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ABSTRACT: String matching is the problem of finding all the occurrences of a pattern in a text.
We present a new method to compute the combinatorial shift function (“matching shift”) of the
well-known Boyer–Moore string matching algorithm. This method implies the computation of
the length of the longest suffixes of the pattern ending at each position in this pattern. These
values constituted an extra-preprocessing for a variant of the Boyer-Moore algorithm designed
by Apostolico and Giancarlo. We give here a new presentation of this algorithm that avoids extra
preprocessing together with a tight bound of

�������
character comparisons (where

�
is the length

of the text).

Keywords: string matching, analysis of algorithm

1 Introduction

The string matching problem consists in finding one or more usually all the occurrences
of a pattern � of length � in a text � of length 	 . It can occur in information retrieval,
bibliographic search and most recently it has some applications in molecular biology.
It has been extensively studied and numerous techniques and algorithms have been de-
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signed to solve this problem (see [7], [19] and [3]). We are interested here in the prob-
lem where the pattern is given first and can then be searched in various texts. Thus a
preprocessing phase is allowed on the pattern.

Basically a string-matching algorithm uses a window to scan the text. The size of
this window is equal to the length of the pattern. It first aligns the left ends of the win-
dow and the text. Then it checks if the pattern occurs in the window (this specific work
is called an attempt) and shifts the window to the right. It repeats the same procedure
again until the right end of the window goes beyond the right end of the text. One of
the most famous string matching algorithm was given in 1977 by Boyer and Moore [2].
Its main feature is that at each attempt it scans the characters of the pattern from right
to left which enables it to “jump” over some portions of the text and therefore to save
some comparisons. Its main drawback is that after a shift, it forgets all the characters it
has previously matched. This make the complexity analysis of the Boyer-Moore algo-
rithm very difficult. Cole [4] proved, a long time after the design of the algorithm, the
tight bound of � 	�� 	�� � comparisons to locate a non-periodic pattern. When search-
ing for all the occurrences of the pattern in the text, the Boyer-Moore algorithm has a
quadratic worst-case time complexity. The exact complexity is ��� 		��
 �	� where 

is the number of occurrences of the pattern in the text (see [14]). A major difficulty
when one wants to implement the Boyer-Moore algorithm is to understand the compu-
tation of the “matching shift” which is one of the two shift functions usually used by
the algorithm. We give a new method to compute this function. This method uses val-
ues needed by the Apostolico-Giancarlo algorithm. To remedy the oblivious feature of
the Boyer-Moore algorithm, Apostolico and Giancarlo [1] gave in 1986 an algorithm
which remembers at each position of the text previously aligned with the right end of
the pattern, the length of the longest suffix of the pattern ending at this position. This
technique leads to an upper bound of 
 	�� ����� text character comparisons. Actually
remembering only the last suffix of the pattern matched in the text also leads to an up-
per bound of 
 	 comparisons. The Turbo-BM algorithm [5] applies this strategy and
reaches this bound. In analyzing more in detail the Apostolico-Giancarlo algorithm,
we are able to give an upper bound of � � 	 text characters comparisons. We show that
this bound is tight by exhibiting a family of patterns and texts reaching this bound.
Moreover we reformulate the algorithm in order to save other kinds of comparisons
and to improve the length of the shifts.

This paper is organized as follows: Section 2 recalls briefly the Boyer–Moore al-
gorithm; in Section 3 we give an history of the Boyer–Moore algorithm and its vari-
ants; in Section 4 we give a method to compute the matching shift function of the
Boyer–Moore algorithm and in Section 5 we describe a new version of the Apostolico–
Giancarlo algorithm; a new tight bound of ����� 	 text character comparisons is proved
in the same section. Throughout this paper the pattern is denoted by a word � of length
� , ��� ������������� �"! . The text is denoted by a word � of length 	 , �#� �$��������		���%! .
Both � and � are built over a finite alphabet & of size ' .
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FIG. 1: Typical situation during the Boyer–Moore algorithm: a suffix
�

of the pattern
is found and a mismatch occurs between a character � in the pattern � and a character�

in the text � .

