ, γ)-matches
Tj−m+1...j, and we partition P into j disjoint pieces of length ⌊m/j⌋ and ⌈m/j⌉,
then at least one piece has to (δ, γ ′)-match its corresponding substring of
Tj−m+1...j, where γ′ = ⌊γ/j⌋. The reason is that, otherwise, each piece adds up
at least γ ′ + 1 differences, and the total is at least j(γ ′ + 1) = j(⌊γ/j⌋+ 1) >
j(γ/j) = γ, and then γ-matching is not possible.

Hence we run j (δ, γ ′)-searches for shorter patterns and check every match of
a piece for a complete occurrence. The check is simple and does not even need
bit parallelism. Note that if δ > γ ′, we can actually do (γ ′, γ′)-matching.

We must choose the largest j such that

⌈m/j⌉ (1 + ⌈log2(⌊γ/j⌋+ 1)⌉) ≤ w

and hence we perform j = O(m log(γ)/w) searches. For forward scanning,
each such search costs O(n). Piece verification time is negligible on average.
Hence the average search time of this approach is O(nm log(γ)/w), which is
not attractive compared to the worst-case search time of the basic approach.
However, each of these searches can be made using registers for D, so in
practice it could be relevant. It could be also relevant for backward matching,
where using D in registers is not possible for long patterns.

Furthermore, the pieces can be grouped and searched for together using so-
called “superimposition” [4,17]. By making groups of r pieces each, we perform
⌈j/r⌉ searches. For each search, counter bi of B[c] will store the minimum
difference between c and the i-th character of any piece in the group, or γ ′ +1
if none of these differences is smaller than γ ′+1. Every time we find a match of
the whole group we check the occurrence of each of the substrings forming that
group. For all the pieces that matched we check the occurrence of the whole
pattern at the corresponding position. The greater r is, the less searches we
perform, but the more time we spend checking occurrences. The time spent in
checking occurrences also increases with δ and γ. Because of this, the optimum
r depends on δ,γ and m.

These algorithms are called “Forward superp” and “Backward superp” in the
experiments. These include the case r = 1, where no superimposition is done.

15

6 Experimental Results

In this section we show experimental evidence comparing the different versions
of our algorithms against δ-BM2 [10,11], which is the most efficient alternative
(δ, γ)-matching algorithm.

The tests were performed using a Pentium IV, 2 GHz, 512 Mb RAM and 512
Kb cache running Suse Linux with w = 32. We used the GNU gcc compiler
version 2.95.3. Each data point represents the median of 100 trials.

We ran our experiments using real music data obtained from a database of
MIDI files of classic music, totalizing 10.5Mb of absolute pitches. We focused
on typical parameter values for music searching, namely 2–4 for δ, 1.5m–2.0m
for γ, and 10–200 for m.

The results for forward algorithms are shown in Fig. 6. The variants are called
“Forward” (plain multiword forward), “Forward last” (same but updating
only up to the last relevant word), “Forward register” (same but switching
to single-word mode when possible), and “Forward superp” (partition plus
superimposing in the way that gives the best results).

As expected, Forward and Forward-superp are the slowest and their cost grows
linearly with m. Forward-superp shows a better constant factor and it is at-
tractive for very short patterns, but soon its linear dependence with m renders
it useless. Superimposition alleviates this only partially, as the optimum was
to superimpose 2 to 7 patterns for δ = 2 and 2 to 5 for δ = 4. These numbers
grow slowly as m increases and stay at a maximum of 5 or 6, making the whole
scheme linear in m anyway.

Forward-last and Forward-register, on the other hand, display their O(n) av-
erage case time, independent of n. As expected, Forward-register is by far
the best. We will consider only this alternative to compare against backward
algorithms.

Fig. 7 compares backward algorithms (which includes the relevant competing
alternatives), and Forward-register. The backward algorithm only has variants
“Backward” (plain single- or multi-word, as needed) and “Backward superp”
(partition plus superimposing in the best possible way). δ-BM2 is the best
existing alternative algorithm.

