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ABSTRACT: String matching is the problem of finding all the occurrencesof a pattern in atext.
We present a new method to compute the combinatorial shift function (“ matching shift”) of the
well-known Boyer—-Moore string matching algorithm. This method implies the computation of
the length of the longest suffixes of the pattern ending at each position in this pattern. These
values constituted an extra-preprocessing for a variant of the Boyer-Moore algorithm designed
by Apostolicoand Giancarlo. We give here anew presentation of thisalgorithm that avoidsextra
preprocessing together with atight bound of 1.5n character comparisons (where n is the length
of the text).

Keywords: string matching, analysis of algorithm

1 Introduction

The string matching problem consistsinfinding oneor more usualy all the occurrences
of apattern = of length m inatext y of length n. It can occur ininformation retrieval,
bibliographic search and most recently it has some applicationsin molecular biology.
It has been extensively studied and numeroustechniques and a gorithmshave been de-
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signed to solvethisproblem (see[7], [19] and [3]). We are interested here in the prob-
lem where the pattern is given first and can then be searched in various texts. Thus a
preprocessing phase is allowed on the pattern.

Basicaly a string-matching algorithm uses a window to scan the text. The size of
thiswindow isegual to thelength of the pattern. It first alignsthe left ends of the win-
dow and the text. Then it checksif the pattern occursin thewindow (this specific work
is cdled an attempt) and shiftsthe window to theright. It repeats the same procedure
again until theright end of the window goes beyond the right end of the text. One of
the most famous string matching algorithmwas givenin 1977 by Boyer and Moore[2].
Itsmain feature isthat at each attempt it scans the characters of the pattern from right
to left which enablesit to “jump” over some portionsof thetext and therefore to save
some comparisons. Itsmain drawback isthat after ashift, it forgetsal the charactersit
has previously matched. This make the complexity analysisof the Boyer-Moore a go-
rithm very difficult. Cole[4] proved, along time after the design of the algorithm, the
tight bound of 3n — n/m comparisons to locate a non-periodic pattern. When search-
ing for al the occurrences of the pattern in the text, the Boyer-Moore algorithm has a
quadratic worst-case time complexity. The exact complexity is O(n + rm) where r
is the number of occurrences of the pattern in the text (see [14]). A major difficulty
when onewantsto implement the Boyer-Moore a gorithmis to understand the compu-
tation of the “matching shift” which is one of the two shift functions usually used by
the algorithm. We give a new method to compute thisfunction. This method uses val-
ues needed by the Apostolico-Giancarlo a gorithm. To remedy the obliviousfeature of
the Boyer-Moore agorithm, Apostolico and Giancarlo [1] gave in 1986 an agorithm
which remembers at each position of the text previously aigned with the right end of
the pattern, the length of the longest suffix of the pattern ending at this position. This
techniqueleads to an upper bound of 2n — m+ 1 text character comparisons. Actualy
remembering only thelast suffix of the pattern matched in thetext also leadsto an up-
per bound of 2n comparisons. The Turbo-BM agorithm [5] applies this strategy and
reaches this bound. In analyzing more in detail the Apostolico-Giancarlo agorithm,
we are able to give an upper bound of %n text characters comparisons. We show that
this bound is tight by exhibiting a family of patterns and texts reaching this bound.
Moreover we reformulate the algorithm in order to save other kinds of comparisons
and to improve the length of the shifts.

This paper is organized as follows: Section 2 recalls briefly the Boyer—Moore a-
gorithm; in Section 3 we give an history of the Boyer—Moore algorithm and its vari-
ants; in Section 4 we give a method to compute the matching shift function of the
Boyer—Mooreagorithmand in Section 5 we describe anew version of the Apostolico—
Giancarlo agorithm; a new tight bound of 1.5n text character comparisonsis proved
in the same section. Throughout thispaper the pattern isdenoted by aword z of length
m, z = z[0..m — 1]. Thetext is denoted by aword y of lengthn, y = y[0..n — 1].
Both = and y are built over afinite aphabet X of size o
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FiG. 1: Typical situation during the Boyer—Moore a gorithm: asuffix u of the pattern
isfound and a mismatch occurs between acharacter a inthe pattern = and a character
b inthetext y.