2 Boyer–Moore string-matching algorithm

The Boyer-Moore algorithm is considered as the most efficient string matching algo-
rithm in usual applications. A simplified version of it or the entire algorithm is often
implemented in a text editor for the “search” and “substitute” commands.

The algorithm scans the characters of the pattern from right to left beginning with
the rightmost symbol. In case of a mismatch (or a complete match of the whole pat-
tern) it uses two precomputed functions to shift the pattern to the right. These two shift
functions are called the matching shift and the occurrence shift.

Assume that a suffix
�

of � has been matched and a mismatch occurs between the
character � ��� ! � � of the pattern and the character �$������� ! � � of the text during an
attempt where � is aligned with ��� ��� � � � � � �"! . Then, � ��� � ��� ����� �"!�� �$��� ��� �
��� � � � � � �%! �

�
and � � � ��� ! �� �$��� ��� ! � � (see Fig. 1).

The matching shift consists in aligning the substring
�
� � � ����� � � ��� �%! � ��� � �� � � � � � � � � �"! with one of its reoccurrences in � . Informally, let us distinguish

three matching shift cases on the grounds of the restrictions imposed on the character	 preceding this reoccurrence:

weak matching shift :
there is no condition on the character 	 preceding

�
, it is then possible that 	 � �

(see Fig. 2).

strong matching shift :
the character 	 must be different from the character � (see Fig. 3).

best matching shift :
the character 	 must be equal to

�
(see Fig. 4).

It is not too difficult to see that the following inequality holds:



weak matching shift


��


strong matching shift


���

best matching shift



where the absolute value of a shift denotes the length of the shift.

If there exists no other occurrence of
�

, the matching shift consists in aligning the
longest suffix � of ����� ��� � ��� � � � � � �%! with a matching prefix of � (see Fig. 5).
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FIG. 2. Weak matching shift: 	 can be equal to � .
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FIG. 3. Strong matching shift: 	 �� � .
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FIG. 4. Best matching shift.
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FIG. 5. Matching shift, only a prefix of
�

reappears in � .
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FIG. 6. Occurrence shift,
�

appears in � .
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FIG. 7. Occurrence shift,
�

does not appear in � .

The occurrence shift consists in aligning the text character �$��� � � ! with its rightmost
occurrence in � ���$� ��� ��
 ! (see Fig. 6). If �$��� ��� ! does not appear in the pattern � , no
occurrence of � in � can include ����� � � ! , and the left end of the pattern is aligned with
the character immediately after ����� ��� ! , namely ��� � � � � �"! (see Fig. 7).

The three shift functionswill be denoted by the variables wMatch, sMatch, and bMatch.
We will define these three variables with the aid of the condition functions Cs, Cos and
Cob:

For � � � � ��� � , � � � � � and ��� & , let us define the following conditions.� The condition of suffix Cs is defined for a position � and a shift � :
Cs � ��� � � � �� 	 ��
 � � � and ����� � � � � � � � � � � �%! is a suffix of �

or�
� � and � ��� � � ��� � � �"! is a suffix of �� The strong condition of occurrence Cos is defined for a position � and a shift � :
Cos � ��� � � ��� � � � � � and � ��� � � ! �� � ��� !

or�
� �� The best condition of occurrence Cob is defined for a position � , a character � and
a shift � :

Cob � ��� � � � � � � � � � � � and � ��� � � ! � �
or��� �
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BOYER-MOORE � � � � � � � 	��
1 � � �
2 while � � 	�� �
3 do � � � � �
4 while ��� � and � � � ! � ����� ��� !
5 do � � � � �
6 if � 
 �
7 then REPORT � ���
8 � � � � MATCH � � �"���
9 else � � � �����	� � MATCH � � � ��� � occ ����� � � � ! ! � � � �$� � �

FIG. 8. The Boyer–Moore string matching algorithm.

