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Abstract. Digital trees, also known as tries, are a general purpose �exible
data structure that implements dictionaries built on sets of words. An analysis
is given of three major representations of tries in the form of array-tries, list
tries, and bst-tries (�ternary search tries�). The size and the search costs of the
corresponding representations are analysed precisely in the average case, while
a complete distributional analysis of height of tries is given. The unifying data
model used is that of dynamical sources and it encompasses classical models
like those of memoryless sources with independent symbols, of �nite Markov
chains, and of nonuniform densities. The probabilistic behaviour of the main
parameters, namely size, path length, or height, appears to be determined by
two intrinsic characteristics of the source: the entropy and the probability of
letter coincidence. These characteristics are themselves related in a natural
way to spectral properties of speci�c transfer operators of the Ruelle type.

Introduction

Tries. Digital trees, usually called tries, are both an abstract structure and a
data structure that can be superimposed on a set of words produced by some
source. As an abstract structure, tries are based on a splitting according to symbols
encountered in words. Consider a �xed alphabet M = fa1; : : : ; arg, and let Y �
M1 be any �nite set of in�nite words overM. The trie associated to Y is de�ned
recursively by the rule,

trie(Y ) = htrie(Y n a1); : : : ; trie(Y n ar)i;
where Y n � means the subset of Y consisting of strings that start with � stripped
of their initial symbol �, with recursion being halted as soon as Y contains less
than two elements. The advantage of the trie is that it only maintains the minimal
pre�x set of characters that is necessary to distinguish all the elements of Y . In
their abstract versions, tries are thus essentially equivalent to pre�x trees in the
theory of variable length coding.

Clearly the tree trie(Y ) supports the search of any word w in the set Y by follow-
ing an access path dictated by the successive symbols of w. Similarly, it may be used
to implement insertions and deletions, so that it is a fully dynamic dictionary data
type. In addition, tries e�ciently support set-theoretic operations like union and in-
tersection [57], as well as partial match queries or interval search [47], while suitable
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adaptations make them a method of choice for complex text processing tasks [22,
Ch. 7]. This variety of applications justi�es considering the trie structure as one of
the central general-purpose data structures of computer science [22, 34, 39, 51].

When it comes to implementation, several options are possible depending on the
decision structure chosen to guide descent into subtrees at each node. Three major
choices present themselves:

� The �array-trie� uses an array of pointers to access subtrees directly.
� The �list-trie� relies upon (sorted) linked list traversals.
� The �bst-trie� uses binary search trees (bst) as subtree access method.

The array-trie thus constitutes a direct realization of the abstract trie structure;
we occasionally employ the term of �standard trie� to refer to situations where
parameters are shared by the abstract trie and the array trie (this is for instance
the case for the height, size, and path length parameters). The list-trie and the
bst-trie combine the abstract trie structure with a subtree access method and are
globally referred to as �hybrid tries�.

Our original motivation for considering hybrid trie structures came from a recent
paper of Bentley and Sedgewick [3] who, following early ideas of Clampett [6],
developed an elegant implementation of bst-tries, under the name of ternary search
trie. The basic idea of [3, 6] is to represent the bst-trie as a ternary tree where search
on symbols is conducted like in a standard binary search tree over the alphabet
set M, while trie descent is performed by following an escape pointer whenever
equality of symbols is detected. This structure is brie�y discussed in the recent
edition of Knuth's treatise [34, p. 512] and complete code is detailed in the latest
edition of Sedgewick's book [51, Sec. 15.4]. The code is especially compact and, in
simulations, the implementation constants appear to be particularly small. Bentley
and Sedgewick report that, in practical situations, their data structure can be more
e�cient than hashing while o�ering considerably wider functionality. Our goal, as
analysts, is to examine this claim and precisely quantify what goes on.

For each implementation, we analyse the parameters of path length and size (i.e.,
number of nodes). Path length determines search costs while size characterizes
the memory requirements of the data structure. In addition, we also analyse the
height of the abstract trie, which provides a valuable measure of extremal search
performance. The analysis is then expected to provide useful guidance as to the
choice of representation that is suitable for any particular application.

Sources. In information theory contexts, the two simpler models of sources are
memoryless sources, where symbols in words are each emitted independently of
the previous ones, and Markov chains, where the probability of emitting a symbol
depends solely on a bounded part of the past history. However, data on which tries
are built often arise from sources that may involve intricate dependencies. Our
analyses are carried out within a general framework related to dynamical systems
theory that encompasses memoryless and Markov sources as well as nonuniform
density models. This model of probabilistic dynamical sources has been introduced
and thoroughly developed by Vallée in [61], and it can describe nonmarkovian
phenomena where, precisely, the dependency on past history is unbounded. A high
level of generality is thus attained by the model.
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A probabilistic dynamical source is de�ned by two objects: a symbolic mecha-
nism and a density.

� The mechanism associates to a real number x of the [0; 1] interval an in�nite
word M(x) over the alphabet M. (The approach is obviously related to
symbolic dynamics.) Such a mechanism generalizes numerations system, the
binary expansion of a real x or the continued fraction expansion of the real x
being well-known instances.

� A probability density f over the [0; 1] interval allows values drawn over that
interval to be nonuniform.

Previous authors have studied separately the e�ect of nonuniform densities and of
a few speci�c mechanisms. With the notable exception of [11], all analyses carried
out so far have been relative to a uniform density, f(x) � 1. The �rst analyses were
in the context of memoryless sources. For the additive parameters of size and path
length, they were performed by De Bruijn and Knuth around 1965 and reported in
the �rst edition of [34] published in 1973.. Height was later analysed under Poisson
and Bernoulli models in a series of papers [16, 20, 46, 63]. Asymmetric memoryless
sources and Markov chain models were then treated systematically by Pittel, as
well as Szpankowski and his collaborators: see for instance [26, 27, 43, 54, 55].
Devroye [11] has been the �rst to consider the e�ect on tries of a nonuniform density
but only in conjunction with standard binary representations. In this paper, we
allow concomitantly a nonuniform density and a mechanism that is capable of
modelling probabilistic bias on individual digits.

Operator methods. The methods used in earlier works to analyse standard tries
under simpler source models are rather diverse and range from probabilistic to
analytic. We feel that the present paper uni�es most of what was known before
regarding average-case analysis of basic parameters like size and path length, as well
as distributional analysis of height, while extending at the same time the analysis
to hybrid tries like list-tries and bst-tries. As we shall see, all the estimates appear
to involve two crucial characteristics of the source: the entropy and the probability
of symbol coincidence. The �rst quantity intervenes in the expectation of size and
path length, the second one in the expectation of height. For memoryless sources,
generating functions are classically used in conjunction with Mellin transforms.
However, when the source has memory, classical generating function techniques
are no longer immediately applicable; for instance, under the Markov chain model,
Jacquet and Szpankowski [26] resort to a notion of alignment in conjunction with
a suitable inclusion-exclusion principle.

In the present setting of probabilistic dynamical sources, the main tool is the
Ruelle transfer operator [2, 49]. Classically, it is used as a �generating operator�
since it can easily generate some of the objects that are essential in the analysis.
Here, the analysis of tries involves the pre�xes of the words: all the source words
which start with the same pre�x �come from� an interval of [0; 1] that is called a
fundamental interval. In this context, the classical Ruelle operator is no longer
su�cient. In a previous paper on which the present study is largely based, Val-
lée [61] has already introduced a generalization of the Ruelle operator, based on a
secant construction, that acts on functions of two variables and suitably generates
fundamental intervals. In the case of hybrid tries, we need additionally to generate
simultaneously several fundamental intervals. For this purpose, we devise further
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generalizations of the Ruelle operator, based on multi-secant constructions, acting
on functions of three and four variables. As in their classical version, these general-
ized Ruelle operators depend on a complex parameter s and they make it possible
to express intervening Dirichlet series of pairs of fundamental intervals that play
a central rôle throughout the paper. The Mellin transform is also heavily used,
and, although poles of the Dirichlet series cannot always be made explicit, they
can at least be pretty well localized in the vicinity of a frontier line, so that precise
asymptotic estimates of parameters are possible.

Furthermore, positivity properties of the (generalized) Ruelle operators (for real
values of parameter s) entail the existence of dominant spectral objects. In par-
ticular, we prove the existence of the dominant eigenvalue function �(s) de�ned in
the neighbourhood of the real axis. This function turns out to be ubiquitous in
the analysis of trie parameters. The main intrinsic characteristics of the source, its
entropy h(S) and its coincidence probability c(S), are proven to be independent of
the initial density f on the unit interval, being dependent only on the mechanism
of the source through the relations

h(S) = ��0(1) c(S) = �(2):

Plan of the paper and results. Section 1 describes the general framework of
dynamical sources, and de�nes fundamental intervals, as well as the two basic char-
acteristics of the source, the entropy and the coincidence probability. Sections 2
and 3 are devoted to the speci�cations of hybrid tries and to the basic algebraic
part of the analysis. All analyses reduce to a few Dirichlet series of fundamental
measures. Section 4 introduces the generalized Ruelle operators and shows how
they generate the Dirichlet series needed. In Section 5, we then transfer the prop-
erties of these operators to various Dirichlet series, and relate dominant spectral
objects of the Ruelle operator to the entropy and the coincidence probability. In
Sections 6 and 7, we come back to average-case analysis, and obtain precise es-
timates of size, path lengths, and height. The last section, Section 8 concludes
with examples that include memoryless sources, Markov chain models, continued
fraction representations, as well as nonuniform initial densities.

The following results are established for a random trie built on n items.

(i) The height of a standard trie has expectation of order logn and its probability
distribution is asymptotically of the doubly exponential type with sharp tail
decay,

E[hn] � 2

j log c(S)j logn

lim
n!1

sup
k�0

��Prfhn � kg � exp [��c(S)kn2]�� = 0;

where � is a positive constant relative to source S and initial density f .
(ii) The average size of the trie is, up to possible small �uctuations, well approx-

imated by a quantity of order n

S(n) � 1

h(S)
n:

This result in particular generalizes and improves some of the results obtained
by Devroye [11] obtained under L2�conditions on the density f .
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(iii) The average path length depends on the hybrid implementation under consid-
eration. Let hAi represent an array-trie, hLi a list-trie, and hBi a bst-trie. For
any source built on a �nite alphabet, the average path lengths are invariably
of order n logn,

PA(n) � 1

h(S)
n logn; PL(n) � KL(S)

h(S)
n logn; PB(n) � KB(S)

h(S)
n logn;

with explicit constants KL(S);KB(S) that only depend on the mechanism of
the source.
For an in�nite (denumerable) alphabet, the array-trie is not meaningful any-
more as a data structure. In that case, the average path lengths relative to
list-tries or bst-tries, may happen to be of di�erent orders. (See Prop. 11;
such is for instance the case for the continued fraction source discussed in
Section 8.)

These results are �rst established under a Poisson model that is technically easier
to deal with, then transferred to the �xed-size model, called the Bernoulli model,
by means of depoissonization techniques. The paper is built around eight theorems
that cover (in order!) all combinations�

Algebraic analysis
Asymptotic analysis

� �
Poisson model
Bernoulli model

� �
Size & path lengths

Height

�
:

An extended abstract of some of these results restricted to uniform density mod-
els in the memoryless and Markov chain cases has been presented at SODA'98 [7].
We refer to this paper for a comparison between theoretical predictions and em-
pirical studies based on large textual data. It is justi�ed there that, in practice,
bst-tries make trie searching about three times faster1 than their binary counter-
parts. The present paper is a companion to the general study of dynamical sources
presented in [61], from which we adapted freely parts of our Sections 1, 4, and 5.
As regards methodology, it is also related to approaches followed by one of us in
the analysis of gcd-like algorithms in computational number theory [60, 62].

1. Probabilistic dynamical sources

Here, we describe the general framework of probabilistic dynamical sources. First,
we introduce symbolic dynamical sources, with two types of mechanism, either basic
or Markovian. Such mechanisms are related to dynamical systems de�ned from
expanding analytic maps of the unit interval. (The reader may wish to consult [2,
37, 49] as general background references.) Then, upon endowing the unit interval
with some (analytic) density, we de�ne the concept of a probabilistic dynamical
source. Finally, we present the notion of fundamental intervals and fundamental
measures, then introduce the two basic characteristics of the source, the entropy
and the coincidence probability.

Fundamentals of dynamical sources are studied in [61] and related notions play
an important rôle for the analysis of gcd-like algorithms in computational number
theory [58, 60, 62].

1For instance, the present manuscript was e�ciently spell-checked by a modi�ed version of the
epelle program based on an implementation of bst-tries by J. Clément [8].
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1.1. Basic symbolic dynamical sources. In information theory contexts, a
source is a mechanism which produces in�nite words on some alphabet M. We
are �rst interested in sources that are associated to basic dynamical systems, where
the mechanism is the same at each step. The reader who is unfamiliar with the the-
ory of expanding maps and symbolic dynamics may wish to examine the de�nition
that follows in the light of the usual binary number representation. In that case,
the alphabet is M = f0; 1g, the shift is T (x) is f2xg (f�g is the fractional part),
the partition is fI0; I1g = f(0; 12 ); ( 12 ; 1)g, and the encoding mapping is �(I0) = 0,
�(I1) = 1.