2 Boyer—-Moore string-matching algorithm

The Boyer-Moore agorithm is considered as the most efficient string matching ago-
rithm in usua applications. A simplified version of it or the entire algorithm is often
implemented in atext editor for the “search” and “substitute” commands.

The algorithm scans the characters of the pattern from right to left beginning with
the rightmost symbol. In case of a mismatch (or a complete match of the whole pat-
tern) it uses two precomputed functionsto shift the pattern to theright. These two shift
functions are called the matching shift and the occurrence shift.

Assume that a suffix « of = has been matched and a mismatch occurs between the
character z[i] = a of the pattern and the character y[i + j] = b of the text during an
attempt where - isaigned with y[j..j + m — 1]. Then, z[i + 1.m — 1] = y[i + j +
l.j+m—1]=wvanda = z[i] # y[i + j] = b (see Fig. 1).

The matching shift consistsin aligning the substringu = «[i + 1..m — 1] = y[i +
J + 1.5 + m — 1] with one of itsreoccurrences in z. Informdly, let us distinguish
three matching shift cases on the grounds of the restrictionsimposed on the character
¢ preceding this reoccurrence:

weak matching shift :
thereis no condition on the character ¢ preceding , it isthen possiblethat ¢ = «
(see Fig. 2).

strong matching shift :
the character ¢ must be different from the character a (see Fig. 3).

best matching shift :
the character ¢ must be equal to b (see Fig. 4).

It is not too difficult to see that the following inequality holds:
|weak matching shift| < |strong matching shift| < |best matching shift|

where the absolute value of a shift denotes the length of the shift.
If there exists no other occurrence of u, the matching shift consistsin aigning the
longest suffix v of y[i + j + 1..5 + m — 1] with amatching prefix of z (see Fig. 5).
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FIG. 2. Weak matching shift: ¢ can beequal to a.

v o] u |

7 shift
z [ a ] u |

")
x L el u | |

FiG. 3. Strong matching shift: ¢ # a.

y o] u |
7 shift
x [ a | u |
"
z L [o] u | |

FIG. 4. Best matching shift.

Y |b| u

7 shift
x la | u |
x | v |

FiG. 5. Matching shift, only a prefix of u reappearsin z.



A Unifying Look at the Apostolico—Giancarlo String-Matching Algorithm 5

y 0] “ |
7 shift
g 4] C |
z | | b | containsno b |

FIG. 6. Occurrence shift, b appearsin z.

y [ | u

i shift
z o | u |
z | containsno b

FiG. 7. Occurrence shift, b does not appesar in z.

The occurrence shift consistsin aligning thetext character y[i+ j] withitsrightmost
occurrence in z[0..m — 2] (see Fig. 6). If y[i + j] does not appesar in the pattern «;, no
occurrence of 2 iny can include y[i + j], and theleft end of the patternisaligned with
the character immediately after y[i + j], namdly y[i + j + 1] (see Fig. 7).

Thethreeshift functionswill be denoted by thevariableswMatch, sMatch, and bMatch.
We will define these three variableswith theaid of the conditionfunctionsCs, Cosand
Cob:

Foro0<i<m-—1,1<s<manda € ¥, let usdefine the following conditions.

e The condition of suffix Csis defined for aposition: and a shift s:

O<s<iandz[i—s+1..m—s—1]isasuffixof z
Cs(i,s) = ¢ or
s>tandz[0..m — s — 1] isasuffix of z

e The strong condition of occurrence Cosis defined for aposition i and a shift s:

0<s<iandz[i—s] # z[f]
Cos(i,s) = { or

s>1

o The best condition of occurrence Cob is defined for a position ¢, a character « and
ashift s:

0<s<iandz[i—s]=a

Cob(i,a,s) =< or

s>1
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BOYER-MOORE(z, m, y, n)

1 70

2 whilej<n-—-m

doi+m-—1
whilei > 0 and z[i] = y[i + j]
doi+i—1
ifi <0

then REPORT ()
J < j+ MATCH(0,0)
else j « j+ max(MATCH(4, j),occly[i + j]] —m+ i+ 1)

O©oO~NOOLPA~ W

FIG. 8. The Boyer—Moore string matching al gorithm.

Then,for0<i<m-land0<j<n-1:
o the weak matching shift is defined by:
wMatch(Z, j] = min{s > 0 | Cs(¢, s) holds}
o the strong matching shift is defined by:
sMatch[z, j] = min{s > 0 | Cs(¢, s) and Cos(¢, s) hold}
o the best matching shift is defined by:

bMatch[z, j] = min{s > 0 | Cs(%, s) and Cob(, y[i + j], s) hold}

Remark: wMatch[0] = sMatch[0] = bMatch|0, j] is equal to the period of « for all
0<j<n—-1.
The occurrence shift is defined as follows. For a € X:

occla] = min{i |1 <i<m-landz[m—1—1i =a} ifaappearsinz,
S lm otherwise.

The Boyer-Moore agorithmis shown in Fig. 8. The function MATCH(:, j) can re-
turn either wMatch(i], sMatch[i] or bMatch[z, j]. In the three cases the algorithm will
locate all the occurrences of z iny. When shifting the pattern, it applies the maximum
between the occurrence shift and the matching shift.

3 A brief history

In April 1974, Robert S. Boyer (Stanford Research Institute) and J. Strother Moore
(Xerox Palo Alto Research Center) designed astring-matching algorithm with thefol -
lowing features: right-to-left comparisons, occurrence shift, wesk matching shiftand a
fastloop[2]. At thesame period and independently R. W. Gosper (Stanford University)
discovered theright-to-left compari sons system and the occurrence shift. In December
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1975, Ben Kuipers (Artificial Intelligence Laboratory, MIT) communicated to Boyer
and Moore the idea of the strong matching shift. And at the same period Boyer and
Moore introduced the best matching shiftin O(m x o) time and space complexities.
In January 1976, Donald E. Knuth (Stanford University) showed that the strong match-
ing shift is enough for the linearity of the algorithm when the patternis not present in
the text giving abound of 7n character comparisons. He also gave a general bound of
O(n+rm) character comparisonswhere r isthe number of occurrences of the pattern
in the text. He finally introduced the Boyer-Moore automaton which conceptualizes
an algorithm that remembers all the matched text characters among the m last scanned
[14]. In 1979, Zvi Gdlil (Tel Aviv University) published alinear algorithm for finding
all occurrences of the pattern in the text [8] using prefix memorization. In 1980, Woj-
ciech Rytter (Warsaw University) gave thefirst published correct version of the prepro-
cessing of the strong matching shift [17]. Thissame year Leo J. Guibas (Xerox Corpo-
ration, Palo Alto Research Center) and Andrew M. Odlyzko (Bell Telephone Laborato-
ries) gave aproof of a4n bound and conjectured that theright boundwas2n [9]. Stillin
1980 R. Nigel Horspool (McGill University) designed apractical algorithmusing only
the occurrence shift based on the rightmost character of the window [12]. 1n 1986 Al-
berto Apostolico (Purdue University) and Raffagl e Giancarl o (Salerno University) pre-
sented an agorithm that they proved performs 2n character comparisonsin the worst
casefor findingall the occurrences of the patternin thetext using O (m) extraspace[1].
In 1987, Zhu Rui Feng and Tadao Takaoka (Ibaraki University) presented an algorithm
using atwo-dimensional occurrence shift [21]. In 1988, R. Schaback (Gottingen Uni-
versity) published a study on the expected sublinearity of the Boyer—M oore algorithm
[18]. In 1990, Richard Cole (Courant Institute, New York University) gave asimple
proof of a4n bound and atight bound of 3n character comparisons[4]. The same year
Daniel Sunday (JohnsHopkins University) designed the Quick Search algorithm (us-
ing the occurrence shift with the text character immediately to theright of the window)
[20]. In 1991, Andrew Hume (AT&T Bell Laboratories) and Daniel Sunday (Johns
Hopkins University) published a study on practical string matching a gorithmswhere
they gave the Tuned Boyer—Maoore a gorithm which consists of afast loop with three
consecutive occurrence shifts[13]. In 1992, Maxime Crochemore (LITP, University
Paris 7), Artur Czumaj (Warsaw University), Leszek Gasieniec (Warsaw University),
Stefan Jarominek (Warsaw University), Thierry Lecrog (LITR, University of Orleans),
Wojciech Plandowski (Warsaw University) and Wojciech Rytter (Warsaw University)
designed the Turbo—-BM algorithm which has abound of 2n character comparisonsin
the worst case when searching for all the occurrences of the pattern in the text with a
congtant extra-space [5] using last match memorization. 1n 1993, Christophe Hancart
(LITR, University Paris 7) computed the best matching shift in O(m) [11]. In 1996,
Maxime Crochemore (IGM, University of Marne-la-Vallée) and Thierry Lecroq (LIR,
University of Rouen) gave a new presentation of the Apostolico—Giancarlo agorithm
and atight bound of 1.5n character comparisons[6].