Then, for � � � � � � � and � � � � 	 � � :� the weak matching shift is defined by:

wMatch ����� � ! �
����
�� � � � 
 Cs � ��� � � holds �� the strong matching shift is defined by:

sMatch ����� � ! �
����
�� ��� � 
 Cs � ��� � � and Cos � � � � � hold �� the best matching shift is defined by:

bMatch � ��� � ! �
����
�� ��� � 
 Cs � � � � � and Cob � � � �$��� ��� ! � � � hold �
Remark: wMatch ��� ! � sMatch � � ! � bMatch ��� � � ! is equal to the period of � for all
� � � � 	 � � .

The occurrence shift is defined as follows. For � � & :

occ � � ! �
� ����
�� � 
 � � � � ��� � and � ����� � � � !�� � � if � appears in � �

� otherwise.

The Boyer-Moore algorithm is shown in Fig. 8. The function MATCH � ��� ��� can re-
turn either wMatch � � ! , sMatch � � ! or bMatch ����� � ! . In the three cases the algorithm will
locate all the occurrences of � in � . When shifting the pattern, it applies the maximum
between the occurrence shift and the matching shift.

3 A brief history

In April 1974, Robert S. Boyer (Stanford Research Institute) and J. Strother Moore
(Xerox Palo Alto Research Center) designed a string-matching algorithm with the fol-
lowing features: right-to-left comparisons, occurrence shift, weak matching shift and a
fast loop [2]. At the same period and independentlyR. W. Gosper (Stanford University)
discovered the right-to-left comparisons system and the occurrence shift. In December
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1975, Ben Kuipers (Artificial Intelligence Laboratory, MIT) communicated to Boyer
and Moore the idea of the strong matching shift. And at the same period Boyer and
Moore introduced the best matching shift in ��� ��� '�� time and space complexities.
In January 1976, Donald E. Knuth (Stanford University) showed that the strong match-
ing shift is enough for the linearity of the algorithm when the pattern is not present in
the text giving a bound of

� 	 character comparisons. He also gave a general bound of
��� 	 �#
 �	� character comparisons where 
 is the number of occurrences of the pattern
in the text. He finally introduced the Boyer-Moore automaton which conceptualizes
an algorithm that remembers all the matched text characters among the � last scanned
[14]. In 1979, Zvi Galil (Tel Aviv University) published a linear algorithm for finding
all occurrences of the pattern in the text [8] using prefix memorization. In 1980, Woj-
ciech Rytter (Warsaw University) gave the first published correct version of the prepro-
cessing of the strong matching shift [17]. This same year Leo J. Guibas (Xerox Corpo-
ration, Palo Alto Research Center) and Andrew M. Odlyzko (Bell Telephone Laborato-
ries) gave a proof of a � 	 bound and conjectured that the right bound was 
 	 [9]. Still in
1980 R. Nigel Horspool (McGill University) designed a practical algorithm using only
the occurrence shift based on the rightmost character of the window [12]. In 1986 Al-
berto Apostolico (Purdue University) and Raffaele Giancarlo (Salerno University) pre-
sented an algorithm that they proved performs 
 	 character comparisons in the worst
case for finding all the occurrences of the pattern in the text using ��� �	� extra space [1].
In 1987, Zhu Rui Feng and Tadao Takaoka (Ibaraki University) presented an algorithm
using a two-dimensional occurrence shift [21]. In 1988, R. Schaback (Göttingen Uni-
versity) published a study on the expected sublinearity of the Boyer–Moore algorithm
[18]. In 1990, Richard Cole (Courant Institute, New York University) gave a simple
proof of a � 	 bound and a tight bound of � 	 character comparisons [4]. The same year
Daniel Sunday (Johns Hopkins University) designed the Quick Search algorithm (us-
ing the occurrence shift with the text character immediately to the right of the window)
[20]. In 1991, Andrew Hume (AT&T Bell Laboratories) and Daniel Sunday (Johns
Hopkins University) published a study on practical string matching algorithms where
they gave the Tuned Boyer–Moore algorithm which consists of a fast loop with three
consecutive occurrence shifts [13]. In 1992, Maxime Crochemore (LITP, University
Paris 7), Artur Czumaj (Warsaw University), Leszek Ga̧sieniec (Warsaw University),
Stefan Jarominek (Warsaw University), Thierry Lecroq (LITP, University of Orleans),
Wojciech Plandowski (Warsaw University) and Wojciech Rytter (Warsaw University)
designed the Turbo–BM algorithm which has a bound of 
 	 character comparisons in
the worst case when searching for all the occurrences of the pattern in the text with a
constant extra-space [5] using last match memorization. In 1993, Christophe Hancart
(LITP, University Paris 7) computed the best matching shift in ��� � � [11]. In 1996,
Maxime Crochemore (IGM, University of Marne-la-Vallée) and Thierry Lecroq (LIR,
University of Rouen) gave a new presentation of the Apostolico–Giancarlo algorithm
and a tight bound of ����� 	 character comparisons [6].