De�nition 1 (Basic symbolic dynamical source). A basic dynamical source is de-
�ned by four elements:

(a) an alphabet M included in N, that is �nite or denumerable;
(b) a topological partition of I :=]0; 1[ with disjoint open intervals Im;m 2 M,

i.e., I =
S
m2M Im

(c) an encoding mapping � which is constant and equal to m on each Im;
(d) a shift mapping T whose restriction to each Im is a real analytic bijection

from Im to I. Let hm be the local inverse of T restricted to Im and H be
the set H := fhm; m 2 Mg. It is assumed that there exists a �xed complex
neighbourhood V of I on which the set H satis�es the following:
(d1) the mappings hm extend to holomorphic maps on V, mapping V strictly

inside V (i.e., h(V) � V);
(d2) the mappings jh0mj extend to holomorphic maps ehm on V and there exist

numbers �m < 1 for which 0 < jehm(z)j � �m for z 2 V;
(d3) there exists some  < 1 for which the series

P
m2M �m

s converges on
Re(s) > .

The words emitted by the source are then produced as follows: The mapping
T : I ! I (that is almost everywhere de�ned) is used for iterating the process, as
a shift mapping; the mapping � : I !M is used for encoding. The word M(x) of
M1 associated to a real x 2 I is then formed with the symbols

M(x) := (M1(x);M2(x); : : : ;Mk(x); : : : );(1)

where the k-th component Mk(x) of M(x) is equal to �(T k�1x). The number of
branches of T equals the cardinality of the alphabet, and the alphabet is used for
coding the distinct branches of T , denoted by T[m], or the distinct inverse branches
of T denoted by hm. Here, hm is a bijection from I to Im, which coincides with
the inverse of the restriction T[m] of T to Im. Note that the domain of de�nition
of T[m] is Im.
Remarks. We call such a dynamical source basic because of the equalities T (Im) =
I. Elsewhere in the literature, it is only asked for a dynamical system that the image
T (Im) be a union of some elements Ij of the partition. The conditions (d1) and
(d2) express that the inverse branches hm are contractions, or equivalently that T
is expansive. The condition (d3) automatically holds for a �nite alphabet (with
 = �1), so that it is only useful in the case of in�nite alphabets. In fact, in
order for our treatment to apply, it is su�cient that some �xed iterate of T should
satisfy conditions (d). For instance, the shift mapping T associated to the continued
fraction source does not ful�ll conditions (d1) and (d2) but its second iterate T 2

does.
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Memoryless sources. All memoryless sources can be described in the basic dynam-
ical framework. A source is said to be memoryless when the random variables Mk

are independent and follow the same law. The memoryless source associated to
a probability system P = (pm)m2M (either �nite or denumerable) is the source
where all the components Mk are independent and follow a multinomial law2 of
parameters (pm)m2M. The corresponding topological partition of I is then de�ned
by

Im :=]qm; qm+1[; where qm =
X
j<m

pj ;

and the restriction of T to Im is the a�ne mapping de�ned by T (qm) = 0 and
T (qm+1) = 1.

Special cases of importance are the b-ary expansion transformations that are
de�ned by

T (x) = fbxg; �(x) = bbxc;
where buc is the integer part of u and fug = u mod 1 = u � buc is the fractional
part of u. These transformations give rise to the b-ary expansions of x in base b and
are associated to symmetric memoryless sources (i.e., memoryless sources where all
pj 's are equal).

Continued fraction expansions. This general framework may also create rather
di�erent types of sources with memory. This arises as soon as a mapping T with
(some) nonlinear branches is used. (In a sense, it is the derivative T 0(x) that
keeps memory of the previous history.) The continued fraction transformation is
an example of this situation. The alphabet is then N, the topological partition of I
is de�ned by Im :=]1=(m+1); 1=m[, and the restriction of T to Im is the decreasing
linear fractional transformation T (x) := (1=x)�m,

TCF (x) = f 1
x
g; �CF (x) = b 1

x
c:

When iterated, this transformation gives rise to the continued fraction expansion
of x.

The inverse branches are all the linear fractional transformations hm de�ned by
hm(x) := 1=(x+m). The �rst branch h1 does not satisfy (d1) and (d2), but the set
of the linear fractional transformations fhm � hng clearly satis�es conditions (d) so
that, as noted already, the theory of Sections 4 and 5 applies to this case.

Homoclinal or heteroclinal? Our de�nition of a probabilistic dynamical source does
not preclude the situation where some branches are increasing, some others are
decreasing. We introduce the term of homoclinal to refer to the case when all
branches are simultaneously of the same type, and heteroclinal for the other case.
Binary and continued fraction representations are homoclinal, while the familiar
binary re�ected code (also known as Gray code),

0; 1; 11; 10; 110; 111; 101; 100; 1100; : : :

2Memoryless sources are thus binomial or multinomial probability distributions and it is com-
mon practice to refer to them as �Bernoulli sources�. In this paper, we qualify as Bernoulli model
any source model, not necessarily memoryless, where the number of items considered is �xed (as
opposed to Poisson models).
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Figure 1. Five dynamical sources. From top to bottom: (a) bi-
nary representations; (b) a memoryless source with probabilities
( 16 ;

1
3 ;

1
2 ); (c) the binary re�ected code; (d) continued fraction rep-

resentations; (e) a Markov source (S0; S1; S2) that switches between
two di�erent representations. The plots represents the graphs of
the associated shifts T .

corresponding to

T (x) = 2x if x 2 [0; 12 [; T (x) = 2� 2x if x 2 [ 12 ; 1[;

is heteroclinal.

1.2. Markov symbolic dynamical sources. Until now, the shift T used at each
stage has been always de�ned according to some unique rule. Very often, the
modelling of real-life sources leads to introducing dependencies in the form of a
shift that depends on the last symbol emitted. This gives rise to what we name
Markov sources of which classical Markov chains are only a special case.

De�nition 2 (Markov symbolic dynamical sources). Let M be a �nite alphabet of
cardinality r, and let S = (S0; S1; S2; : : : ; Si; : : : ; Sr) be a set of r + 1 di�erent
basic dynamical systems, all de�ned on the same alphabet M. The basic dynamical
system S0 is used to begin with, and the dynamical system Sj is chosen whenever
the previously emitted symbol is j.

We now describe more precisely the mechanism of the source. One associates to
a real x of I an in�nite word M(x) on alphabet M, as in (1)

M(x) := (M1(x); : : : ;Mk(x); : : : );

together with the sequence of the iterates of the real x

(T<1>(x); T<2>(x); : : : T<k>(x); : : : );
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that are now de�ned by the initial conditions M1(x) := �0(x); T<1>(x) := T0(x),
and the recurrence relations

if Mk(x) = j; then T<k+1>(x) := Tj(T
<k>(x)); and Mk+1(x) := �j(T

<k>(x)):

(2)

Each shift Tj is then associated to a topological partition (Iijj); (1 � i � r) of the
unit interval I, and it has to satisfy hypotheses (d) of De�nition 1. We denote
by (T[ijj]); (1 � i � r) the branches of Tj , so that T[ijj] is a real analytic bijection
from Iijj to I, that is asked to be expansive. The inverse branches of Tj are
denoted by hijj , so that hijj is a real analytic bijection from I to Iijj that extends
to a holomorphic map on V , mapping V strictly inside V (i.e., hijj(V) � V for
1 � i � r; 0 � j � r).

The classical model of Markov chains of order 1 is then simply the case when all
the Sj 's are memoryless. More precisely, if the system Sj is a memoryless system
of parameters �j := (pijj)i�r , the transition matrix � of the Markov chain is the
r � r matrix

� := (pijj) 1 � i; j � r;

and the initial probability system is the vector �0.

Relation between Markov sources and general dynamical systems. Any Markovian
source can be associated to a dynamical system that is no longer basic. We take
r + 1 copies of I, for instance I0 := I =]0; 1[ and Ij :=]j; j + 1[. Denoting by �m

the translation �m(x) := x+m, we then de�ne, for 1 � i � r and 0 � j � r

Ii;j := �j(Iijj); Ti;j := �i � T[ijj] ���1
j ;

so that Ti;j is now a bijection from Ii;j on Ii. The system S associated to partition
Ii;j of ]0; r + 1[ and to branches Ti;j is a general dynamical system.

One can use both interpretations of a Markovian source, but, here, we prefer
to stay in the unit interval and we adopt the �rst formalism that is closer to the
intuition underlying Markov chains. This is the point of view that has been adopted
by Ruelle himself in [48].

1.3. Fundamental intervals and pre�xes. We consider now the k-th iterate of
the shift. In the case of a basic source, this is plainly the k-th iterate of T taken in
the usual sense. In the case of a Markovian source, this is the iterated shift T<k> in
the sense of de�nition (2). Each branch (or each inverse branch) of the k-th iterate
of the shift is called a branch (or an inverse branch) of depth k. The depth of the
inverse branch h is denoted by jhj. A branch or an inverse branch of depth k is
then associated in a unique way to a �nite word w = (m1;m2; : : : ;mk) of length
k that keeps track of past choices. In the basic case, each branch and each inverse
branch of depth k associated to w = (m1;m2; : : : ;mk) is of the form

T[w] = T[mk] � T[mk�1] � T[m1]; hw = hm1 � hm2 � � � � � hmk
;(3)

where T[i] and hi denote the i-th branch or inverse branch of T . In the Markov case,
each branch and each inverse branch of depth k associated tow = (m1;m2; : : : ;mk)
is of the form

T[w] = T[mkjmk�1] � T[mk�1jmk�2] � T[m1j0]

hw = hm1j0 � hm2jm1
� � � � � hmkjmk�1

:
(4)
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For a �nite alphabet of cardinality r, there are rk branches of depth k. We denote
by Hk the set of branches of depth k. Cyclic branches, i.e., branches for which the
associated word starts and ends with the same symbol, play an important rôle in
the case of Markov sources. We denote by C and C[i] the set of cyclic branches
and the set of cyclic branches that start and end with symbol i. In the same vein,
Ck; Ck[i] denote the same objects relative to depth k.

We now present one of the main objects of the paper.

De�nition 3 (Fundamental intervals). The fundamental interval relative to the
inverse branch h is the transform Ih := h(I) of the unit interval I by the in-
verse branch h. Its depth is the depth jhj of h. The fundamental intervals of depth
1 are thus exactly the intervals of the initial partition. A fundamental interval Ih
of depth k is formed with all the real numbers x of I which produce a word M(x)
whose pre�x w of length k is exactly the �nite word associated to h. It is also
denoted by Iw.

1.4. Probabilistic dynamical sources. In the sequel, we are interested in proba-
bilistic dynamical sources, where the words are emitted according to a source mech-
anism as previously described, and we also allow for a prescribed initial distribution
that is determined by a density function on the unit interval.

De�nition 4 (Probabilistic dynamical sources). Let S be a dynamical source (ba-
sic or Markovian) and let f be a real analytic probability density on interval I that
extends to an analytic function on V. Let F (z) =

R z
0 f(t) dt be the associated dis-

tribution function. The pair (S; F ) is called a probabilistic dynamical source. The
set M1 of the words produced by the dynamical probabilistic source (S; F ) is the
set M(I) endowed with the probability induced from f by M .

In this context, the measure uh of the fundamental interval Ih associated to an
inverse branch h as de�ned in (3) or (4) is

uh := jF (h(0))� F (h(1))j:(5)

This quantity plays an especially important rôle, since it equals the probability
that a source word starts with the pre�x w of M� relative to h. It is called the
fundamental measure relative to h and it is also denoted by uw.

1.5. Dirichlet series of fundamental intervals, entropy, and coincidence

probability. The entropy h(S; F ) relative to a probabilistic dynamical source
(S; F ) is de�ned as the limit, if it exists, of a quantity that involves the funda-
mental measures uh,

h(S; F ) := lim
k!1

�1
k

X
jhj=k

uh loguh:(6)

In the same vein, the probability that two independent words have the same pre�x
of length k equals

P
jhj=k u

2
h . In general, this quantity appears to decrease expo-

nentially with k, which leads to de�ne the coincidence probability c(S; F ) as the
corresponding rate,

c(S; F ) := lim
k!1

(
X
jhj=k

u2h )1=k;(7)
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provided it exists. The previous two de�nitions involve the series of fundamental
measures of depth k

�k(F; s) :=
X
jhj=k

ush =
X
jhj=k

jF (h(0))� F (h(1))js;(8)

and one has

h(S; F ) := lim
k!1

�1
k

d

ds
�k(F; s)js=1 ; c(S; F ) := lim

k!1
[�k(F; 2)]

1=k :(9)

In the sequel, we show that, in a precise sense, the quantities �k(F; s) de�ned
in (8) behave asymptotically as k-th powers of a certain function,

�k(F; s) � �(s)k(10)

for a well-de�ned �(s) that is analytic near the real axis (Prop. 5). Entropy and
coincidence probability depend only on the mechanism S, being independent of the
distribution F . They can then be expressed solely in terms of the function �(s) in
a way consistent with (9) and (10):

h(S) = ��0(1); c(S) = �(2):

These two characteristics of a source play an important rôle in all subsequent anal-
yses of tries.