It isworth noting that the Boyer—M oore string-matching algorithm has been intro-
duced tothewidepublicinthe PC Magazineand Dr. DobbsJournal by Costas Menico
in 1989 [15] and Jeff Prosisein 1996 [16] respectively.
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SUFFIXES(z, m)
1 suffm—1]«m
2 gm-1
3 fori < m—2downto0

4 doifi>gandsufi+m—1—f]<i—g

5 then suf[i] « suf[i + m — 1 — f]

6 else g « min{y,i}

7 [«

8 whileg > 0and z[g] = 2[g + m — 1 — f]
9 dog«g—1

10 suffi] « f—g

11 return suf

FiG. 9. Algorithm SUFFIXES.

4 Computing the strong matching shift

Since Knuth showed that the strong matching shift is sufficient to have alinear algo-
rithm when looking for the first occurrence of the pattern ([14]), the strong matching
shift isthen the shift generally used when oneimplementsthe Boyer—M oorea gorithm.
Thefirst correct computation of the strong matching isdueto Rytter [17] butitisquite
difficult to understand. We will give here a simpler version based on the computation
of the longest suffixes of z ending at each positionin z. The lengths of these suffixes
greatly help the computation of the matching shift.

4.1 Computing the longest suffixes ending at each position in the
pattern

Let usfirst present the computation of thelongest suffixes of = ending at each position
inz. It can be viewed as an application from right to |eft of the fundamenta prepro-
cessing (or Z dgorithm) given by Gusfield [10]. For 0 < ¢ < m — 1 we denote by
suf 7] the length of the longest suffix of 2 ending at position i in . Let us denote by
[csuf (u, v) the longest common suffix of two words « and v.

The computation of the table suf is done by the algorithm SUFFIXES presented in
Figure 9. Figure 10 depictsthe variables and the invariants of the main loop of algo-
rithm SUFFIXES. The values of suf are computed for each position: in z in decreasing
order. The algorithm usestwo variables f and ¢ which satisfy:

eg=min{j—suf[jl|i<j<m-—1}

e fisapostionjsuchthati < j<m—1landj—suf[j] =g

In order to prove the correctness of algorithm SurFixXES we will first show an inter-
mediate lemma
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= L [ e ] [af v

FIG. 10: Variables i, f, g of dgorithm SUFFIXES. The mainloop hasinvariants: v =
lesuf (z,z[g+1..f])ada #b(a,b € X),j=g+m—1—f,andi < f. The
picture corresponds to the case where g < 4.