It is worth noting that the Boyer–Moore string-matching algorithm has been intro-
duced to the wide public in the PC Magazine and Dr. Dobbs Journal by Costas Menico
in 1989 [15] and Jeff Prosise in 1996 [16] respectively.
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SUFFIXES � � � � �
1 suf ����� �%! � �
2 � � ��� �
3 for � � � ��
 downto �
4 do if � � � and suf ���$� � � � ��� ! 
 � ���
5 then suf ��� ! � suf � ��� ��� � ��� !
6 else � � ����
���� � � �
7 � � �
8 while ��� � and � � � ! � � � � � ��� � ��� !
9 do � � � � �

10 suf � � ! � � ���
11 return suf

FIG. 9. Algorithm SUFFIXES.

4 Computing the strong matching shift

Since Knuth showed that the strong matching shift is sufficient to have a linear algo-
rithm when looking for the first occurrence of the pattern ([14]), the strong matching
shift is then the shift generally used when one implements the Boyer–Moore algorithm.
The first correct computation of the strong matching is due to Rytter [17] but it is quite
difficult to understand. We will give here a simpler version based on the computation
of the longest suffixes of � ending at each position in � . The lengths of these suffixes
greatly help the computation of the matching shift.

4.1 Computing the longest suffixes ending at each position in the
pattern

Let us first present the computation of the longest suffixes of � ending at each position
in � . It can be viewed as an application from right to left of the fundamental prepro-
cessing (or � algorithm) given by Gusfield [10]. For � � � � � � � we denote by
suf ��� ! the length of the longest suffix of � ending at position � in � . Let us denote by
lcsuf �

� � ��� the longest common suffix of two words
�

and � .
The computation of the table suf is done by the algorithm SUFFIXES presented in

Figure 9. Figure 10 depicts the variables and the invariants of the main loop of algo-
rithm SUFFIXES. The values of suf are computed for each position � in � in decreasing
order. The algorithm uses two variables � and � which satisfy:� � �
����
�� � � suf � � ! 
 � 
�� 
 � � � �� � is a position � such that � 
 � 
 � � � and � � suf � � ! ���

In order to prove the correctness of algorithm SUFFIXES we will first show an inter-
mediate lemma.
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� � � � �
� � � � � � � �

FIG. 10: Variables � � � � � of algorithm SUFFIXES. The main loop has invariants: � �
lcsuf � � � ��� � � � � � � ! � and � �� �

( � � � � & ), � � � � � ��� � � , and ��
 � . The
picture corresponds to the case where � 
 � .
LEMMA 4.1
If � � � , we have

suf ��� ! �
�

suf ���$� � � � � � ! if suf � ��� � � � � � ! 
 � � �� ��� � �
otherwise

where
� � 


lcsuf � ����� � � ��! � � ��� � � � � � � � ����! � 
 .
Proof: Let ��� � � � � � � � � ! . This word is a suffix of � by definition of � and � . Let

� � suf ��� � � � � � � ! . By definitionof suf , the word ����� � � � � � � � � � � � � � � � � ��!
is a suffix of � but � ���$� � ��� � � � � ��� ��� � ��� ! is not a suffix of � .