2. General tries and models of analysis

We describe here the standard trie and the companion hybrid trie implementations
along with the main parameters that are relevant from a complexity standpoint.

2.1. De�nition of tries. Consider the problem of comparing n in�nite words
that, within our analytical framework, are taken to be independently produced by
a common dynamical source. Proceeding by elementary comparisons between their
symbols yields a tree, called a trie [22, 34, 39, 51]. Let X be a sequence of reals
of the unit interval, X = (x1; : : : ; xn) 2 In. One considers the sequence of words
M(X) produced by the dynamical source S,

M(X) := (M(x1);M(x2); : : : ;M(xn)):

We also need to consider the sequence �(X) formed with the �rst symbol �(xi) of
each word M(xi); it is called the �rst �slice� of M(X),

�(X) := (�(x1); �(x2); : : : ; �(xn)):

Thus, two distinct kinds of collections of symbols will intervene in the analysis: the
in�nite words produced by the source (represented as vertical words on Figure 2)
as well as the �nite sequences (that appear as horizontal slices on Figure 2).

In order to build the tree structure in a global fashion, we start from the root.
First one groups together all the words which start with the same �rst symbol m,
along a branch labelled by m, so that the corresponding subtree collects all the
words starting with symbol m and stripped of their initial symbol. In our model,
stripping a word M(x) of its initial symbol is equivalent to shifting x, that is,
considering T (x). Note also that the reals associated to the group of words whose
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Figure 2. A source S emits independently in�nite words that
are represented �vertically� (top). In contrast, at any internal node
of a trie (bottom), only �slices�, appearing �horizontally�, are to be
considered.

�rst symbol equals m belong to the same fundamental interval hm(I). In this case,
the su�xes of words are associated to the shifted sequence

T[m](X) := (T[m](x1); T[m](x2); : : : ; T[m](xn));

where T[m](x) is only de�ned when the �rst symbol �(x) equals m and then equals
T (x). This process of splitting will continue until all words have been separated
from each other.

To summarize, in the language of shifts, one associates to X a digital tree, called
a trie and denoted by trie(X), that is de�ned by the following recursive rules:

(R0) If X = ?, then trie(X) is the empty tree.
(R1) If X = (x) has cardinality equal to 1, then trie(X) consists of a single external

node that contains the word M(x).
(R2) If X has cardinality jX j at least equal to 2, then trie(X) is an internal node

represented by � to which are attached the subtries built on the sets T[m](X)
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for all possible values of m. Then trie(X) is de�ned by

trie(X) =
D
�;�trie(T[m](X))

	
m2M

E
:(11)

Such a tree structure underlies classical radix sorting methods. It can be built by
following the recursive rules R0; R1; R2. Any pre�x w which is common to at least
two words ofM(X) is associated to an internal node of the trie, itself associated to
a fundamental interval Iw containing at least two elements of X .

2.2. Implementations of tries and hybrid tries. In the abstract tree structure
representing the trie, each internal node is connected by edges to its children. We
assume that the alphabet is totally ordered. Then, there are three natural imple-
mentations of such a node based on the classical data structures of array, ordered
list, and binary search tree. There result �hybrid tries� which combine the abstract
trie structure with a data structure that governs access to children in nodes.

(a) The simplest implementation uses arrays whose cardinality equals the size of
the alphabet. Then one accesses children directly through an array of point-
ers. Note that this solution is meaningless practically for in�nite alphabets,
and space-wasting for large alphabets (with too many null pointers being al-
located), but is quite adequate when the cardinality of the alphabet is small
(typically, for binary words).

(b) The �list-trie� structure remedies the high storage cost of array-tries by linking
sister subtrees at the expense of replacing direct array access by a (sorted)
linked list traversal.

(c) The �bst-trie� uses binary search trees (bst) as subtree access method, with
the goal of combining advantages of array-tries in terms of time cost, and list-
tries in terms of storage cost. As noted in the introduction, the hybrid trie
obtained is strictly equivalent to the ternary search trie structure proposed
recently in [3], see also [6]. Indeed, the bst-trie can be viewed as a ternary
tree where search on symbols is conducted like in a standard binary search
tree (straight links on Figure 3) over the alphabet setM, while trie descent is
performed by following an escape pointer (curved links on Figure 3) whenever
equality of symbols of detected.

On Figure 3, three implementations of the same �abstract� trie are drawn. For
the standard trie, in either its abstract trie or array-trie version, size and path
length are respectively 6 and 21. For the hybrid versions, the pointers of the data
structures at nodes induce an extra path length that is 15 for the list-trie and 8 for
the bst-trie.

2.3. Parameters. Let us �rst consider standard tries, that is, either the abstract
structure or the array-trie implementation. The level of a node in a trie is the
number of edges that connect it to the root. The height of the trie is the maximum
level of any external node. It represents a measure of the distance between the
two closest elements of M(X) since it equals the minimum number of comparisons
required to separate any pair (M(xi);M(xj)) of elements ofM(X). The path length
of the standard trie is the sum of the levels of all (nonempty) external nodes. Path
length thus equals the total number of symbols that need to be examined in order
to distinguish all elements of M(X). (Once divided by the number of elements, it
gives the mean cost of a positive search, that is, the search cost averaged over all
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Figure 3. Three representations of a trie built from the sequence
of words (cccabc;bbbd; cdadad; ccaca; caabd; cadccd; cdaabd)
over the alphabet A = fa; b; c; dg: the array-trie (top; the null
pointers are represented as electrically grounded), the list-trie
(bottom left) and the bst-trie (bottom right).

items for an item that is present in the trie). The size of the tree is the number
of its internal nodes. Adding to the size the cardinality of X gives the number
of fundamental intervals necessary to isolate all elements of M(X). Clearly, size
determines the storage requirements of hybrid trie implementations.

In a hybrid trie, path length decomposes as a sum of two components: the �rst
one arises from the underlying trie structure; the second one is the additional cost
incurred by the traversal of internal node structures. It is this overhead which is
analysed here for hybrid tries. (If one is interested in a global external path length,
it su�ces to combine additively path length of the abstract trie with this additional
path length.)
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2.4. Poisson and Bernoulli models. The Bernoulli model considers a sequence
of n in�nite words independently produced by the same dynamical source. This
sequence is of the form M(X), has cardinality n, and is thus obtained by n inde-
pendent drawings x1; x2; : : : ; xn in the interval I, with the interval being endowed
with the probability density f (F denotes the associated distribution function). The
Bernoulli model of index n relative to the source (S; F ) is denoted by (Bn; S; F ).

Rather than �xing the cardinality n of the set X , it proves technically convenient
to consider that the sequence X has a variable number N of elements that obeys a
Poisson law of parameter z, namely,

PrfN = kg = e�z
zk

k!
:

This model is called the Poisson model of rate z. When relative to the dynamical
source (S; F ), it is denoted by (Pz ; S; F ). From the de�nition, the expectations of
a random variable Y under the Poisson and Bernoulli models are related by

E[Y ;Pz; S; F ] = e�z
1X
n=0

E[Y ;Bn; S; F ]z
n

n!
:(12)

A similar relation holds for probabilities of events as they are always representable
as expectations of indicator variables. The interest of the Poisson model is that
there is complete independence on what happens in disjoint subintervals of I. In
particular, the number of elements that fall into any interval of measure u is itself
distributed as a Poisson variable of rate zu. Such a property holds notably for
the fundamental intervals associated to source (S; F ), whose measure uw is given
by (5).

The strong independence property of the Poisson model provides an easy ac-
cess to the expectation of basic parameters. It becomes then necessary to return
to the Bernoulli model �the one of interest for average-case analysis commonly
parametrized by the number n of data items. The process of translating from a
Poisson to a Bernoulli model is called depoissonization and several strategies are
available. Here are are the ones used in this paper.

1. Algebraic depoissonization relies on the fact that, by Equation (12), a Poisson
quantity is, up to a factor of e�z the exponential generating function of its
Bernoulli counterparts:

E[Y ;Bn; S; F ] = n! [zn] ez E[Y ;Pz; S; F ];(13)

where [zn]h(z) represents the coe�cient of zn in the expansion of h(z) at 0.
This technique is the basis of all our exact results under the Bernoulli model:
Theorems 2, 4 are derived in this way as counterparts of Theorems 1, 3.

2. Asymptotic depoissonizations. In the Poisson model, N is narrowly concen-
trated near its mean z with a high probability, so that the Poisson rate z
plays a rôle much similar to the Bernoulli cardinality n. It is then reason-
able to expect that average values of parameters under both models should be
asymptotically equivalent. Generally, the problem is of a Tauberian character.
Asymptotic depoissonizations are ways of establishing such an equivalence,
based on some supplementary assumptions.
2.1. Dirichlet depoissonization relies on the existence of Mellin transforms and

an approximation principle between the Dirichlet series of Poisson and
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Bernoulli models. This technique is used here for the average-case analy-
sis of the additive parameters of size and path length under the Bernoulli
model: Theorem 6 is derived in this way from its Poisson version, Theo-
rem 5.

2.2. Saddle-point depoissonization relies on estimates of Poisson averages (or,
equivalently, generating functions) for �nonprobabilistic� values of the
rate z taken in the complex domain, this in conjunction with a saddle
point analysis. This technique is used here for the distributional analy-
sis of the multiplicative parameter of height under the Bernoulli model:
Theorem 8 is derived in this way from its Poisson version, Theorem 7.

The net result for us is that dominant asymptotic estimates established initially
under the Poisson model remain eventually valid under the Bernoulli model.

3. Algebraic analysis of trie parameters

We show here that the expectations of the main parameters of height, size, and
various forms of path length in standard or hybrid tries can all be expressed as
sums that involve the measures of fundamental intervals.

3.1. Additive parameters. The standard trie built on a sequence X of elements
of In depends in fact only on the set that underlies X . However, the construction
cost of the list-trie and even the shape of the bst-trie depend on the relative order
of elements in the sequence X . What is common to all implementations is that the
structure of the node indexed by w is fully determined by the corresponding slice,

�T[w](X) := (�T[w](x1); �T[w](x2); : : : ; �T[w](xn)):

First, the root of the trie is determined by the slice �(X) and the collection of
root subtrees is determined by the collection of shifts T[m](X). In this perspective,
the decomposition (11) is synonymous to

trie(X) =
D
�(X);

�
trie(T[m](X))

	
m2M

E
:(14)

Consider now an �additive� parameter  on trie(X) de�ned recursively by the rule

[trie(X)] = 0 if jX j � 1

[trie(X)] = �(�(X)) +
X
m2M

[trie(T[m](X))] if jX j � 2:

The parameter � is sometimes called the �toll�. The recurrence relation can be
unwound, leading to

[trie(X)] =
X

w2M�

�[�T[w](X)];(15)

provided that �(s) is zero on slices s that contain either 0 or 1 symbol.

We now describe the probabilistic model that is induced by the Poisson model
at each possible node of the trie determined by a pre�x w. Since the probability
that a word starts with pre�x w is equal to the fundamental measure uw de�ned
in (5), the probability that the next symbol emitted is m equals

pw;m =
uw�m
uw

:(16)
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Here, the notation w�m denotes the concatenation of sequence w and of symbol m.
Since all elements of X are independently drawn, at the internal node labelled by
w, symbols are then emitted by the memoryless source Bw that is de�ned by the
probabilities fpw;mgm2M.

Moreover, if the cardinality of X is a random Poisson variable of rate z, the
length of the slice �T[w](X) is also a random Poisson variable of rate zuw. It
follows from (15) that the expectation of parameter  is a sum of expectations of
parameter �,

E[;Pz; S; F ] =
X

w2M�

E[�;Pzuw ;Bw];(17)

where w ranges over all (�nite) sequences and Bw denotes the memoryless source
de�ned in (16).

3.2. Search costs at nodes. We consider here the four additive parameters of
interest, namely, size, and the three path lengths relative to each kind of hybrid
trie, and evaluate the expectations of the corresponding tolls.

First, the toll �S associated to size equals 1 provided that the internal node
indexed byw exists or equivalently that the slice �T[w](X) has at least two symbols:

�S(s) =

(
1 if jsj � 2

0 otherwise.

In the same vein, the toll �A for path length of an array-trie is simply

�A(s) =

(
jsj if jsj � 2

0 otherwise.

The parameters �L(s) and �B(s) that are relative to path length of list-tries and
of bst-tries are exactly traversal costs of node structures built over a slice s: The
symbols of s (where repetition is allowed) are inserted in order in a structure (a list
or a binary search tree), and then the toll is the cost incurred by the retrieval of
each occurrence of each symbol of s.