LEMMA 4.1
If i > g, wehave

suf[i] = suffi+m—1—f] ifsuffi+m—1—f]<i—yg
T li—g+ ¢ otherwise

where £ = |lcsuf (2[0..g],z[0..m — 1 — i+ g])].

Proof: Letv = x[g + 1.. f]. Thisword isasuffix of & by definitionof f and g. Let
k = suf[i+m—1— f]. By definitionof suf, theword z[i+m—1—f—k . .i+m—1—f]
isasuffix of  but z[i + m — f — k..i+m— 1 — f] isnot asuffix of x.

Inthefirstcase (i > gand suf[i + m — 1 — f] < i —g), theword [z + m — f —
k..i4+m—1— f] occursinv ending a position: + m — 1 — f. Thusit aso occurs
ending at positioni in z whichshowsthat z[i + m — 1 — f —k..i+ m—1— f]is
the longest suffix of « ending a positioni. Thussuf[:] = k = suf[i + m — 1 — f].

In the second case, theword x[g + 1 . . 4], whichisaprefix of v, isasuffix of x[i +
m—1—f—k..i+m—1— f]andthusof z. Itiseasy to seethat suf[i] = i — g + £.
]

THEOREM 4.2
Algorithm SUFFIXES computes correctly the table suf.

Proof: The variables f and ¢ satisfy the definition given before Lemma 4.1 before
each execution of the main loop of the algorithm. Then for agiven i such thati > ¢
the algorithm applies the relation given by Lemma 4.1 which gives a correct value.
It remains to check that the computation is correct when i < g. In this situation the
instructionsfromline8to line9 compute |Icsuf (z[0 . .4, )| = |z[g+ 1 .. f]| whichis
by definition the correct value for suf[i]. Therefore algorithm computes correctly the
table suf. a
Wewill now give thetime complexity of algorithm SUFFIXES.
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STRONG-MATCHING(z, m)

1 70

2 fori < m—1downto—1

3 doifi=—lorsuffi] =¢i+1
4 then whilej <m —1—1
5 do sMatch[j] «m —1—1
6 Je—Jj+1

7 fori«0Otom—2

8 do sMatchjm — 1 — suf[i]] «m —1—14
9 return sMatch

FiG. 11. Algorithm STRONG-MATCHING.

THEOREM 4.3
Algorithm SUFFIXES runsintimeO(m). Lessthan 2m character comparisonsare per-
formed.

Proof: The character comparisons are performed on line 8. Each comparison between
two equal characters leads to decrementing the variable ¢ that never increases. Asyg
goesfromm —1to —1, it givesamaximum of m positivecomparisons. Each negative
comparison leads to move to the next step of the main loop of thealgorithm. There are
thus a maximum of m — 1 such comparisons. It gives us overal 2m — 1 character
comparisons.

Thisshowsthat thetotal timeof all therunsof theloopfromline8toline9isO(m).
The other instructions of the loop from line 3 to line 10 are executed in contant time.
Thus the whole agorithmisin O(m). ]

4.2 Computing the strong matching shift

We are now ableto give, inFig.. 11, theagorithm STRONG-MATCHING which com-
putes the table sMatch using the table suf.

The invariants of the second loop of algorithm STRONG-MATCHING are presented
inFig. 12.

We will now show that algorithm STRONG-MATCHING computes correctly table
sMatch. Wefirst begin by proving two intermediate lemmas.

LEMMA 4.4
For0 <i < m,ifsuf[i] = i+ 1then,for0 < j < m—1—14,sMatch[j] <m—1—i.