In the first case ( � � � and suf ��� � � � � � � ! 
 � ��� ), the word ��� � � � �	�
� � � �$� � � � ��� ! occurs in � ending at position �$� ��� � ��� . Thus it also occurs
ending at position � in � which shows that ����� � � � � � �	� � � � � � � � � � � ! is
the longest suffix of � ending at position � . Thus suf ��� !�� � � suf � ��� ��� � ��� ! .

In the second case, the word � � � � � � � � ! , which is a prefix of � , is a suffix of � ��� �
� � � ����� � � � � � � � � � � ! and thus of � . It is easy to see that suf ��� ! � � � � � �

.
�

THEOREM 4.2
Algorithm SUFFIXES computes correctly the table suf .

Proof: The variables � and � satisfy the definition given before Lemma 4.1 before
each execution of the main loop of the algorithm. Then for a given � such that � � �
the algorithm applies the relation given by Lemma 4.1 which gives a correct value.
It remains to check that the computation is correct when � � � . In this situation the
instructions from line 8 to line 9 compute



lcsuf � ����� � � � ! � � � 
 � 
 � � � ��� � � � ! 
 which is

by definition the correct value for suf ��� ! . Therefore algorithm computes correctly the
table suf .

�

We will now give the time complexity of algorithm SUFFIXES.
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STRONG-MATCHING � � � � �
1 � � �
2 for � � � � � downto � �
3 do if ��� � � or suf ��� ! � � � �
4 then while � 
 � � � � �
5 do sMatch � � ! � � � � � �
6 � � � � �
7 for � � � to � ��

8 do sMatch ����� � � suf ��� ! ! � ��� � � �
9 return sMatch

FIG. 11. Algorithm STRONG-MATCHING.

THEOREM 4.3
Algorithm SUFFIXES runs in time ��� � � . Less than 
 � character comparisons are per-
formed.

Proof: The character comparisons are performed on line 8. Each comparison between
two equal characters leads to decrementing the variable � that never increases. As �
goes from � �#� to � � , it gives a maximum of � positive comparisons. Each negative
comparison leads to move to the next step of the main loop of the algorithm. There are
thus a maximum of � � � such comparisons. It gives us overall 
 � � � character
comparisons.

This shows that the total time of all the runs of the loop from line 8 to line 9 is ��� �	� .
The other instructions of the loop from line 3 to line 10 are executed in contant time.
Thus the whole algorithm is in � � � � . �

4.2 Computing the strong matching shift

We are now able to give, in Fig.. 11, the algorithm STRONG-MATCHING which com-
putes the table sMatch using the table suf .

The invariants of the second loop of algorithm STRONG-MATCHING are presented
in Fig. 12.

We will now show that algorithm STRONG-MATCHING computes correctly table
sMatch. We first begin by proving two intermediate lemmas.

LEMMA 4.4
For � � � 
 � , if suf ��� ! � ��� � then, for � � � 
 � � � � � , sMatch � � ! � � ��� � � .
Proof: The assumption suf ��� ! � � � � is equivalent to the assumption that � ��� � � � ! is a
suffix of � . Thus � � suf ��� ! � � ����� � is a period of � . Let � be a position such that
� � � 
 � � � � � . Condition Cs � � � � � � ��� � is satisfied since ��� � ��� � � and
� � � � � � � � � ��� � � � ���"!�� � ��� � � � ! is a suffix of � . Condition Cos � � � � ��� � � � is
also satisfied since ����� � � � � . Then by definition of suf , sMatch � � ! � ����� � � .