We observe that partitioning (including superimposition) is also a bad choice
for backward scanning. The reasons are the same as for the forward version. In
general, backward searching does not behave competitively when many com-
puter words are involved. Backward was better than Forward-register when
the whole (superimposed) representation fit in a single computer word. As

16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120 140 160 180 200

m

Forward
Forward last

Forward register
Forward superp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120 140 160 180 200

m

Forward
Forward last

Forward register
Forward superp

(a) δ = 2 and γ=1.5m (b) δ = 4 and γ=1.5m

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120 140 160 180 200

m

Forward
Forward last

Forward register
Forward superp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120 140 160 180 200

m

Forward
Forward last

Forward register
Forward superp

(c) δ = 2 and γ=2m (d) δ = 4 and γ=2m

Fig. 6. Timing figures for forward algorithms, in seconds per megabyte.

more than a single word is necessary, Forward-register becomes superior. The
reason is that backward searching needs to effectively update all its computer
words, while the forward versions do so only for a few active computer words.

With respect to the competing algorithm, it can be seen that δ-BM2 is faster
than ours for small δ = 2, but as we use a larger δ = 4 it becomes not compet-
itive, as it can be expected from its only-δ filtration scheme. Our algorithms
are the only ones that can filter using δ and γ simultaneously.

Finally, we notice that the dependence on δ is significant to the extent that it
can double the time it takes by going from δ =2 to δ =4. The dependence on
γ, on the other hand, is not much significant. We note, however, that Forward-
register is rather insensitive to both δ and γ, becoming a strong and stable
choice for general (δ, γ)-matching.

17

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140 160 180 200

m

Forward register
Backward

Backward superp
BM2

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140 160 180 200

m

Forward register
Backward

Backward superp
BM2

(a) δ = 2 and γ=1.5m (b) δ = 4 and γ=1.5m

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140 160 180 200

m

Forward register
Backward

Backward superp
BM2

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140 160 180 200

m

Forward register
Backward

Backward superp
BM2

(c) δ = 2 and γ=2m (d) δ = 4 and γ=2m

Fig. 7. Timing figures for backward algorithms and the best forward algorithm, in
seconds per megabyte.

7 Conclusions

We have presented new bit-parallel algorithms for (δ, γ)-matching, an extended
string matching problem with applications in music retrieval. Our new algo-
rithms make use of bit-parallelism and suffix automata and has several ad-
vantages over the previous approaches: they make better use of the bits of the
computer word, they inspects less text characters, they are simple, extendible,
and robust.

Especially important is that our algorithms are the first truly (δ, γ) character-
skipping algorithms, as they skip characters using both criteria. Existing ap-
proaches do just δ-matching and check the candidates for the γ-condition.
This makes our algorithms a stronger and more stable choice for this problem.

We have also presented several ideas to handle longer patterns, as the algo-
rithms are limited by the length of the computer word. The fastest choice is
an algorithm that uses several computer words and updates only those that
hold relevant values, switching to single-word mode when possible.

18

We have shown that our algorithms are the best choice in practice when δ is
not small enough to make up a good filter by itself. In this case, the ability of
our algorithms to filter with γ at the same time becomes crucial.

We plan to investigate further on more sophisticated matching problems that
arise in music retrieval. For example, it would be good to extend (δ, γ)-
matching in order to permit insertions and deletions of symbols, as well as
transposition invariance. Bit-parallel approaches handling those options, al-
beit not (δ, γ)-matching at the same time, have recently appeared [15].

Another challenging problem is to consider text indexing, that is, preprocess-
ing the musical strings to speed up searches later. A simple solution is the use
of a suffix tree of the text combined with backtracking, which yields search
times which are exponential on the pattern length but independent of the text
length [23].

References

[1] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World
Computer Congress, volume I, pages 465–476. Elsevier Science, September 1992.

[2] R. Baeza-Yates and G. Gonnet. A new approach to text searching. Comm.
ACM, 35(10):74–82, October 1992.