The proposition that follows is the key step in the algebraic part of the treatment
of additive trie parameters. In substance, the evaluation of the expected tolls E[�]
corresponding to list-tries and bst-tries is analogous to the (easy) analysis of lists
and of the (harder) analysis of binary search trees on a �nite domain with a nonuni-
form probability distribution; see for instance [1, 5] for related developments. Our
approach in this paper relies on a symbolic description of parameters by generating
functions and is, perhaps, of independent interest.

Proposition 1 (Toll parameters). Let B be a memoryless source relative to the set
of probabilities fpigi2M and Pz the Poisson model of rate z. Then, in the model
(Pz;B), expectations of the toll parameters relative to the size of a trie and the path
length of an array-trie are respectively

E[�S ;Pz;B] = 1� (1 + z)e�z; E[�A;Pz;B] = z(1� e�z):
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In the model (Pz ;B), the expectations of traversal costs for ordered lists and binary
search trees are respectively

E[�L;Pz;B] =
X
j2M

P[>j] z (1� e�pjz);

E[�B ;Pz;B] = 2
X

(i;j)2M2

i<j

pipj

P[i;j]
2

�
e�zP[i;j] � 1 + zP[i;j]

�
;

where P[i;j] =
Pj

k=i pk and P[>j] =
P

k>j pk.

Proof. We consider an ordered alphabet M = fa1 < a2 < � � � < arg where the i-th
symbol is denoted by ai. For any set L � M�, the ordinary generating function
(ogf) and exponential generating function (egf) relative to a parameter � over L
are de�ned as

F (z; u; x1; : : : ; xr) =
X
s2L

zjsju�(s)x1
jsj1 � � �xrjsjr

bF (z; u; x1; : : : ; xr) =
X
s2L

zjsj

jsj!u
�(s)x1

jsj1 � � �xrjsjr :
(18)

Here jsj and jsji denote respectively the total length of s and the number of occur-
rences of ai in s. Formally, the variables z and u �mark� the length of the sequence
jsj and the value of the parameter �, while the variable xi records the occurrences
of the symbol ai.

Formal languages and generating functions are intimately related. In the course
of the analysis, some operations on languages are better translated in terms of egf's,
whereas others are better expressed by means of ogf's. The two types of generating
functions are related by the combinatorial Laplace transform that is de�ned by

L[
X
n

fn
zn

n!
] =

X
n

fnz
n:(19)

For instance, the generating functions relative to the whole set M� are related by

L
�
ez(x1+���+xr)

�
=

1

1� z(x1 + � � �+ xr)
:

When the symbols of M are emitted by a memoryless source B relative to proba-
bilities fpig, the expectation of � in the model (Pz;B) is

E[�;Pz;B] = e�z
@

@u
bF (z; u; p1; : : : ; pr)���

u=1
;(20)

where bF is the exponential generating function associated to parameter � de�ned
in (18).

1. The expectations of the �rst two parameters �S ; �A are direct consequences
of properties of the Poisson process, but we develop them within the generating
function framework as they serve to introduce basic principles. The decomposition,

M� = (�+M) +
X
i�2

Mk;
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once translated into egf's yields

1 + z(x1 + � � �+ xr) + u(ez(x1+���+xr) � 1� z(x1 + � � �+ xr));

1 + z(x1 + � � �+ xr) + (ezu(x1+���+xr) � 1� zu(x1 + � � �+ xr));

as egf's relative to �S and �A. An application of (20) then gives the form of E[�A].

2. The next parameter �L requires the shu�e (`x ') decomposition [17, 38],

M� = a1
�
x � � � x ar�:

meaning that each word decomposes into (possibly void) subwords which are rep-
etitions (a�i ) of the same symbol ai, shu�ed in all possible ways. It is a known
and easy result that, in all generality, a shu�e of languages over disjoint alphabets
corresponds to the product of corresponding egf's. The search cost of a key a� in a
slice s is then equal to the number of distinct symbols i < � in s. The corresponding
exponential generating function isbf�(z; u; x1; : : : ; xr) = Y

i<�

(u(ezxi � 1) + 1)
Y
i��

ezxi :

It now su�ces to sum over all � 2 M and apply the formula (20) in order to get
E[�L].

3. The last parameter �B needs a more subtle approach. We proceed by stages
and describe the search for a symbol � in bst(s) by: a search of the maximum
along the rightmost branch of bst(s��), where s<� means s restricted to elements
of index smaller than �; a dual search of the minimum along the leftmost branch
of bst(s��). Each one-sided search is described by a regular expression and corre-
sponding multivariate rational functions. The combination is achieved by a shu�e
product that involves formal Laplace transforms.

(i) Extrema analysis. The �rst problem to be solved is thus the analysis of
length of the rightmost branch in a tree built on random words, or equivalently the
analysis of left-to-right maxima (also called �records�). Given the alphabet M, the
regular expression decomposition

M� =
rY

j=1

(�+ aj �(a1 + a2 + � � �+ aj)
�)

expresses precisely all the possible decompositions of words by sets of left-to-right
maxima. By general principles, concatenation translates as an ordinary product of
ogf's. Accordingly, the ordinary multivariate generating function

Nmax(z; u; x1; x2; : : : ; xr) =

rY
j=1

�
1 +

zuxj
1� z(x1 + � � �+ xj)

�
;

has its coe�cient [znukxn1
1 � � �xnrr ] equal to the number of words of length n having

k maxima and nj occurrences of symbol j. Dually, the multivariate ogf for minima
is

Nmin(z; u; x1; x2; : : : ; xr) =
rY

j=1

�
1 +

zuxj
1� z(xj + � � �+ xr)

�
:

Similar decompositions have been used by Prodinger [45] in the study of the max-
imum of geometrically distributed random variables.



20 CLÉMENT, FLAJOLET, VALLÉE

(ii) Search costs. Consider next the search cost c� of some �xed symbol � in a
bst. The shu�e (`x ') decomposition

(Mn f�g)� = (a1 + � � �+ a��1)
�
x (a�+1 + � � �+ ar)

�
;

expresses the fact that each word decomposes into subwords< a� and> a�, shu�ed
in all possible ways. Let `x ' also denote the operation on ogf's that translates the
shu�e product of languages over disjoint alphabets. As noted before, shu�es of
languages correspond to products of egf's, while the Laplace transform relates egf's
and ogf's. Thus, one has

f(z)x g(z) = L[L�1[f(z)] � L�1[g(z)]]:

Equipped with this operation, we can express the ogf relative to c� as

C�(z; u; x1; : : : ; xr) = [Nmax(z; u; x1; : : : ; x��1)xNmin(z; u; x�+1; : : : ; xr)]

�
�
1 +

zx�
1� z(x1 + � � �+ xr)

�
;(21)

where the last factor takes into account trailing sequences that may contain �.

(iii) Explicit forms. Eq. (21) describes an ogf that condenses all the informa-
tion on costs, including the full distribution. Then the egf is obtained by taking the
formal inverse Laplace transform. The average cost is as usual obtained by di�eren-
tiating (21) with respect to u and setting u = 1 following the principle of (20). The
rest of the computation (details omitted) is carried out by means of Laplace trans-
forms, partial fraction expansions, and logarithmic derivatives, using the obvious
relations

L[eaz] = 1

1� az
; L[zeaz] = z

(1� az)2
;

1

1� az
x

1

1� bz
=

1

1� (a+ b)z
:

3.3. Size and path length. The form of the recurrence (17), the form of the prob-
abilities at each node (16), and the expressions obtained in Proposition 1 somewhat
simplify upon the unwinding of the recursion (15). As a consequence, the expec-
tations of the four additive parameters can be solely expressed with fundamental
measures.

Theorem 1 (Poisson expectations of additive parameters). Let (S; F ) be a proba-
bilistic dynamical source and Pz the Poisson model of rate z. Then expectations in
the model (Pz; S; F ) of the toll parameters relative respectively to the size of a trie,
path length of an array-trie trie, path length of an ordered-list trie, path length of a
bst-trie arebS(z) =

X
w2M�

�
1� (1 + zuw)e

�zuw
�
;

bPA(z) =
X

w2M�

zuw
�
1� e�zuw

�
bPL(z) =

X
w2M�

X
i2M

z U
w�[>i](1� e�zuw�i)

bPB(z) = 2
X

w2M�

X
(i;j)2M2

i<j

uw�iuw�j

U
w�[j;i]

2

�
e�zUw�[j;i] � 1 + zU

w�[j;i]

�
;
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where U
w�[j;i] =

Pi
k=j uw�k, and Uw�[>j] =

P
k>j uw�k.

We can now return to the Bernoulli model thanks to the principles of �algebraic
depoissonization� summarized in (12) and (13) that induce a formal dictionary from
Poisson to Bernoulli expectations:

e�az 7! (1� a)n; ze�az 7! n(1� a)n�1:

Therefore the expectations of the four additive parameters in the Bernoulli model
(Bn; S; F ) are also expressible purely in terms of fundamental measures.

Theorem 2 (Bernoulli expectations of additive parameters). Let (Bn; S; F ) be the
Bernoulli model relative to a �xed number n of words independently drawn from a
probabilistic dynamical source (S; F ). Then the expectations for the size of a trie,
path length of an array-trie, path length of an ordered-list trie, path length of a bst
trie are

S(n) =
X

w2M�

h
1� (1 + (n� 1)uw) (1� uw)

n�1
i

PA(n) =
X

w2M�

nuw[1� (1� uw)
n�1]

PL(n) =
X

w2M�

X
i2M

nU
w�[>i](1� (1� uw�i)

n�1)

PB(n) = 2
X

w2M�

X
(i;j)2M2

i<j

uw�iuw�j

U
w�[j;i]

2

�
(1� U

w�[j;i])
n � 1 + nU

w�[j;i]

�
;

where U
w�[i;j] =

Pj
k=i uw�k and U

w�[>j] =
P

k>j uw�k as before.

3.4. Height of a trie. Consider now a random trie (or equivalently, its array-trie
implementation) that is produced by a probabilistic source (S; F ) in the Poisson
model (Pz; S; F ). Such a trie has height at most k provided that no fundamental
interval of depth k contains more than one word. The probability of this event, is
given by the independence property of the Poisson model, from which the mean
value results.

Theorem 3 (Height under the Poisson model). The distribution of trie height un-
der the Poisson model (Pz; S; F ) is given by

�k(z) := Pr[h � k] =
Y
jwj=k

(1 + zuw)e
�zuw = e�z

Y
jwj=k

(1 + zuw)(22)

and the expectation of height is

bH(z) = E[h;Pz; S; F ] =
1X
k=0

[1� �k(z)] :(23)

The corresponding quantities under the Bernoulli model are obtained next by
means of the �algebraic depoissonization� principle (12), (13).

Theorem 4 (Height under the Bernoulli model). Let �k;n denote the probability
that a trie built on an n�tuple of random items has height at most k under the
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Bernoulli model (Bn; S; F ). The exponential generating function of the �k;n satis-
�es

�k(z) :=
X
n

�k;n
zn

n!
=
Y
jwj=k

(1 + zuw) ;

and the corresponding expectation is

E[h;Bn; S; F ] = n![zn]

1X
k=0

0@ez � Y
jwj=k

(1 + zuw)

1A :

3.5. Dirichlet series associated to trie parameters. The expectations in the
Poisson model and in the Bernoulli model belong to the paradigm of harmonic sums
that are general sums of the form

F (z) =
X
k2K

�kf(�kz):

The asymptotic analysis of such sums is classically done by Mellin transform tech-
niques (see Section 6.1) whose application depends on the location and nature of
poles of an associated Dirichlet series

�(s) :=
X
k2K

�k�k
s:

The Mellin approach thus leads to considering a variety of Dirichlet series of funda-
mental intervals. For instance, in the Poisson model, three kinds of Dirichlet series
are involved for array-tries, list-tries, and bst-tries:

�hAi(F; s) =
X

w2M�

us
w
; �hLi(F; s) =

X
w2M�

X
i2M

U
w�[>i] uw�i

s�1;(24)

�hBi(F; s) = 2
X

w2M�

X
(i;j)2M2

i<j

uw�i uw�j Uw�[i;j]
s�2:(25)

Similar but modi�ed versions arise in the Bernoulli model.

In contrast to additive parameters, the quantity expressing the probability dis-
tribution of height is not a harmonic sum, however its logarithm is,

log�k(z) = �
X
jwj=k

zuw log(1 + zuw);

and it is associated to the Dirichlet series

�
hAi
k (F; s) =

X
w2Mk

uw
s(26)

corresponding to branches of depth k.