�
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� � � � �
� � � � � �

FIG. 12: Variable � of algorithm STRONG-MATCHING. Situation where suf ��� ! 
 �"� � .
The loop of lines 7-8 has the following invariants: � � lcsuf � � � � ��� � � � ! � and � �� �
( � � � � & ) and suf ��� !�� 
 � 
 . Thus sMatch � � ! � ��� � ��� with � � � � � � suf � � ! .
LEMMA 4.5
For � � � � � � 
 we have sMatch ����� � � suf ��� ! ! � ��� � ��� .
Proof: If suf ��� ! 
 � ��� , conditionCs � � � � � suf ��� ! � � � � � � � is satisfied since we have
both � � � � � � ����� � suf ��� ! and � ���"� suf � � ! � � � � � ! � ��������� � suf � � ! � � � � �����"! .
Moreover condition Cos � ��� ��� suf ��� ! � � � �$� � � is also satisfied since ����� � suf ��� ! ! ��
� � ��� � � suf ��� ! ! by definition of suf . Thus sMatch � ��� � � suf ��� ! ! � ��� � ��� .

If suf ��� ! � ����� , by lemma 4.4 we have for � � � � ��� suf ��� ! � � � � � 
 ,
sMatch � � ! � � � � ��� . �

THEOREM 4.6
Algorithm STRONG-MATCHING computes correctly the table sMatch.

Proof: We have to show that for each � , � � � 
 � , the final value � given to
sMatch � � ! by algorithm STRONG-MATCHING is the minimum value which satisfies
Cs � � � � � and Cos � � � � � .

Let us assume first that � results from an assignment in the loop from lines 2 to 6.
Then the first part of condition Cs is not satisfied. By lemma 4.4 we verify that � is
the minimum value that satisfies the second part of condition Cs � � � � � . In this case,� � � � � � � for a value � such that suf ��� ! � � � � and � 
 � ����� � . This last
inequality shows that condition Cos � � � � � is also satisfied. Thus � � sMatch � � ! .

Let us assume now that � results from an assignment in the loop from lines 7 to 8.
Thus � � � � � � suf ��� ! and � � � � � � � , and, by lemma 4.5, sMatch � � ! � � .
We also have ��
 � � � , which shows that the second parts of conditions Cs � � � � � and
Cos � � � � � cannot be satisfied. Since the values of � � � � � are considered in decreasing
order during the execution of the loop, � is the smallest value of � � � � � for which� � � � � � suf ��� ! . Thus � � sMatch � � ! . This ends the proof.

�

THEOREM 4.7
Algorithm STRONG-MATCHING computes the table sMatch for a word of length � in
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�
�

�

�
��� � �

. . .

FIG. 13: A typical situation during the Apostolico-Giancarlo algorithm: jump or shift
? Dark gray areas correspond to factors that have been compared during the current
attempt while light gray areas correspond to factor that have been jumped.

time � � � � (including the computation of the table suf ) and requires ��� �	� extra space.

Proof: The extra space needed for the computation (excluding the word � and the table
sMatch) is constituted by the table suf and some variables, thus � � � � .

The loop from line 2 to line 6 executes in � � � � as each instruction executes in con-
stant time for variables � and � which take � � � values.

The loop from line 7 to line 8 executes also in ��� �	� which gives the result. The
computation of the table suf has the same complexity by Theorem 4.3.

�

5 The Apostolico–Giancarlo algorithm

The main drawback of the Boyer–Moore algorithm is that after a shift it forgets com-
pletely what it has previously matched. Apostolico–Giancarloalgorithm remedies this.
It remembers at the end of each attempt the length of the suffix of the pattern matched
during this attempt. Matches so memorized are possibly used to avoid comparisons
and compute shifts.