[3] R. Baeza-Yates and G. Gonnet. Fast string matching with mismatches.
Information and Computation, 108(2):187–199, 1994.

[4] R. Baeza-Yates and G. Navarro. Faster approximate string matching.
Algorithmica, 23(2):127–158, 1999.

[5] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Comm. ACM,
20(10):762–772, 1977.

[6] E. Cambouropoulos, T. Crawford, and C. Iliopoulos. Pattern processing in
melodic sequences: Challenges, caveats and prospects. In Proc. Artificial
Intelligence and Simulation of Behaviour (AISB’99) Convention, pages 42–47,
1999.

[7] E. Cambouropoulos, M. Crochemore, C. Iliopoulos, L. Mouchard, and Y. J.
Pinzon. Algorithms for computing approximate repetitions in musical
sequences. In Proc. 10th Australasian Workshop on Combinatorial Algorithms
(AWOCA’99), pages 129–144, 1999.

[8] E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard, and
Y. J. Pinzon. Algorithms for computing approximate repetitions in musical
sequences. Int. J. Comput. Math., 79(11):1135–1148, 2002.

19

[9] T. Crawford, C. Iliopoulos, and R. Raman. String matching techniques for
musical similarity and melodic recognition. Computing in Musicology, 11:73–
100, 1998.

[10] M. Crochemore, C. Iliopoulos, T. Lecroq, Y. J. Pinzon, W. Plandowski, and
W. Rytter. Occurence and substring heuristics for δ-matching. Fundamenta
Informaticae, 55:1–15, 2003.

[11] M. Crochemore, C. Iliopoulos, T. Lecroq, W. Plandowski, and W. Rytter.
Three heuristics for δ-matching: δ-BM algorithms. In Proc. 13th Ann. Symp.
on Combinatorial Pattern Matching (CPM’02), LNCS v. 2373, pages 178–189,
2002.

[12] M. Crochemore, C. Iliopoulos, G. Navarro, and Y. Pinzon. A bit-parallel suffix
automaton approach for (δ, γ)-matching in music retrieval. In Proc. 10th Intl.
Symp. on String Processing and Information Retrieval (SPIRE’03), LNCS 2857,
2003.

[13] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press,
1994.

[14] A. Czumaj, M. Crochemore, L. Gasieniec, S. Jarominek, Thierry Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string-matching algorithms.
Algorithmica, 12:247–267, 1994.

[15] K. Lemström and G. Navarro. Flexible and efficient bit-parallel techniques for
transposition invariant approximate matching in music retrieval. In Proc. 10th
Intl. Symp. on String Processing and Information Retrieval (SPIRE’03), LNCS
2857, 2003.

[16] P. McGettrick. MIDIMatch: Musical Pattern Matching in Real Time. MSc.
Dissertation, York University, U.K., 1997.

[17] G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate string
matching. Algorithmica, 30(4):473–502, 2001.

[18] G. Navarro and M. Raffinot. Fast and flexible string matching by combining bit-
parallelism and suffix automata. ACM Journal of Experimental Algorithmics
(JEA), 5(4), 2000.

[19] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical
on-line search algorithms for texts and biological sequences. Cambridge
University Press, 2002.

[20] P. Roland and J. Ganascia. Musical pattern extraction and similarity
assessment. In E. Miranda, editor, Readings in Music and Artificial Intelligence,
pages 115–144. Harwood Academic Publishers, 2000.

[21] L. A. Smith, E. F. Chiu, and B. L. Scott. A speech interface for building
musical score collections. In Proc. 5th ACM conference on Digital Libraries,
pages 165–173. ACM Press, 2000.

20

[22] D. Sunday. A very fast substring searching algorithm. Comm. ACM, 33(8):132–
142, August 1990.

[23] E. Ukkonen. Approximate string matching over suffix trees. In Proc. 4th Ann.
Symp. on Combinatorial Pattern Matching (CPM’93), pages 228–242, 1993.

[24] S. Wu and U. Manber. Fast text searching allowing errors. Comm. ACM,
35(10):83–91, October 1992.

21