Proof: The assumption suf [i] = 7 + 1 isequivaent to the assumption that [0 . .:] isa
suffix of . Thusm —suf[i] = m— 1 —i isaperiod of z. Let j beaposition such that
0<j<m—1-1i. ConditionCs(j,m — 1 — i) issatisfiedsincem — 1 —i > j and
z[0..m—(m—1—14)—1] = 2[0..¢] isasuffix of . ConditionCos(j,m — 1 — i) is
aso satisfied sincem — 1 — ¢ > j. Then by definition of suf, sMatch[j] < m — 1 —i.
O
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FiG. 12: Variablei of algorithm STRONG-MATCHING. Situationwheresuf[i] < i+ 1.
The loop of lines 7-8 has the following invariants: v = Icsuf (2, 2[0..i]) and a # b
(a,b € ¥) and suf[i] = |v|. Thus sMatch[j] < m — 1 — i withj = m — 1 — suf]i].

LEMMA 4.5
For0 < ¢ <m —2wehavesMatch[m — 1 —suf[i]] < m—1—.

Proof: If suf[i] < i+1, conditionCs(m—1—suf[i], m—1—1) issatisfied sincewehave
bothm—1—i < m—1—suf[{Jand z[i—suf [¢{]+1..¢] = z[m—1—suf [{]+1..m—1].
Moreover condition Cos(m— 1 —suf [i], m— 1 —1) isalso satisfied since z[i — suf [i]] #
z[m — 1 — suf[7]] by definition of suf. ThussMatch[m — 1 — suf[i]] < m — 1 —i.

If suf[i] = ¢+ 1, by lenma 4.4 wehaveforj = m — 1 — suf[i] = m — i — 2,
sMatch[j] <m — 1 —1i. O

THEOREM 4.6
Algorithm STRONG-MATCHING computes correctly the table sMatch.

Proof: We have to show that for each j, 0 < j < m, thefind vaue s given to
sMatch[j] by algorithm STRONG-MATCHING is the minimum value which satisfies
Cs(j, s) and Cos(j, s).

Let us assume first that s results from an assignment in the loop from lines 2 to 6.
Then thefirst part of condition Csis not satisfied. By lemma 4.4 we verify that s is
the minimum vaue that satisfies the second part of condition Cs(j, s). In this case,
s=m—1—iforavaueisuchthatsuffi] = i+ 1andj < m — 1 — 4. Thislast
inequality showsthat condition Cos(j, s) isaso satisfied. Thus s = sMatch[j].

Let us assume now that s results from an assignment in the loop from lines 7 to 8.
Thusj = m — 1 —suf[i]Jands = m — 1 — 4, and, by lemma 4.5, sMatch[j] < s.
We adso have 0 < s < 4, which showsthat the second parts of conditionsCs(j, s) and
Cos(j, s) cannot be satisfied. Sincethevaluesof m—1—i areconsidered in decreasing
order during the execution of theloop, s isthe smalest vaue of m — 1 — ¢ for which
Jj = m — 1 —suf[d]. Thus s = sMatch[j]. Thisendsthe proof. O

THEOREM 4.7
Algorithm STRONG-MATCHING computesthe table sMatch for aword of lengthm in



12 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

z N I
!

FiG. 13: A typical situation during the Apostolico-Giancarlo algorithm: jump or shift
? Dark gray aress correspond to factors that have been compared during the current
attempt whilelight gray areas correspond to factor that have been jumped.

time O (m) (includingthe computation of thetablesuf) and requires O (m) extraspace.

Proof: The extraspace needed for the computation (excludingtheword z and thetable
sMatch) is constituted by the table suf and some variables, thus O (m).

Theloop fromline2 toline 6 executesin O(m) as each instruction executesin con-
stant timefor variables i and j which take m + 1 values.