At this stage, we need a way to study Dirichlet series of fundamental measures
in order to estimate asymptotically average values of parameters. This necessitates
locating the poles of the Dirichlet series de�ned in Equations (24) and (25) as well as
determining the behaviour of the family of Dirichlet series (when k varies) de�ned
in (26). We introduce next several generalizations of Ruelle operators that play the
rôle of generating operators for fundamental intervals and open an avenue to the
analytic study of such Dirichlet series.
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4. Generalized Ruelle operators: analytic properties

This section starts with the easy notion of density transformers (Section 4.1) that
lift into transfer operators upon introducing an extra complex parameter s (Sec-
tion 4.2). We then design a class of generalized Ruelle operators, the multi-secant
operators (Section 4.3), where derivatives present in transfer operators are replaced
by secants and multivariate functions are acted on. The operators based on multi-
secants generate a variety of Dirichet series of fundamental measures, including the
ones arising from the analysis of trie parameters (Sections 4.4, 4.5).

4.1. Density transformers. There is a direct relationship between the dynamics
of source S, the answers to the main problems of Section 3.5, and spectral prop-
erties of an operator closely related to the way the shift T transforms probability
distributions. The basic ingredient, well-developed in dynamical systems theory, is
the class of transfer operators [2, 49]. In its simplest form, the transfer operator
associated to a basic dynamical system is the �density transformer�,

G[f ](x) :=
X
i2M

jh0i(x)j f � hi(x):(27)

The term comes from the following obvious fact: if X is a random variable whose
distribution has density f , then the density of T (X) is G[f ]. In other words, the
operator G describes one step of the source process. The component operator given
by the i-th term is denoted by G[i]; it is de�ned by

G[i][f ](x) := jh0i(x)j f � hi(x);(28)

so that

G =
X
i2M

G[i]:(29)

In the same way, one can de�ne a �density transformer� associated to a Markov
dynamical system. There are now r di�erent densities (f1; f2; : : : ; fr) that corre-
spond to �conditional densities�: fj(x) is the density at the point x when the last
emitted symbol equals j. One begins with density f , and, after one iteration of the
shift associated to the initial system S0, one has

fj(x) = jh0jj0(x)j f � hjj0(x):
More generally, the sequence of conditional densities (f1; f2; : : : ; fr) at one iter-
ation stage, and the sequence of conditional densities (g1; g2; : : : ; gr) at the next
iteration stage are related by a matrix of operators G that is built from the density
transformers Gj associated to each dynamical system Sj . The density transformer
Gj associated to Sj acts on fj

Gj [fj ](x) :=
X
i2M

jh0ijj(x)j fj � hijj(x):

Each term of the previous sum de�nes an operator which will be denoted by G[ijj],
G[ijj][f ](x) := jh0ijj(x)j f � hijj(x);(30)

and each term G[ijj][fj ] represents the �part� of the new density gi that �comes from�
the density fj . We consider now the r � r�matrix G whose general coe�cient is
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G[ijj]
G =

�G[ijj]� ;(31)

(i is the index for lines, and j the index for columns). This matrix G is itself
the density transformer, since it transforms the sequence of conditional densities
(f1; f2; : : : ; fr) at one iteration stage, into the sequence of conditional densities
(g1; g2; : : : ; gr) at the following iteration stage:0BBB@

g1
g2
...
gr

1CCCA =
�G[ijj]�

0BBB@
f1
f2
...
fr

1CCCA :

4.2. Classical Ruelle operators. In each case, of a basic dynamical system or
of a Markovian one, it proves highly useful to work with more general operators,
called the Ruelle operators. Each component operator in (28) or (30) depends now

on a complex parameter s and is de�ned through the analytic extension eh of jh0j.
The new component operators are respectively denoted by Gs;[i] or Gs;[ijj]

Gs;[i][f ](z) := ehi(z)s f � hi(z):(32)

Gs;[ijj][f ](z) := ehijj(z)s f � hijj(z):(33)

As in (29) or in (31), the Ruelle operators are now respectively de�ned by

Gs =
rX

i=1

Gs;[i]; Gs :=
�Gs;[ijj]�(34)

in the basic case, or in the Markovian case. The dynamics of the process is a
priori described by s = 1 (i.e., G = G1), but many other properties appear to be
dependent upon complex values of s other than 1.

4.3. Generalized Ruelle operators. In [59, 61], Vallée has introduced a new
tool, the generalized Ruelle operator, that involves secants of inverse branches in-
stead of tangents jh0(z)j of inverse branches. Here, we design a further general-
ization that involves multi-secants, so that the �hyper-generalized� operator, Gs,
acts on a space of functions of m complex variables; it is then said to be an exten-
sion of degree m. In our applications, we shall need various extensions of degrees
m = 1; 2; 3 or 4.

We �rst de�ne two mappings that extend an inverse branch h into a mapping
de�ned on Cm . The �rst one that only depends on m is

Vm[h](x1; : : : ; xm) = (h(x1); : : : ; h(xm)):

The second one, denoted by Hs[h], must satisfy the following three properties.

(i) Hs extends the tangent mapping and its restriction to the diagonal coincides
with the tangent mapping.

Hs[h](x; x; : : : ; x) = ehs(x) and Hs[h](x) = ehs(x) for the special case m = 1:

(ii) Hs satis�es multiplicative properties in the style of the chain-rule,

Hs[h � g](x1; x2; : : : ; xm) = Hs[h](g(x1); g(x2); : : : ; g(xm)) Hs[g](x1; x2; : : : ; xm):
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(iii) Finally, when the parameter s and the points xi are all real, Hs possesses a
positivity property

Hs[h](x1; x2; : : : ; xm) > 0 for real s and real xi:

Particularly important realizations of Hs are the multi-secant mappings de�ned
from any collection of a�ne functions s 7! di;j(s)

Hs[h](x1; � � � ; xm) :=
Y

1�i;j�m

����h(xi)� h(xj)

xi � xj

����di;j(s) with
X

1�i;j�m

di;j(s) = s:(35)

The previous properties (i); (ii); (iii) are then clearly all satis�ed.

Each component operator in (32) or (33) is now de�ned with the analytic ex-

tension eHs[h] of the multi-secant Hs[h] relative to branch h. The new component
operators are denoted by Gs;[i] or Gs;[ijj] respectively. They act on functions F of
m (complex) variables as follows

Gs;[i][F ] := eHs[hi] F � Vm[hi]; Gs;[ijj][F ] := eHs[hijj ] F � Vm[hijj ]:
In a way analogous to (34), the generalized Ruelle operators are de�ned by

Gs :=

rX
i=1

Gs;[i]; Gs :=
�
Gs;[ijj]

�
in the basic case and in the Markovian case, respectively.

The generalized Ruelle operator constitutes an extension of the classical Ruelle
operator in the following sense: If f is the diagonal of F , i.e., f(u) := F (u; � � � ; u)
(m times), the following relation holds on the diagonal x1 = � � � = xm = u

Gs[F ](u; � � � ; u) = Gs[f ](u):(36)

The case of dimension m = 1 corresponds exactly to the classical Ruelle operator
Gs.

We next show how the operators Gs generate all the branches h of any depth,
�rst in the case of a basic dynamical system (Section 4.4), then in the Markovian
case (Section 4.5).

4.4. The Dirichlet series: basic case. By the multiplicative property (ii), the
k-th iterate Gs involves all the inverse branches h of depth k,

Gk
s [F ] =

X
jhj=k

eHs[h] F � Vm;(37)

where the function eHs[h] is the analytic extension of the multi-secant Hs[h], and
the sum now ranges over all inverse branches of depth k, or equivalently over all
pre�xes w of length k.

In the same vein, the quasi-inverse (I �Gs)
�1, being the formal sum of all the

powers of the operator, then represents all the possible iterations, and is conse-
quently expressed as a sum that ranges over all inverse branches

(I �Gs)
�1[F ] =

X
h

eHs[h] F � Vm[h]:
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From Section 3.5 and Equations (24), (25), (26), the Dirichlet series arising from
the analysis of tries are

�hAi(F; s) =
X

w2M�

uw
s; �

hAi
k (F; s) =

X
w2Mk

uw
s

�hBi(F; s) = 2
X

w2M�

X
(i;j)2M2

i<j

uw�i uw�j Uh�[i;j]
s�2;

�hLi(F; s) =
X

w2M�

X
i2M

U
w�[>i] uw�i

s�1:

The �rst two series correspond to the Dirichlet series of fundamental measures
de�ned in Section 1 and they already play a central rôle in a large number of analyses
involving pre�xes of words; see [61]. They can be generated by the operator relative
to the case m = 2 and the �true� secant

HhAi
s [h](x1; x2) =

����h(x1)� h(x2)

x1 � x2

����s ;(38)

applied to the function L
hAi
s := H

hAi
s [F ] which is the secant of the initial distribu-

tion F . More precisely,

�
hAi
k (F; s) :=

X
jhj=k

jF (h(0))� F (h(1))js =
�
GhAis

�k
[LhAis ](0; 1);(39)

�hAi(F; s) :=
X
h

jF (h(0))� F (h(1))js = (I �GhAis )�1[LhAis ](0; 1);(40)

with

GhAis [F ] :=
X
jhj=1

HhAi
s [h] F � V2:

The other two series, �hLi;�hBi, arise from hybrid tries where order between
symbols matters. There is an order on the alphabet; there is also the natural order
on the topological partition fImg induce by the order on the (0; 1) interval. We
assume that these orders are either identical or the reverse of each other. The
measure U

w�[i;j] is then the measure of an interval. When the inverse branch h
is relative to the pre�x w, the two end points are to be chosen amongst the four
points h � hi(0); h � hi(1); h � hj(0); h � hj(1). This choice depends on the signs
�(h); �(hi); �(hj) of the derivatives of the inverse branches h; hi; hj . The measure
U
w�[>i] is also the measure of an interval. The two endpoints are to be chosen

amongst the four points h�hi(0); h�hi(1); h(0); h(1). This choice depends on signs
�(h); �(hi).

Thus, each term of the Dirichlet series relative to hybrid tries involves either three
points (in the case of list-tries) or four points (in the case of bst-tries). Accordingly,
the corresponding Ruelle operators act on functions of three variables (m = 3) in
the case of the list-trie and on on functions of four variables (m = 4) in the case

of the bst-trie. We denote them respectively by G
hLi
s and G

hBi
s . They are de�ned
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through the multi-secants H
hBi
s and H

hLi
s

HhBi
s [h](x1; x2; x3; x4) =

����h(x1)� h(x2)

x1 � x2

���� � ����h(x3)� h(x4)

x3 � x4

���� � ����h(x1)� h(x4)

x1 � x4

����s�2

HhLi
s [h](x1; x2; x3) =

����h(x2)� h(x3)

x2 � x3

���� � ����h(x1)� h(x2)

x1 � x2

����s�1

;(41)

so that

GhBis [F ] =
X
jhj=1

HhBi
s [h] F � V4[h]; GhLis [F ] =

X
jhj=1

HhLi
s [h] F � V3[h]:(42)

The particular functions used to generate the Dirichlet series are the secants relative
to initial distribution F ,

LhBis = HhBi
s [F ]; LhLis = HhLi

s [F ]:

As opposed to �hAi(F; s), the series �hBi(F; s) and �hLi(F; s) involve sums of subdi-
visions of fundamental intervals. The fundamental canonical measures u?i of depth
one and relative to a uniform density will play an important rôle in the expression
of both Dirichlet series. They are de�ned by

u?i := jhi(0)� hi(1)j;
and, in a way consistent with previous notations, we set U?

[i;j] =
Pj

k=i u
?
k and

U?
[>i] =

P
k>i u

?
k.

In the homoclinal case with all branches being increasing (i.e. �(h) = 1), one has

�hLi(F; s) =
X
i

U?
[>i]u

?
i

�
I �GhLis

��1 h
LhLis

i
(hi(0); hi(1); 1);(43)

�hBi(F; s) = 2
X
i<j

u?i u
?
j U

?
[i;j]

s�2
�
I �GhBis

��1

(44)

h
LhBis

i
(hi(0); hi(1); hj(0); hj(1)):

Heteroclinal case. In the heteroclinal case, where some branches increase and other
decrease, there are eight possible expressions for the measure U

w�[i;j], depending
on the values of �(h); �(hi); �(hj), and four possible expressions for the measure
U
w�[>i], depending on the values of �(h) and �(hi). So, we split the symbols i of

the alphabet M into two subsets, depending of the possible values of �(hi), and we
split the set of all possible branches h (relative to all possible pre�xes w) into two
subsets, corresponding to increasing branches and decreasing branches; we wish to
generate separately these two subsets.

For this last splitting, we introduce the signed operator eGs whose component
operators are de�ned from the sign �(h) of the derivative h0,eGs;[i] := �(hi) Gs;[i]:(45)

The multiplicativity of � entails thateGk
s =

X
jhj=k

�(h) Gs;h(46)
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so that the two relations

2
X

�(h)=1

Gs;h = (I �Gs)
�1[F ] + (I � eGs)

�1[F ];

2
X

�(h)=�1

Gs;h = (I �Gs)
�1[F ]� (I � eGs)

�1[F ]
(47)

show that the previous expressions (43) (44) can be extended to the heteroclinal
case, with expressions that now involve the two quasi�inverses (I � Gs)

�1 and

(I � eGs)
�1.

