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Abstract

The main result of the paper is the construction of a very fast multi-pattern matching
algorithm, called DAWG-MATCH. The algorithm is of Boyer-Moore type. Previous
algorithm of this type is the Commentz-Walter algorithm. The DAWG-MATCH al-
gorithm behaves better than Commentz-Walter algorithm. We combine the ideas of
two algorithms: the Aho-Corasick algorithm, and the Reverse Factor algorithm from
Crochemore et alii. The new algorithm performs at most 2|text| inspections of text
characters, and is very fast on the average. We give some experimental evidence of its
good behavior for random words, against the Commentz-Walter algorithm. The algo-
rithm is especially simple for a single pattern: in this case the Aho-Corasick algorithm
can be replaced by the strategy of the Knuth-Morris-Pratt algorithm. The basic tool
in the algorithm DAWG-MATCH is the directed acyclic word graph. This graph is
usually used as representation of the text to be scanned, but, in our case we use it to
represent the set of reverse patterns.

1 Introduction

We consider the multiple string matching problem: finding all occurrences of a
finite set P of string patterns in a text ¢ of length n. Finding all occurrences of el-
ements of P is a problem that appears in bibliographic search and in information
retrieval. The first algorithm to solve this problem in O(n) was the Aho-Corasick
(AC algorithm, for short) [AC 75], which can be viewed as a generalization of
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the Knuth-Morris-Pratt algorithm (KMP algorithm) [KMP 77], designed for a
single pattern. As for one pattern, the Boyer-Moore algorithm (BM algorithm)
[BM 77] has a better behavior in practice than the KMP algorithm, Commentz-
Walter developed an algorithm combining the ideas of AC and BM algorithms
([Co 79a,Co 79b]). A complete version can be found in [Ah 90]. Later, Uratani
[Ur 88], and Baeza-Yates and Régnier [BR 90] developed similar algorithms.

In this paper, we show how to use the power of directed acyclic word graphs
(DAWG’s) for finding a finite set of patterns. Such graphs are used to represent
all factors (subwords) of a given word.

We recently presented a family of algorithms for finding one pattern using the
DAWG of the reverse pattern [C-R 94]. Direct extension of this algorithm to solve
the multi-pattern matching problem gives an algorithm running in quadratic
time in the worst case. However, the algorithm has a good behavior in practice.
Combining this idea with the AC algorithm, we present a new algorithm which
performs at most 2n inspections of text characters, and which is simultaneously
very fast on the average.

In the case of one pattern, the same technique applies. It gives a new algorithm
combining the strategies of the KMP algorithm and the Reverse Factor algorithm
([Le 92,C-R 94]). This new algorithm performs at most 2n inspections of text
characters, and it is more simple than the Turbo Reverse Factor algorithm pre-
sented in [C-R 94]. Like the Reverse Factor type algorithms, the new algorithm
is optimal on the average, with O((nlogm)/m) inspections of text characters
(m is the length of the pattern).

2 The preprocessing phase

The preprocessing phase of DAWG-MATCH algorithm concerns the set P of
patterns. It consists both in building the Aho-Corasick machine A for all the
patterns of P, and in building the DAWG D for the reverse patterns of P. We
shortly describe these two data structures.

An Aho-Corasick machine A = (Q, 9, f, so,T") is a deterministic finite state au-
tomaton where () is a finite set of states, ¢ is the transition function, f is the
failure function, so is the initial state, and T is a set of the accepting states
(see [Ah 90] for details). In figure 1 we present the machine for the example set
of patterns P ={abaabaab,aabb,baabaa,baaba}. Accepting states are in square
boxes.

The DAWG-MATCH algorithm needs to be able to compute a shift correspond-
ing to each state of the AC machine. It will enable the algorithm to perform the
optimal shift which corresponds to the matched prefix associated with the state.
Each state s is associated with a prefix w of words in P, which is composed by
the characters spelling the unique path between sq and s. The length of the shift
associated to s is |p| — |w|, where p is the shortest pattern in P that has prefix
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Fig. 1. The Aho-Corasick machine for P ={abaabaab,aabb,baabaa,baaba}.

w. The table Shift can be defined intuitively as follows:

for state s, Shift[s] is the minimal shift which guarantees that there is no oc-
currence of a pattern in the skipped area, assuming that s corresponds to the
longest prefix of a pattern which is a suffix of the text scanned so far (the whole
information from the scanned part relevant to further processing).