The loop from line 7 to line 8 executes aso in O(m) which gives theresult. The
computation of thetable suf has the same complexity by Theorem 4.3. |

5 TheApostolico-Giancarlo algorithm

The main drawback of the Boyer—Moore agorithmis that after a shift it forgets com-
pletely what it hasprevioudy matched. Apostolico—-Giancarloagorithmremediesthis.
It remembers at the end of each attempt the length of the suffix of the pattern matched
during this attempt. Matches so memorized are possibly used to avoid comparisons
and compute shifts.

We are now goingto see how thealgorithm scansthe characters. Assumethat during
an attempt where the patternisaligned with thetext characters y[jo .. jo+m—1], asuffix
of length ¢ of thepattern hasbeenfoundi.e. z[m—{..m—1] = y[jo+m—~L..jo+m—1]
andz[m—£—1]# yljo+ m—£—1].

If during alater attempt where the pattern isaligned with thetext characters y[j..j +
m — 1] with jo < j, amatch is found between characters z[i + 1..m — 1] and y[jo +
m—{.j+m— 1] wherei =m — (j — jo) — 1 (seeFig. 13).

Actualy four different cases can ariser they areillustrated by Figures 14 to 17.

Casel:
skip[i + j] > suf[i] and i + 1 = suf[i]: then an occurrence of z isfound at position
J (seeFig. 14). A shift of length sMatch[0] is performed and skip[j + m] isset to
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v [ ] I

Jo
skip[i + j]

suf [7]
- [ [

?

Fic. 14: Case 1, skip[i 4+ j] > suf[i] and suf[i] = 7 + 1 then an occurrence of z is
found.

m.

Case2:
skip[i + j] > suf[¢] and suf[i] < i: then a mismatch occurs between characters
z[i— suf[7]] and y[j + i — suf[i]] (see Fig. 15). Thusashift can be performed using
sMatch[i —suf[i]] and occly[j+:—suf[¢]]] and skip[j + ] isset to m—i—suf [i] — 1.

Case3:
skip[i + j] < suf[i]: then a mismatch occurs between characters z[i — skip[i +
Jl) and y[j + 7 — skip[i + j]] (see Fig. 16). Thus a shift can be performed using
sMatch[i — skip[i + j]] and occly[j + i — skip[i + j]]] and skip[j + m] is set to
m—1— skip[i+ j] — 1.

Case4:
skip[i+j] = suf[:]: thenthisistheonly case wherea“jump” hastobeperformedin
order to resume the comparisonsbetween characters x [i— suf[¢]] and y[j+i—suf [¢]]
(see Fig. 17).

Following these four cases we are now able to formul ate the Apostolico-Giancarlo
algorithm (see Fig. 18).

6 Thecomplexity of the Apostolico-Giancarlo algorithm

We are first going to show that comparing the same % characters twice causes a right
shift of 2 of length greater than k. A text character can be compared again only if the
previous comparisons it was involved in were mismatches.

LEMMA 6.1 ([6])
If an attempt performs & comparisons with text characters aready previoudy com-
pared. Then the shift followingthis attempt isof length at least £ + 1.
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y i ] 1T
. ! Sipli + 7]
x | | |

suf [7]

- —

z [#] [ ]

?

FiG. 15: Case 2, skip[i + j] > suf[i] and suf[i] < ¢ then a mismatch occurs between
z[i — suf [¢7]] and y[j + ¢ — suf[7]].

T 1A [

skip[i + 4]

suf[7]

z [] [ ]

?

FIG. 16: Case 3, skip[i + j] < suf[] then amismatch occurs between z[i — skip[i + j]]
and y[j + i — skip[i + j]].