In particular, the �part� of each Dirichlet series that involves the quasi-inverse
(I � Gs)

�1 can be made explicit. We associate to �(hi) 2 f�1; 1g the quantity
�(i) := (1 � �(hi))=2 2 f0; 1g. In the case of bst-tries, we consider 4�tuples and
operate with the group B of order 4 generated by the two transpositions � and �
acting on the �rst two components and on the last two components, respectively.
We denote by B(i; j) the subset of B that contains the two elements ��(i) � ��(j)
and �1��(i) � �1��(j). In the case of list-tries, we consider 3�tuples of the form
(a; b; c) with c 2 f0; 1g and operate within the group L of order 4 generated by the
two transpositions � and � which respectively act on the �rst two components, and
exchanges the two possible values of the last one. We denote by L(i) the subset of
L that contains the two elements ��(i) � � and �1��(i). Then, the �part" of each
Dirichlet series which involves the quasi-inverse (I �Gs)

�1 equals respectively

1

2

X
i

U?
[>i] u

?
i
s�1

X
r2L(i)

�
I �GhLis

��1 h
LhLis

i
r(hi(0); hi(1); 1);(48)

in the list-trie case, andX
i<j

u?i u
?
j U

?
[i;j]

s�2
X

r2B(i;j)

�
I �GhBis

��1 h
LhBis

i
r(hi(0); hi(1); hj(0); hj(1))(49)

in the bst-trie case.

4.5. The Dirichlet series: Markovian case. In the Markovian case, the coe�-
cient (i; j) of the k�th iterate of matrix Gs involves all the branches h relative to a
word w = (m1; : : :mk) which starts with j (m1 = j) and ends with i (mk = i).

For the Dirichlet series relative to array-tries, we wish to generate all the inverse
branches of depth k. We �rst consider the operator Ms relative to the initial
dynamical system S0

Ms[F ] :=

0BBBBBBBB@

Gs;[1j0]

Gs;[2j0]

...
Gs;[ij0]

...
Gs;[rj0]

1CCCCCCCCA
[F ]:

If e denotes the unit r-th dimensional vector, i.e., te = (1; 1; : : : 1) (r times), then
t
e Ms denotes the generalized Ruelle operator associated to S0. We let

Gs :=
t
e Ms:
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For k � 2, the operators t
e Gk�1

s Ms generate all the inverse branches of depth k
and we obtain the analog of (37)

t
e Gk�1

s Ms [F ] =
X
jhj=k

eHs[h] F � Vm[h];h
I + t

e (I �Gs)
�1
Ms

i
[F ] =

X
h

eHs[h] F � Vm[h]:

We then deduce the formulae for the Dirichlet series relative to the array-tries

�hAi(F; s) =

�
I + t

e

�
I �GhAis

��1

Ms

�
[LhAis ](0; 1);(50)

�
hAi
k (F; s) = t

e

�
GhAis

�k�1

Ms [L
hAi
s ](0; 1)(51)

In the same vein, if e` is the `-th vector of the canonical basis, the operator

t
e` G

k�1
s Ms

generates all the inverse branches of depth k relative to pre�xes w that end with
symbol `. In the case when all the branches are increasing, the expressions of the
Dirichlet series relative to list-tries or bst-tries involve the canonical fundamental
measure extended to the Markovian case by

u?ij` := jhij`(0)� hij`(1)j;

and, consistently with previous notations, we set U?
[i;j]j` =

Pj
k=i u

?
kj` and U

?
[>i]j` =P

k>i u
?
kj`.

�hBi(F; s) = 2
X
`;i;j
i>j

u?ij`u
?
jj`U

?
[i;j]j`

s�2

�
I + t

e`

�
I �GhBis

��1

Ms

�
(52)

[LhBis ](hij`(0); hij`(1); hjj`(0); hjj`(1));

�hLi(F; s) =
X
`;i

U?
[>i]j`u

?
ij`

�
I + t

e`

�
I �GhLis

��1

Ms

�
(53)

[LhLis ](hij`(0); hij`(1); 1):

Heteroclinal case. In the general case when the branches may be increasing or

decreasing, we consider the signed operators eGs or eGs whose component operators
are de�ned from the sign �(h) of the derivative h0,

eGs;[ijj] := �(hijj) Gs;[ijj]; eGs;[ijj] := �(hijj) Gs;[ijj]:

The multiplicativity of � entails formulae as in (46) and (47). Then, the operatorseGs intervene, via their quasi�inverses, in the expressions of the Dirichlet series
relative to list-tries or bst-tries, together with the quasi -inverses of the operators
Gs.
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4.6. Asymptotic analysis. Asymptotic analysis of coe�cients of these Dirichlet
series is dependent on spectral properties of the (generalized) Ruelle operator that

generate them. In the study of the height, the asymptotic behaviour of �
hAi
k (as k

tends to in�nity) is related to dominant spectral properties of the Ruelle operator

G
hAi
s . For size or path length, the Dirichlet series involve quasi-inverses (I �Gs)

�1

and (I � eGs)
�1 of various Ruelle operators Gs and signed Ruelle operators eGs.

Asymptotic analysis of coe�cients of these Dirichlet series is dependent on the

location of its poles. Such poles arise from values of s where (I�Gs)
�1 or (I�eGs)

�1

is singular, that is, values for which 1 is an eigenvalue of Gs or eGs. In this way,
the poles of Dirichlet series also relate to the spectral properties of the transfer
operators.

5. Generalized Ruelle operators: analytic properties

The generalized multi-secant operators belong to the category of nuclear operators
(de�ned in Section 5.1) which, in particular, have a discrete spectrum. Such in�nite
dimensional operators in many ways �behave like� �nite matrices, with well-de�ned
notions of trace and determinant attached to them. First, we introduce composition
operators that are the basic building blocks of transfer operators (Section 5.2)
and have an explicitly characterized spectrum (Section 5.3). Transfer operators,
including the multi-secant variety, then have spectra that are determined from
those of composition operators by means of trace formulae (Section 5.4). On the
other hand, the generalized operators possess strong positivity properties of the
Perron-Frobenius type for real values of parameter s. Such properties entail the
existence of dominant (positive) spectral objects (Section 5.5) that can be eventually
related to the basic parameters of the source, the entropy and the coincidence
probability (Section 5.8). A related �quasi-power property� gives access to the
behaviour of operators under iteration (Sections 5.6). Other properties can then
be transferred to the Dirichlet series of fundamental intervals of interest for the
analysis of tries (Section 5.7, 5.8, 5.9).

5.1. Nuclearity, trace formula, and Fredholm determinant. We �rst recall
the notion of nuclearity introduced by Grothendieck [23, 24]. Let B be a Banach
space and B? its dual space. An operator M : B ! B is nuclear of order 0 if it
admits a representation

M[f ] =
X
i2I

�i e
?
i (f) ei for all f 2 B;

with ei 2 B, e?i 2 B? such that jjeijj = jje?i jj = 1 and the �i are p-summable for all
p > 0 (i.e.,

P j�ijp < +1). Most of matrix algebra extends to such operators; in
particular, one can de�ne the trace,

Tr L =
X
i2I

�i e
?
i (ei); also equal to Tr L =

X
i2I

�i;

where the �i's are the eigenvalues of L, counted with their algebraic multiplicities.
The traces of the iterates of L are also well-de�ned, as is the analogue of the
characteristic polynomial known as the Fredholm determinant,

F (L; u) := det(I � uL) :=
Y
i2I

(1� �iu);
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where the �i's are the eigenvalues of L, (again counted with their algebraic mul-
tiplicities). There exists an important relation between the Fredholm determinant
and traces of iterates,

det(I � uL) = exp

�
Tr log(I � uL)

�
= exp

�
�

1X
k=1

uk

k
Tr Lk

�
(54)

that extends the familiar Jacobi formula of matrix theory: log � det = Tr � log.
These properties give access to spectral properties of nuclear operators of order 0.

5.2. Composition operators. Each component operator Gs;h de�ned by

Gs;h[f ] := ehs f � h
is known as a composition operator. We recall that each branch h satis�es contrac-
tion properties (d1) and (d2) of De�nition 1: there exists a suitable neighbourhood
V of I such that h and jh0j extend to analytics map on V ; h maps the closure V of

V inside V ; there exists � < 1 for which 0 < jeh(z)j � � for all z 2 V .
Then, the operator Gs;h acts on the space A1(V) formed with all functions f that

are holomorphic in the domain V and are continuous on the closure V. Endowed
with the sup-norm,

jjf jj = sup fjf(u)j; u 2 Vg;
A1(V) is a Banach space. Such operators have been studied in an extensive way
by several authors (Schwartz [50], Shapiro and Taylor [53], Shapiro [52]).

Since each branch h satis�es assumptions (d1) and (d2) of De�nition 1, the
generalized component operator Gs;h acts on the space A1(V) formed with all
functions F that are holomorphic in the domain Vm and are continuous on the
closure Vm. Endowed with the sup-norm,

jjF jj = sup fjF (u1; u2; : : : um)j; (u1; u2; : : : um) 2 Vmg;
A1(V) is a Banach space.

5.3. Spectra of composition operators. All the extended composition opera-
tors Gs;h relative to the same branch h have the same eigenvalues. However, the
multiplicities of these eigenvalues depend on the degree m of the extension.

Proposition 2. Let �(h) = eh(h) denote the value of eh at the �xed point h of h.
Then the spectrum of the operator Gs;h is formed with the eigenvalues �`; (` � 0),

�` := �(h)s[�(h)�(h)]`:(55)

Each eigenvalue �` appears in SpGs;h with a multiplicity
�
`+m�1
m�1

�
. Consequently,

a trace formula for Gs;h holds

TrGs;h =
�(h)s

(1� �(h)�(h))
m :

Proof. The proof uses a theorem due to Mayer [42]. Here, Multi [A] denotes
the set of multisets built over a multiset A. More precisely, for a multiset
A = fa1; a2; a3; : : : ; arg, (with possible equality between symbols ai), one has

Multi [A] =
Y

1�i�r

a�i :
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Theorem (Mayer). Let 
 be an open domain of Cm , and let B1(
) be the set of

functions that are holomorphic on 
 and continuous on 
. Let R� be de�ned on
B1(
) by R�[f ] := � f �  ; where � is in B1(
) and  strictly maps 
 on itself.
The spectrum of R� is

Sp(R�) = �(z) : Multi [Sp( 0(z)]

where z is the unique �xed point of  inside 
 and  0 is the di�erential of  .

Since the components operators Gs;h ful�ll the conditions of the theorem, their
spectra are then precisely determined. Note that, for purposes of trie analysis, all
the cases m = 1; 2; 3; 4 are of interest.

In the case m = 1 when the operator Gs;h coincides with the usual Ruelle

operator Gs;h, the previous theorem applies with � = ehs;  = h, and Sp( 0(z) =
fh0(h)g = f�(h)�(h)g, so that

SpGs;h = f�(h)s(�(h)�(h))` j ` 2 Ng
is exactly the set formed with elements �` de�ned in (55).

In the general case when the operator Gs;h acts on m-variables spaces, Mayer's
theorem applies with

� = eHs[h];  = Vm[h];

so that  0(x1; : : : ; xm) is the diagonal matrix with coe�cients
h0(x1); h

0(x2); : : : h
0(xm). The �xed point of Vm[h] is the point (h; h; : : : ; h),

so that

SpV 0
m[h] (h; h; : : : ; h) = fh0(h)g[m];

where the symbol A[m] denotes the multiset obtained by repeating m times each
element of the (multi)set A. Then, the multiplicity of the eigenvalue �` in spectra
of Gs;h equals the number of words of size ` in the language a1

�a2
� � � � am�, that is

[z`]
1

(1� z)m
=

�
`+m� 1

m� 1

�
:

Accordingly, these relations entail trace formulae involving the quantity �(h) = eh(h)
TrGs;h =

�(h)s

(1� �(h)�(h))
m :

Thus, the spectra of Gs;h and Gs;h contain the same elements. We now compare

them more precisely, via their trace formulae. With the notation pm(`) =
�
`+m�2
m�2

�
,

the generalized trace can be expressed in terms of the trace of the classical operator,

TrGs;h =
TrGs;h

(1� �(h)�(h))
m�1 =

X
`�0

pm(`) (�(h)�(h))
` TrGs;h:

Consider again the signed operators eGs;h = �(h) Gs;h and eGs;h = �(h) Gs;h already

introduced in (45). Then the trace of the generalized operators Gs;h, eGs;h are
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expressed with the traces of operators Gs+`;h, eGs+`;h,
TrGs;h =

X
` even
`�0

pm(`) TrGs+`;h +
X
` odd
`�0

pm(`) Tr eGs+`;h(56)

Tr eGs;h =
X
` even
`�0

pm(`) Tr eGs+`;h + X
` odd
`�0

pm(`) TrGs+`;h(57)

5.4. Spectra of transfer operators. We �rst make precise the functional space
to which the Gs operator is applied. Here, the operator is determined by an integer

m and a multi-secant eHs. In the Markovian case, we restrict ourselves to �nite
alphabets, but allow in�nite (denumerable) alphabets in the basic case. In this
situation, the possibility of choosing the same open set V for all branches h in
conjunction with the convergence condition (d3) entails �nice� properties for the
Ruelle operator Gs when s belongs to the half-plane Re(s) > . We denote by J
the intersection of V with the real axis. The secant mapping eHs[h] de�ned in (35)
has a strictly positive real part on Vm, and the operator Gs is well de�ned for any
complex s in the half-plane Re(s) > .