More formally, Shi ft[s] is the length of the minimal path between state s and an
accepting state different from s (the path can use either the transition function
or the failure links).

It is easy to see that, if we are given the pattern matching machine with failure
links in the table f, then the table Shift can be constructed in time proportional
to the number of states with the following rules :

during the computation of the trie, when the letter p[i] of a pattern p of length
m is processed,

if a new state s is created then, if ¢ # m then Shift[s] .= m — i — 1 else

Shift]s] == m,
if the corresponding state s already exists then Shift[s| := min(m—i—1, Shi ft[s]);

afterwards, during the breadth-first traversal of the trie for computing the failure
links, when the value of f(s) is available,

Shift[s] := min(Shift[s], Shift[f(s)]).
For the above example of the Figure 1, values of the table Shift are:
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The other data structure used in the DAWG-MATCH algorithm is a DAWG. The
DAWG is also a deterministic finite state automaton. It recognizes all the factors
of the reverse patterns of P. For the above example of set P, the automaton is
presented in Figure 2. To avoid reversing the pattern in the picture, transitions
go from right to left.

The aim of the preprocessing is to construct the two following functions :

function AC(initpos, minpos, state);

begin

scan the text t[initpos, minpos| left to right with the Aho-Corasick,
machine A starting with state state;

continue scanning the text with the Aho-Corasick machine A
until Shaft[state] > length of the shortest pattern divided by 2;
report all positions, as matches, where A is in an accepting state;
return the last position scanned, and the last state of A;

end function;

function DAWG(pos, critpos);
begin
scan the text t[critpos, pos| from right to left with the DAWG,
until there is no transition for the next symbol or the position
critpos is reached;
return the last position scanned;
end function;



3 The search phase

The search phase combines the techniques used by the AC and RF algorithms.
Its strategy consists first in reading from right to left a segment of the text as
far as it is a factor of at least one pattern of P. Then, using the fact that this
segment is a part of one pattern, it is read from left to right using the Aho-
Corasick machine, in order to both, report matches, and compute lengths of
shifts. The tool that enables us to match segments of the text from right to left
against factors of patterns of P is the DAWG for all reverse patterns of P (see
[B-M 87]).

Assume that both the AC machine A for the patterns, and the dawg D for the
reverse patterns are constructed. We describe the general situation encountered
during the search:

we have recognized a prefix u of length [ of at least one pattern from P. The
occurrence of u in the text ends at position critpos. We suppose that we also
know the corresponding state in the AC machine, denoted by state. We denote
by m the length of the shortest pattern p in P such that u is a prefix of p. Let pos
be equal to eritpos +m —[. The action at this stage can be described informally
as follows:

Substage I Scan with D the characters t[critpos + 1, pos] from right to left. If
we are able to reach successfully the critical point eritpos using D, it means
that the factor t[critpos + 1, pos] is factor of one pattern in P.

Substage II If we reach the critical point during Substage I, then, we use the
AC machine starting with state and with the factor t[eritpos + 1, pos] from
left to right until a sufficiently large shift is possible.

If t[eritpos + 1, pos] is not a factor of any pattern of P, it means that, at a
character t[pos — k| with pos — k > critpos, there is no transition in D. Then,
we use the AC machine starting with the initial state and with the factor
t[pos — k + 1, pos] from left to right.

After that, it gives a new prefix u, a new value for state, and a new critical
position. The next stage starts here (see Figure 3).

At the first stage, we scan the factor ¢[1..m] of the text from right to left using
the DAWG D. Length m is the length of the shortest pattern in P. The first
value of state is the initial state sg of the AC machine A. Figure 4 shows the
succession of stages of the algorithm DAWG-MATCH.

The algorithm DAWG-MATCH is presented below.

Algorithm DAWG-MATCH;
begin
preprocessing phase:
build the Aho-Corasick pattern matching machine A with
the table Shi ft;
construct the DAWG D for reverse patterns;
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Fig. 3. General situation during the search phase.
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Fig. 4. A succession of stages of the search phase.

search phase:

pos = length of shortest pattern;

critpos 1= 0;

state := initial state of A;

while pos < n do {
newpos := DAWG(pos, critpos + 1);
if newpos > critpos then state := initial state of A;
(pos, state) := AC(newpos, pos, state);
critpos := pos;
pos := pos + Shi ft[state];

}

end.