We are now going to see how the algorithm scans the characters. Assume that during
an attempt where the pattern is aligned with the text characters �$� ��� � � ��� � � � �"! , a suffix
of length

�
of the pattern has been found i.e. ������� � ���������"! � ��� ����� ��� � ��� ��� � ��� �%!

and � ����� � � �%! �� ��� ��� � ��� � � �"! .
If during a later attempt where the pattern is aligned with the text characters ��� � � � � �

� � �%! with ����
�� , a match is found between characters � ���$� ��� ����� �"! and �$� ��� �
� � � ��� � � � � �"! where ��� � � � � � � � � � � (see Fig. 13).

Actually four different cases can arise: they are illustrated by Figures 14 to 17.

Case 1 :
skip ��� � � ! � suf ��� ! and � ����� suf ��� ! : then an occurrence of � is found at position� (see Fig. 14). A shift of length sMatch ��� ! is performed and skip � � � � ! is set to
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�
�

�

�
���

skip ���$��� !

suf � � !

FIG. 14: Case 1, skip ����� � ! � suf ��� ! and suf ��� ! � � � � then an occurrence of � is
found.

� .

Case 2 :
skip ����� � ! � suf ��� ! and suf ��� ! � � : then a mismatch occurs between characters
� ��� � suf ��� !�! and �$� � � � � suf ��� ! ! (see Fig. 15). Thus a shift can be performed using
sMatch � �%� suf ��� !�! and occ ���$� � � �"� suf � � ! ! ! and skip � � � � ! is set to ��� �"� suf ��� !"� � .

Case 3 :
skip ����� � ! 
 suf ��� ! : then a mismatch occurs between characters � � � � skip � � �� ! ! and ��� � � � � skip ����� � ! ! (see Fig. 16). Thus a shift can be performed using
sMatch � � � skip ����� � ! ! and occ ���$� � � � � skip � ��� � !�! ! and skip � � � � ! is set to
��� � � skip ���$��� ! � � .

Case 4 :
skip ��� � � ! � suf ��� ! : then this is the only case where a “jump” has to be performed in
order to resume the comparisons between characters � � � � suf ��� ! ! and ��� � � � � suf ��� ! !
(see Fig. 17).

Following these four cases we are now able to formulate the Apostolico–Giancarlo
algorithm (see Fig. 18).

6 The complexity of the Apostolico–Giancarlo algorithm

We are first going to show that comparing the same
�

characters twice causes a right
shift of � of length greater than

�
. A text character can be compared again only if the

previous comparisons it was involved in were mismatches.

LEMMA 6.1 ([6])
If an attempt performs

�
comparisons with text characters already previously com-

pared. Then the shift following this attempt is of length at least
� � � .
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�
�

�

�
��� �

skip ���$��� !

suf � � !
��

FIG. 15: Case 2, skip � � ��� ! � suf � � ! and suf ��� ! � � then a mismatch occurs between
� � � � suf � � ! ! and �$� � � � � suf ��� ! ! .

�
�

�

�
� � �

skip ���$��� !

suf ��� !

��

FIG. 16: Case 3, skip ��� � � ! 
 suf ��� ! then a mismatch occurs between ����� � skip ��� � � ! !
and ��� � � � � skip ���$��� ! ! .

�
�

�

�
��� �

skip ���$��� !

suf ��� !

��

��
	

�

�

FIG. 17. Case 4, skip ���$��� !�� suf ��� ! � � �� �
and

� �� 	 .
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APOSTOLICO-GIANCARLO � � � � � � � 	��
1 � � �
2 while � � 		� �
3 do � � � � �
4 while � � �
5 do if skip � � � � !�� �
6 then if � ��� ! � �$��� � � !
7 then � � � � �
8 else BREAK � �
9 elseif skip � ��� � ! � suf ��� !