#  skipli + J]
z | 15 ] |
# suf [7]

FiG. 17. Case 4, skip[i + j] = suf[i],a # band b # c.
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APOSTOLICO-GIANCARLO(z, m, y, n)

1 50

2 whilej<n-m

s

doi+m-—1

whilei > 0
doif skip[i + j] =0
then if 2[i] = y[i + j]
theni «i—1
else BREAK()
elseif skip[i 4 j] > suf[]
then > Cases 1 and 2
i 1 — suf[i]
BREAK()
elseif skip[i 4 j] < suf[]
then > Case 3
i 41— skip[i + j]
BREAK()
gdse > Case4
i i — suf[i]
skip[i +j] «m —i—1
ifi<0
then REPORT ()
J < j + sMatch[0]
else j « j + max(sMatch[i], occly[i + j]] —m + i + 1)

FIG. 18. The Apostolico—-Giancarlo algorithm revisited.

15

ao

vo

a1

u.1|'u1|

uk|vk|

by

u1|

s< k

FIG. 19: An attempt performing k£ comparisons with text characters that have already
been compared.
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Sketch of the proof: Assumethat A isan attempt that performs k& comparisons with
text characters that have already been compared then the recognized suffix of z iny is
equal to voay uviagusvs - - - agugk vy (See Fig. 19) where:

e thea;'sfor 1 < i < k are thetext characters that have aready been compared
during k& previous attempts,

o thew;’sare therecognized suffixes of « iny during these k previous attempts (thus
they are jumped during attempt A, and the a; u;’s are not suffixes of z), |u;| > 0,

¢ the v;’s have not been compared previously, |v;| > 0.

Assume that the matching shift s following attempt A is shorter than k.
Then voaiuiviazusvs - - - agugvg isasuffix of w” with |w| = s < k.
Then two u;’scannot be digned with the same character withinafactor w thus|w| > &
but |w| cannot be equal to k because no a;u; isasuffix of z thuss = |w| > k.
So thelength of the matching shift following attempt A isgreater than k. Asthelength
of the actual shiftisgreater or equal to thelength of the matching shift, the actua shift
performed after attempt A isstrictly longer than k. O
We are now going to givean upper bound on the number of comparisons performed
with text characters already compared.

LEMMA 6.2 ([6])
The Apostolico-Giancarlo algorithm performs at most 7 comparisons with text char-
acters that have already been compared.

Proof: Let us divide all the attempts performed by the algorithm in several groups.
Two attempts are in the same group if they perform a comparison on a common text
character.
A group GG of attemptsthat performs k& comparisons with text characters that have al-
ready been compared containsat least k£ + 1 attempts and implies £ shiftsof length at
least 1 and one shift of length at least £ + 1 (by lemma6.1). Thusit impliesasum of
shifts of total length at least 2k + 1.
Let ¢ for 0 < k < m — 1 bethenumber of groups of attempts performing & compar-
isons with text characters that have aready been comPared.
Then the total number of groups of attemptsis> ;" " cx.
The sum of dl the shift lengths must be less than n (including the shift after the last
attempt):
m—1
Z(?k—l— 1)Ck—|—Co <n
k=1
which implies:
m—1
keg <
k=1

N |3

O
We are now able to give the maxima number of text character comparisons per-
formed by the Apostolico-Giancarlo a gorithm.
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THEOREM 6.3 ([6])
The Apostolico-Giancarlo algorithm performs at most 1.5n text characters compar-
isons and this bound istight.

Proof: Each text character can be compared positively at most once and the algorithm
can perform at most 5 comparisons with text characters that have aready been com-
pared (by lemma6.2).

Thisbound istight: for & = a™~!ba™band y = (a™~'ba™b)" the algorithm per-

forms 22=1p, text characters comparisons. O

7 Conclusion

We gave anew method to compute the strong matching shift of the Boyer—Moorealgo-
rithm. This method issimpler than the previous published methods. It computes and
uses atable storing the length of the longest suffix of the pattern ending at each posi-
tioninthe pattern. Thistableisextensively used inthe new version of the Apostolico—
Giancarlo agorithm, which performs a maximum number of comparisons that is half
the maximum of the Boyer—Moore agorithmin the worst case.
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