Example



P ={abaabaab,aabb,baabaa,baaba},
t =abaabaabac...

stage 1 critpos = 0 and pos = 4, the algorithm DAWG-MATCH first scans
t[1..4] =abaa from right to left with the DAWG starting with the initial node
and stopping with node 15. Then it scans ¢[1..4] from left to right with the
AC machine starting with the initial state and ending with state 4. Since
Shift[4] = 2, it shifts to the right by 2.

stage 2 critpos = 4 and pos = 6, the algorithm scans ¢[5..6] =ba from right to
left with the DAWG starting with the initial node and stopping at node 18.
Then it scans t[5..6] from left to right with the AC machine starting with state
4 and ending at state 6 (it outputs the pattern baaba). As Shift[6] = 1 <
length of the shortest pattern divided by 2 (= 2), it scans ¢[7] =a and reaches
state 7 (it outputs the pattern baabaa), Shift[7] = 1 so it scans ¢[8] =b and
reaches state 8 (it outputs the pattern abaabaab), Shift[8] = 1 so it scans
t[9] =a (it takes the failure link from state 8 to state 5) and reaches state 6
(it outputs the pattern baaba). Then it scans ¢[10] =c and reaches state 0,
Shift[0] = 4 so it shifts to the right by 4.

3.1 Worst-case time complezity analysis

During one stage of the search phase of the DAWG-MATCH algorithm, each
text character between positions critpos + 1 and pos are scanned once with the
DAWG, and once with the AC machine. At the end of the stage, some characters
at the right of position pos are scan only once with the AC machine. For the
next stage, critpos is set to the rightmost position already scanned, and no

character at the left of eritpos is scanned again. So, obviously, the algorithm
DAWG-MATCH performs at most 2n inspections of text characters.

3.2 Average-case time complexity analysis

The average complexity of the algorithm DAWG-MATCH is similar to the av-
erage complexity of the RF algorithm (see [C-R 94]). Denote the length of the
shortest pattern by m, and the total length of all patterns by M. Assume that
M is polynomial with respect to m, M < m*, where k is constant. Let s > 2
be the size of the alphabet. The text (in which the pattern is to be found) is
random.

If the shortest pattern is short, for example if it is a single-letter pattern, then
the average complexity is Q(n). Also if M is big, for example when the set of
patterns consists of almost all strings of size m, then M = Q(s™), and the average
complexity is €(n). Hence the sublinear average complexity of the algorithm

DAWG-MATCH can be expected if m is reasonably big and M is reasonably

small (polynomial on m).

Definition 1 The length of a shift is the number of symbols between new critical



position critpos and new position pos. This is the number of new symbols of the
text to be read in the next iteration.

Proposition 2 Fach shift in the algorithm has length at least Q(m).

PROOF. Each iteration ends on work of the AC automaton to obtain a prefix
of the multipattern P which is shorter than m/2. After that the number of
elements between new critical position critpos and new position pos is at least
m /2. This completes the proof. O

By the proposition 2 it is obvious that there are no more than O(n/m) shifts
in the algorithm. We will show that the expected number of comparisons with
symbols of the text per one iteration is O(log,m).

Proposition 3 There exists a constant C such that reading when C'log, m new
symbols of the text we obtain a subword of the multipattern P with the probability
not greater that 1/m*.

PROOF. There is at most m?" different subwords in the multipattern P and
there exist at least s' different words of length not greater than [ over the size of
the alphabet. Each of these words can be obtained with equal probability during
reading new symbols of the text because the text is random. Since s' > m3 if
[ > logs(m3k) > Clogsm for C' > k. Then the probability that the read word is
a subword of the multipattern is less then 1/m*. This completes the proof. O

Lemma 4 The expected number of inspections of text characters of the AC ma-
chine to obtain a prefix shorter than m/2 is O(logsm).

PROOF. Let us assume that the probability of the event that the number
of inspections of text characters of the AC machine to obtain a prefix shorter
than m/2 is between rClog,m and (r + 1)Clog,m is less than (1/m*)" by
the proposition 3. It follows that the expected number of inspections of text
characters is less than C'log,m + X, (r + 1)(1/m*)"Clog,m < O(log,m). O

Lemma 5 The expected number of inspections of text characters in one stage
of the algorithm is O(log, m).

PROOF. There are two cases.