In the basic case, the Gs operators are then taken to act on the space A1(V)
de�ned as the set of functions that are holomorphic in the domain Vm and are
continuous on the closure Vm, endowed with the sup-norm. In the Markovian case,
the Gs operators are taken to act on the space A1(V)r. Both functional spaces
are Banach spaces. Since the component operators Gs;h are nuclear of order 0, the
operators Gs are nuclear of order 0. In particular they are bounded and compact.
So, their spectra are discrete.

The signed operators eGs are now de�ned from the signed component operatorseGs;h = �(h) Gs;h, eGs :=
X
i2M

eGs;[i]
eGs := (eGs;[ijj])

The multiplicativity of � entails equalities for the powers of eGs similar to (45)
and (46).

The following proposition relates the spectrum of the generalized operator to the
spectra of the classical ones.

Proposition 3. The spectra of the generalized Ruelle operators Gs, eGs are related

to the spectra of the classical Ruelle operators Gs, eGs
SpGs =

0B@ [
` even
`�0

(SpGs+`)[pm(`)]

1CA [ 0B@ [
` odd
`�0

�
Sp eGs+`�[pm(`)]

1CA :

Sp eGs =

0B@ [
` even
`�0

�
Sp eGs+`�[pm(`)]

1CA [ 0B@ [
` odd
`�0

(SpGs+`)[pm(`)]

1CA ;

where pm(`) =
�
l+m+2
m�2

�
. Here, the union is taken in the sense of multisets and the

notation A[p] denotes the multi-set obtained by repeating p times each element of
the (multi)-set A.
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Proof. In the Markovian case, the trace of the k-th iterate of Gs (resp. Gs) equals
the sum of the trace of the diagonal elements of the matrix Gks (resp. Gk

s ); such
diagonal elements only involve inverse branches h that are cyclic: these are branches
whose associated word starts and ends with the same symbol. Finally, in both cases,
the trace formulae involve the set Ck which is the set of all the inverse branches of
depth k (in the basic case) or the set of the cyclic inverse branches of depth k (in
the Markov case),

TrGks =
X
h2Ck

TrGs;h; TrGk
s =

X
h2Ck

TrGs;h:

Then, relations (56) and (57) extend to powers of transfer operators,

TrGk
s =

X
` even
`�0

pm(`) TrGks+` +
X
` odd
`�0

pm(`) Tr eGks+`:
Now, via the trace formulae (54), the Fredholm determinant F(s; u) := det(I�uGs)
can be expressed in terms of the traces of the powers of the operators, and we obtain

log det(I � uGs) =
X
` even
`�0

pm(`) log det(I � uGs+`) +
X
` odd
`�0

pm(`) log det(I � ueGs+`):
The Fredholm determinant of the generalized Ruelle operator Gs acting on a func-
tional space with m variables then satis�es

det(I � uGs) =
Y
` even
`�0

[det(I � uGs+`)]pm(`)
Y
` odd
`�0

h
det(I � u eGs+p(`))ipm(`)

:

Finally one obtains the relation between spectra of Gs and spectra of Gs and eGs.
We proceed in the same way for the signed operator eGs.

5.5. Dominant spectral properties for real s. When s = � >  is real, the
operators Gs;Gs satisfy strong positivity properties related to the Perron-Frobenius
theory [35]. The proof given in [41] can be easily extended to this generalized

framework, using the positivity property (iii) of eHs in Section 4.3. We obtain:

For real s > , each operator Gs has a unique dominant eigenvalue
(i.e., an eigenvalue of largest modulus) �(s) that is is positive and has
multiplicity 1.

A priori, this dominant eigenvalue is dependent on the chosen extension. We prove
in this section that all the extensions of Gs share the same dominant eigenvalue.
Since each operator is compact, its spectrum is discrete and there is a �spectral
gap� between the dominant eigenvalue and the remainder of the spectrum. This
makes it possible to decompose Gs as

Gs = �(s)Ps +Ns:

Here, Ps is the projection onto the dominant eigenspace, and Ns is relative to the
remainder of the spectrum, so that its spectral radius is strictly smaller than the
dominant eigenvalue.
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More generally Gk
s decomposes as

Gk
s = �(s)kPs +N

k
s :(58)

This is true in particular for the classical Ruelle operator Gs whose dominant eigen-
value is denoted by �1(s). The previous relations, together with positivity proper-
ties of the dominant eigensubspace projections, entail the equalities

�(s) = lim
k!1

Gk
s [1](0; : : : ; 0) �1(s) = lim

k!1
Gks [1](0):

Relation (36), expressing that Gs is an extension of Gs, entails the equality �(s) =
�1(s); thus all the operators Gs have the same dominant eigenvalue �(s).

The projection Ps relative to the dominant subspace can be written as

Ps[G](x1; : : : ; xm) = Es[G] 	s(x1; : : : ; xm);

where 	s is the dominant eigenfunction, and Es a linear form. The extension
formula (36) enables us to relate these dominant objects to the dominant objects
relative to the classical Ruelle operator Gs, namely, its dominant eigenfunction  s
and its dominant projector es,

	s(u; u; : : : ; u) =  s(u); Es[G] = es[g] if g is the diagonal of G:

We have thus proved:

Proposition 4. The multi-secant operators Gs all have dominant spectral prop-
erties. They share the same dominant eigenvalue �(s), and the other dominant
spectral objects (the dominant eigenvectors 	s and the dominant projectors Es) are
extensions of the corresponding dominant spectral objects of the classical operator
Gs (m = 1)

	s(u; : : : ; u) =  s(u); Es[G] = es[g] if g is the diagonal of G.

5.6. Quasi-Power Property. By the classical theory of analytic perturba-
tion [30], for s in a su�ciently small neighbourhood of any point � of the real axis,
unicity of the dominant eigenvalue is preserved, so that the mappings s 7! �(s),
s 7! 	s, s 7! Es de�ne analytic functions in a neighbourhood of any point where
�(s) is well de�ned. Then, by extending (58) in a neighbourhood of the real axis,
one deduces that the k-th iterate of Gs as in (39) behaves as a k-th power of the
dominant eigenvalue �(s):

Gs[F ](x1; : : : ; xm) � � � �(�)k ;(59)

for some � > 0, under the assumption that F is positive on [0; 1] and the xj satisfy
xj � 0. The Dirichlet series �k(F; s) associated to the array-trie is a special case
that we state in a detailed form for future reference in the course of the proofs of
Theorems 7 and 8 relative to trie height.

Proposition 5 (Quasi-power Property). Let � >  be real. For any distribution
F associated to a density f 2 A1(V) strictly positive on J , there exists a positive
constant � such that

� = lim
k!1

�
hAi
k (F; �)

�(�)k
:(60)
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Let �(�) be the modulus of a subdominant eigenvalue of G�, and � any constant
with � > �(�). Then, there exist three strictly positive constants �, �, �, such that,
for any k � 1, one has

��(�)k � �
hAi
k (F; �) � � �(�)k ; j�hAik (F; �) � � �(�)k j � ��k:(61)

5.7. Maximum properties of the dominant eigenvalue. Because of the dom-
inant spectral property, the dominant eigenvalue function s 7! �(s) plays a central
rôle in our analyses. Here, we establish some important properties of this function.
More generally, we study the spectral radius R(s) of the operator Gs. At a point s

in the half�plane Re(s) � �, we compare the spectral radii eR(s) of eGs, R(s) of Gs,eR(s) of eGs and the spectral radius R(�) = �(�) of G� .

Proposition 6 (Maximum properties of the dominant eigenvalue). Let  be the
constant referred to in the condition (d3) of De�nition 1. The following proper-
ties hold:

(i) The function s 7! �(s) is strictly decreasing along the real axis s > .
(ii) For any positive reals s; t such that s > t, one has �(s)t < �(t)s.

(iii) On each vertical line Re(s) = �, the inequalities eR(s) � �(�), R(s) � �(�),eR(s) � �(�) hold.

(iv) In the half-plane Re(s) > �, the strict inequalities R(s) < �(�), eR(s) < �(�)
hold.

(v) If the equality R(s) = �(�) holds for s = � + it; t 6= 0, then Gs has an
eigenvalue � = eia�(�) that belongs to the spectrum of Gs.

(v0) If the equality eR(s) = �(�) holds for s = � + it; t 6= 0, then eGs has an

eigenvalue � = eia�(�) that belongs to the spectrum of eGs.
(vi) Provided that all the � are not equal, the strict inequality eR(�) < �(�) holds.

Proof. The �rst two properties are proven in [61]. For properties (iii); (iv); (v),
we use the Spectrum formula of Proposition 3, together with the strict decrease

of � along the real axis and the inequality eR(s) � �(s), in a way similar to the
proofs in [61]. Finally, Property (vi) is established by means of the converse of
the triangular inequality, used in the same way as in the proof of Proposition 9 in
[61].

5.8. Special values. For s = 1, the classical Ruelle operator Gs is well-de�ned
(since, by (d4) of De�nition 1, one has  < 1) and G1 is a density transformer. This
property entails explicit evaluations of some of the spectral objects at s = 1.

Proposition 7 (Special values). The dominant eigenvalue at s = 1 equals 1, the

dominant projector e1 of Gs at s = 1 satis�es e1[f ] =
R 1
0
f(x) dx. Let F be the

distribution relative to density f on [0; 1]. Then, the residue at s = 1 of the quasi-
inverse (I � Gs)

�1[Hs[F ]] is independent of F and only involves the dominant
eigenfunction 	s at s = 1 under the form

(I �Gs)
�1[Hs[F ]] � �1

�0(1)(s� 1)
	1 (s = 1):

Proof. Since fundamental intervals of depth k form a quasi-partition of the unit

interval I, there results the equality �
hAi
k (F; 1) = 1 for any distribution function
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F , and thus �(1) = 1. Moreover, the operator G1 is a density transformer: for
f(x) > 0 when x is real,Z 1

0

Gk1 [f ](t) dt =
Z 1

0

f(t) dt = e1[f ]

Z 1

0

 1(t) dt+O(�k);

from which e1[f ] is obtained, provided that  1 is de�ned as a density function

with the normalization condition
R 1
0  1(t) dt = 1. One deduces the expression of

projector E1 by the extension property given in Proposition 4. Then, since the
diagonal mapping relative to H1[F ] is exactly F 0 = f , one obtains E1[H1[F ]] =
e1[f ] = 1.

We recall that entropy and coincidence probabilities are de�ned by (6), (7) in
terms of limits involving Dirichlet series of �xed depth. Then, the Quasi-power
property (60) provides expressions of entropy and coincidence probability that are
seen to involve spectral objects for s = 1 and s = 2.

Proposition 8 (Entropy and coincidence probabilities). The entropy of the
source is equal to the opposite of the derivative of s 7! �(s) at s = 1, while the
coincidence probability is equal to �(2).

5.9. Singularities of the quasi�inverses (I �Gs)
�1, (I � eGs)

�1. As explained
in Section 3, it is necessary to locate precisely the poles of the various Dirichlet
series �(F; s). We recall that �(1) = 1. Then, from Property (iv) of Proposition 6

the operators I �Gs, I � eGs are invertible in the half-plane Re(s) > 1. Thus, the
operator (I � Gs)

�1, is analytic there and has a simple pole at s = 1. Assertion
(vi) of Proposition 6 implies that this is also the case at s = 1, except when all

the � are equal to 1 (i.e. the case eGs = Gs). We focus on what may take place
near the line Re(s) = 1; s 6= 1 and we consider so-called particular points: they

are points s = 1 + it, with t 6= 0 for which the spectrum of Gs or eGs contains an
eigenvalue equal to 1. Assertions (v) and (v0) of Proposition 6 prove that, at these

particular points, the spectrum of classical operators Gs or eGs contains an eigenvalue
equal to 1. The following result, which extends results of [14], [44], [59], gives a
characterization of particular points and describes the two types of behaviour that
may be encountered.

Proposition 9 (Singularities of quasi�inverses). The operators Gs, eGs may only
behave in two di�erent ways on the line Re(s) = 1:

(i) Aperiodic case. There are no particular points, and the operators I � Gs,

I � eGs are invertible in the punctured half-plane Re(s) > 1; s 6= 1.
(ii) Periodic case. There are particular points for the operator Gs. Then they are

regularly distributed on the line, and of the form 1+ kit; k 2 Z. The operator

I� eGs may have possible particular points of the form 1+ i(2k+1)t=2; k 2 Z.
The operators (I � Gs)

�1, (I � eGs)
�1 have a simple pole at each of their

particular points, and there is a strip on the left of the line Re(s) = 1 that is
free of poles.