10 then � Cases 1 and 2
11 � � ��� suf ��� !
12 BREAK � �
13 elseif skip ���$��� ! 
 suf ��� !
14 then � Case 3
15 � � ��� skip ���$��� !
16 BREAK � �
17 else � Case 4
18 � � ��� suf ��� !
19 skip � ��� � ! � � ��� � �
20 if � 
 �
21 then REPORT � ���
22 � � � � sMatch ��� !
23 else � � � � � � �$� sMatch ��� ! � occ ���$��� ��� ! ! � � � �$� � �

FIG. 18. The Apostolico–Giancarlo algorithm revisited.

�

� ���

� ��� � �

� ��� � �

� � �
	�� � � � � 	�� � � � � 	��


 
 
 
 
 
 
 
 
 
 
 
 


�����

�����

�����

FIG. 19: An attempt performing
�

comparisons with text characters that have already
been compared.
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Sketch of the proof: Assume that
�

is an attempt that performs
�

comparisons with
text characters that have already been compared then the recognized suffix of � in � is
equal to ��� ��� � � � � � � �

� � � ����� � � �
� � � (see Fig. 19) where:� the ��� ’s for � � � � �

are the text characters that have already been compared
during

�
previous attempts,� the

� � ’s are the recognized suffixes of � in � during these
�

previous attempts (thus
they are jumped during attempt

�
, and the ��� � � ’s are not suffixes of � ),


 � � 
 � � ,� the � � ’s have not been compared previously,

 � � 
 � � .

Assume that the matching shift � following attempt
�

is shorter than
�

.
Then ��� ��� � � � � � � �

� � � ����� � � �
� � � is a suffix of ��� with


 � 
 � � 
 �
.

Then two
� � ’s cannot be aligned with the same character within a factor � thus


 � 
 � �

but

 � 


cannot be equal to
�

because no �	� � � is a suffix of � thus � � 
 � 
 � �
.

So the length of the matching shift following attempt
�

is greater than
�

. As the length
of the actual shift is greater or equal to the length of the matching shift, the actual shift
performed after attempt

�
is strictly longer than

�
.

�

We are now going to give an upper bound on the number of comparisons performed
with text characters already compared.

LEMMA 6.2 ([6])
The Apostolico–Giancarlo algorithm performs at most 
 � comparisons with text char-
acters that have already been compared.

Proof: Let us divide all the attempts performed by the algorithm in several groups.
Two attempts are in the same group if they perform a comparison on a common text
character.
A group � of attempts that performs

�
comparisons with text characters that have al-

ready been compared contains at least
� � � attempts and implies

�
shifts of length at

least 1 and one shift of length at least
� � � (by lemma 6.1). Thus it implies a sum of

shifts of total length at least 
 � � � .
Let 	 � for � � � � ����� be the number of groups of attempts performing

�
compar-

isons with text characters that have already been compared.
Then the total number of groups of attempts is ��
��

�
��� � 	 � .

The sum of all the shift lengths must be less than 	 (including the shift after the last
attempt):


��
��

��� � � 

� � � � 	 � � 	 � 
 	

which implies:


��
��

��� �
� 	 � � 	



�

We are now able to give the maximal number of text character comparisons per-
formed by the Apostolico–Giancarlo algorithm.
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THEOREM 6.3 ([6])
The Apostolico–Giancarlo algorithm performs at most ����� 	 text characters compar-
isons and this bound is tight.

Proof: Each text character can be compared positively at most once and the algorithm
can perform at most 
 � comparisons with text characters that have already been com-
pared (by lemma 6.2).
This bound is tight: for � � � 
�� � � � 
 �

and ��� � � 
�� � � � 
 � � 
 the algorithm per-
forms � 
��

�
� 
��

� 	 text characters comparisons.
�

7 Conclusion

We gave a new method to compute the strong matching shift of the Boyer–Moore algo-
rithm. This method is simpler than the previous published methods. It computes and
uses a table storing the length of the longest suffix of the pattern ending at each posi-
tion in the pattern. This table is extensively used in the new version of the Apostolico–
Giancarlo algorithm, which performs a maximum number of comparisons that is half
the maximum of the Boyer–Moore algorithm in the worst case.
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