Case A
The DAWG stops before it has read C'log, m symbols. The probability of
this case is not less than 1 — 1/m* by the proposition 3. The number of in-
spections of text characters in this case is obviously not greater than 2C log, m
because the AC machine starts with the empty prefix and has only at most

C'log, m symbols to read.
Case B



The DAWG does not stop before the Clog, m!™ symbol. The probability
of this case is less than 1/m* by the proposition 3. In the worst case the
DAWG achieves the critical position eritpos. Then the expected number of
text characters inspections in this case is not greater than m* for the DAWG
and m* for the AC machine to achieve the position pos and then eventually
C log, m for the AC machine to achieve a prefix shorter than m/2 (by lemma
4).

Thus we can bound the expected number of text characters inspections by the
formula (1 — 1/m*)2C log, m + (1/m*)(2m* + C'log, m) = O(log, m). This com-
pletes the proof. O

Proposition 2 and lemma 5 together imply directly the following result.

Theorem 6 Under our assumptions on P the algorithm DAWG-MATCH makes

on average O(nlog, m/m) inspections of text characters.

4 Experimental results

In order to verify the good practical behavior of the DAWG-MATCH algorithm
we have tested it against the Commentz-Walter algorithm. The two algorithms
were implemented in C. We implemented the simple Commentz-Walter algo-
rithm which is quadratic in the worst case (see [Hu 90]). Tests on these two
algorithms have been performed with three kinds of alphabet: binary alphabet,
alphabet of size 4, and alphabet of size 8.

For each alphabet size, we randomly build a text of 50000 characters. Then, we
first made experiments with sets of patterns of the same length: for each length
of pattern we randomly build a set of 100 patterns of the same length.

After that we build sets of patterns of different length (the length is random in
a interval): one set with 100 patterns of lengths between 10 and 50, and one set
of 100 patterns of lengths between 50 and 100.

Then, for the two algorithms, we count the number of inspections per one text
character. The results are presented in figures 5, 6 and 7 and in tables 1, 2 and
3.

On the binary alphabet, the results for the DAWG-MATCH algorithm is better

for length 10 than for length 20 because of the added scanning part with the AC
machine until the shift is big enough which saves a lot of inspections.

From these results it appears that for small alphabet the DAWG-MATCH algo-
rithm is much better than the simple Commentz-Walter algorithm. This is due
to the fact that the Commentz-Walter algorithm computes its shifts with the
suffixes it recognizes in the text, but when the set of patterns is big the proba-
bility that those suffixes reappear close to the right end of at least one pattern
is very large; so, the shifts computed by the Commentz-Walter are small.



Table 1

number of inspections of one text character
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Fig. 5. Results for an alphabet of size 2.

Results for a binary alphabet.

Length of patterns | Commentz-Walter | DAWG-MATCH
10 4.4497 1.1576
20 2.555 1.6819
30 2.2186 1.1075
40 1.8997 0.8458
50 1.7599 0.7016
60 1.5846 0.5077
70 1.5605 0.5222
80 1.4681 0.5171
90 1.4185 0.4512
100 1.3866 0.3

10-50 3.34 1.96
50-100 1.58 0.63

10

length of the patterns



Table 2

number of inspections of one text character
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Fig. 6. Results for an alphabet of size 4.

Results for an alphabet of size 4.

Length of patterns | Commentz-Walter | DAWG-MATCH
10 1.9887 1.4938
20 1.5612 0.6884
30 1.3593 0.47
40 1.2843 0.3457
50 1.2094 0.2785
60 1.1371 0.2351
70 1.1205 0.205
80 1.0521 0.3402
90 1.0376 0.2285
100 1.0258 0.1462

10-50 1.83 1.34
50-100 1.2 0.27

11
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Table 3

number of inspections of one text character
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Fig. 7. Results for an alphabet of size 8.

Results for an alphabet of size 8.

DAWG-MATCH

length of the patterns

Length of patterns | Commentz-Walter | DAWG-MATCH
10 1.5611 0.8749
20 1.255 0.4313
30 1.2007 0.2923
40 1.1144 0.223
50 1.0541 0.181
60 1.0335 0.1828
70 1.0138 0.1964
80 0.946 0.2053
90 0.9296 0.1065
100 0.8906 0.0968

10-50 1.5 0.87
50-100 1.04 0.18

12



Remark (on single-pattern matching)

The previous algorithm is especially simple and efficient for one pattern. In
this case we can replace the Aho-Corasick algorithm by the Knuth-Morris-Pratt
algorithm. The preprocessing phase consists in building the failure function of
Knuth-Morris-Pratt and the DAWG for the reversed pattern. Then during the
search phase the shift are computed as the difference between the length of the
pattern and the position of the character of the pattern which is compared when
the algorithm stops scanning from left to right.
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