Proof. The proof follows the same lines as in Proposition 9 of [61]. The existence
of particular points for Gs implies the equalities �(h)it = 1 for all inverse branch
h. Then, there are two possible cases, depending on whether all the equalities
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�(h)it=2 = �(h) hold or not. In the �rst case, the operator eGs has particular points

at s = 1 + i(2k + 1)t=2 for k 2 Z. In the second case, the operator eGs has no
particular points.

6. Asymptotic analysis of size and path length

We can now return to the analysis of trie parameters starting with the additive pa-
rameters of size and the various path lengths. We �rst introduce the main asymp-
totic tool, the Mellin transform, that relates poles of Dirichlet series and asymptotic
forms of harmonic sums, including those expressing additive trie parameters. Then,
we obtain our main results in the Poisson model. A further stage of �Dirichlet de-
poissonization� provides the corresponding asymptotic estimates in the Bernoulli
model.

6.1. Mellin transform. The Mellin transform is the method of choice for deriving
asymptotic expansions whenever harmonic sums are involved. We brie�y review
here the properties needed, following the survey article [18]. The Mellin transform
is the integral transform de�ned by

g�(s) :=

Z 1

0

g(x) xs�1 dx:

It is de�ned on a strip Re(s) 2 (�; �) called the fundamental strip that is denoted
by h�; �i. For instance, the Mellin transform of e�x is the Euler gamma function
�(s) with fundamental strip h0;+1i. A harmonic sum is any sum of the form

G(x) =
X
k2K

�kg(�kx);(62)

where the coe�cients f�kg and f�kg are called amplitudes and frequencies, and
the function g is called the base function. The analysis of tries reduces essentially
to asymptotic estimations of particular harmonic sums.

There are two basic principles of Mellin analysis that are used in this paper and
that we now list, referring to [18] for detailed conditions.

(M1) Harmonic sum property. The transform of the general harmonic sum de�ned
by (62) satis�es

G�(s) = �(s) � g�(s); with �(s) =
X
k2K

�k�
�s
k ;(63)

in the intersection of the strips of absolute convergence of �(s) and g�(s).
(M2) Mapping property. The Mellin transform maps the individual terms in the

asymptotic expansion of a function G(x) (here, typically, a harmonic sum
arising from (M1)) to the singularities of the transform G�(s). The corre-
spondence fares both ways and is given by the following rule: Assume that
G�(s) de�ned in some strip h�; �i admits a meromorphic continuation to an
extended strip h�; i with  � �, is analytic on the line Re(s) = , and satis-
�es G�(s) = O(jsj�r) for some r > 1 as Im(s)! �1 in � � Re(s) � . Then
each singular term in a local expansion of G�(s) at a pole in the extended
strip provides a corresponding term in the asymptotic expansion of G(x) at
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+1, according to the dictionary:�
d

(s� �)k

�
=)

�
(�1)kd
(k � 1)!

x��(log x)k�1

�
;(64)

with an error term that is

O(x�):(65)

The combination of (M1) and (M2) then yields the basic principle of asymptotic
analysis by Mellin transforms:

The Mellin transform factorizes a harmonic sum G(x), in such a way
that the asymptotic estimation of the sum reduces to analysing separately
two collections of singularities: those of the basic transform g�(s) and
those of the associated Dirichlet series �(s).

Mellin analysis of harmonic sums is often conducted in situations where: (i) the
transform g� of the base function is of exponential decay (this is systematically the
case when there appears the exponential function); (ii) the Dirichlet series �(s) is
of at most polynomial growth as jIm(s)j ! 1. In this case, the transform G�(s) is
of fast decay at �i1 and the application of (64) is legitimate.

It is apparent from (64) that complex poles induce periodic �uctuations. As
detailed in [18], the framework extends to any function that has in�nitely many
poles in a �nite strip, provided it remains of controlled growth O(jsj�r) with r > 1
on a set of parallels to the real axis that escape to �i1. We refer to the term
of asymptotics �in the weak sense� for such conditions that are only imposed on a
vertical ladder. In that case, there is an in�nite superposition of periodic elements
that may or may not be collectively periodic: this fact depends on whether poles
are regularly spaced vertically, or not.

When poles accumulate from the right near the boundary line Re(s) =  of the
strip h�; i, the general paradigm of (64) and (65) needs to be mildly amended.
In e�ect, it is not immediately clear that the induced �uctuation must contribute
globally a term that remains o(x�). The precise result that follows is logically
needed as the situation arises in the context of dynamical sources.

Proposition 10 (Improved Mellin asymptotics). Assume that the Mellin trans-
form G�(s) of G(x) de�ned in h�; �i admits a meromorphic continuation to the
strip h�; i with  � �, satis�es O(jsj�r) with r > 1 in the weak asymptotic sense
in � � Re(s) � , and is meromorphic on the line Re(s) =  with only �nitely
many poles on that line. Then one has the implication

G�(s) �
X
(�;k)

d�;k
(s� �)k

=) G(x) =
X
(�;k)

(�1)kd�;k
(k � 1)!

x��(logx)k�1 + o(x�);(66)

as x! +1, where � ranges over all poles such that � � Re(�) � .

The singular expansion of a function in a domain is denoted by `�'. It is to be
understood in the sense of [18], as the formal sum of the local singular expansions
of 
(s) at each singularity of the domain.

Proof. By possibly subtracting elementary functions to G(x), we may assume with-
out loss of generality that G(x) is analytic on Re(s) = . (Suitable combinations
of exponentials and monomials in x will do, as they as their transforms are of fast
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decay at �i1.) The classical proof of (64) in (M2) appeals to integration on a
large rectangle with vertical sides Re(s) = � and Re(s) = ; see [18]. We are then
reduced to proving that, for the right boundary,Z +i1

�i1

G�(s)x�s ds = o(x�):

Set s =  + iu and x = ey. Then, the equivalent estimate

x�
Z +1

�1

G�( + iu)e�iuy du = o(x�)

is granted by the Riemann-Lebesgue Lemma: Whenever h(u) is in L1(�1;+1),
then one has Z +1

�1

h(u)eiuy du = o(1);

as y ! �1.

6.2. Size and path-length in the Poisson model: �nite alphabets. The
operator I � Gs is invertible in the plane Re(s) > 1, so that the series �(F; s) is
analytic there and it has a simple pole at s = 1. Two types of situations need to
be distinguished depending on the periodicity of the source.

(a) In the periodic case, �(F; s) has poles on Re(s) = 1 that are regularly spaced
on the line Re(s) = 1 and contribute periodic terms in the asymptotic ex-
pansion. Moreover, there is a vertical strip h1� �; 1i (with 0 < � < 1) free of
poles that provides good bounds for the error terms.

(b) In the aperiodic case, there are no other poles on the line Re(s) = 1; however,
there may be an accumulation of poles on the left of the line Re(s) = 1.
Proposition 10 then allows us to quantify directly the contribution of these
poles.

Theorem 5 (Additive parameters in the Poisson model; �nite alphabet). Let
(Pz; S; F ) be a Poisson model of rate z relative to a source S with �nite alphabet
and initial distribution F .

(i) In the case when the source is aperiodic, the expectations of size and path
length are

bS(z) = 1

h(S)
z + o(z); bPA(z) = 1

h(S)
z log z + CA(F; S)z + o(z):

The expectations of path length of list-tries and bst-tries are of the form (where N
is B or L for bst's and lists)

bPN (z) = KN(S)

h(S)
z log z + CN (F; S)z + o(z):

(ii) In the case when the source is periodic, the expectations of size and path
length are

bS(z) =
1

h(S)
z [1 +QA(log z)] + o(z1��)

bPA(z) =
1

h(S)
z log z + z [CA(F; S) +QA(log z)] + o(z1��):
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The expectations of path length of list-tries and bst-tries are of the form (where N
is B or L)

bPN (z) = KN(S)

h(S)
z log z + z [CN (F; S) +QN (log z)] + o(z1��):

The function QN (u) depends on the source S and is of very small amplitude; � is
a positive constant, satisfying 0 < � < 1, that is determined by the width of the
pole-free region of �(F; s) left of the line Re(s) = 1). The constants KN(S) do not
depend on the initial distribution whereas the constants CN (F; S) may depend on
it.

Proof. The expressions given in Theorem 1 are harmonic sums that involve the ex-
ponential function. The Mellin transform of the exponential is the gamma function
�(s) that has known singularities at the nonpositive integers. With our conven-
tions, the Dirichlet series of these harmonic sums are of the form �(s) = �(�s) for
�(s) a Dirichlet series of fundamental intervals of sorts.

Precisely, the expressions of Theorem 1 have the following Mellin transforms
tabulated along with their fundamental strip:

Size: bS(z) 7! ��hAi(F;�s)(s+ 1)�(s) s 2 h�2;�1i
Path length: bPA(z) 7! ��hAi(F;�s)�(s+ 1) s 2 h�2;�1i

Path length in list-tries: bPL(z) 7! ��hLi(F;�s)�(s + 1) s 2 h�2;�1i
Path length in bst-tries: bPB(z) 7! �hBi(F;�s)�(s) s 2 h�2;�1i :

All these transforms extend to meromorphic functions in a larger strip to the right
of the line Re(s) = �1 in a way suitable for Mellin analysis.

From properties of Gs, the singular expansion of �hAi(F; s) at s = 1 reads,

�hAi(F; s) � �1
�0(1)

1

s� 1
+ CA(F; S) (s = 1):

In the case of hybrid tries (list-tries or bst-tries), expressions (43), (44) for the
basic homoclinal case, (48), (49) for the basic heteroclinal case, (52), (53) for the
Markovian case, together with special values given in Proposition 7, imply, for the
singular expansions of �hNi(F; s) at s = 1, the form

�hNi(F; s) � �1
�0(1)

KN (S)

s� 1
+ CN (F; S) (s = 1):

The constants KN(S) can be made explicit: they only depend on the �uniform
fundamental measures� of depth one, denoted by u?i and on the values of the dom-
inant eigenfunction 	1 at the boundaries of fundamental intervals of depth one.
For instance, in the case when the dynamical source is basic with all its branches
increasing, one has

KL(S) =
X
i

U?
[>i] 	

hLi
1 (hi(0); hi(1); 1);

KB(S) = 2
X
i<j

u?i u
?
j

U?
[i;j]

	
hBi
1 (hi(0); hi(1); hj(0); hj(1)):
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In the basic case, but with not all branches being increasing, the assertion (vi) of

Proposition 6 shows that the poles of (I � eGs)
�1 do not intervene in the dominant

term, and the previous expressions can be generalized thanks to (48) and (49),

KL(S) =
1

2

X
i

U?
[>i]

X
r2L(i)

	
hLi
1 r(hi(0); hi(1); 1);

KB(S) =
X
i<j

u?i u
?
j

U?
[i;j]

X
r2B(i;j)

	
hBi
1 r(hi(0); hi(1); hj(0); hj(1))

In the Markovian case, the formulae are similar and involve the components of the
vector eigenfunction 	1 (see Equations (52) and (53)).

The constants CN (F; S) are determined through residue calculations and also

involve dominant spectral objects of Gs and eGs at s = 1.

Due to the fast decrease of the function �(s) towards �i1, the conditions of
Mellin analysis apply. The proof is then completed by means of Equation (43)
and (44) combined with basic residue calculations.

We remark here that the �uctuations for size can have an asymptotically domi-
nant order, while the �uctuations for path length are always subdominant.

6.3. Size and path-length in the Poisson model: in�nite alphabets. In the
case of an in�nite alphabet, the series of �uniform fundamental measures� of depth
one may involve other singularities, so that the average path lengths of hybrid tries
are not always of order z log z.

We consider three Dirichlet series

L(s) :=
X
i<j

u?j u
?s�1
i ; B(s) :=

X
i<j

u?j u
?
i

(u?i + : : : u?j )
2�s

; A(s) =
X
i

u?i
s:

The last series is exactly the Dirichlet series �
hAi
1 (1; s). By hypothesis (d3) of

De�nition 1, there exists  < 1 such that this series is convergent for Re(s) > .
Since the dominant spectral objects 	s and Es are strictly positive for real s,
the dominant singularity of �hLi(F; s) is located at s = max(1; sL) where sL is
the dominant singularity of L(s). In the same vein, the dominant singularity of
�hBi(F; s) is located at s = max(1; sB) where sB is the dominant singularity of
B(s).

This discussion enables us to state:

Proposition 11 (Additive parameters in the Poisson model; in�nite alphabet).
Assume that the canonical fundamental measures u?i are decreasing and the
dominant singularity sA is strictly less than 1. Then the average path length of the
bst-trie is necessarily of the formbPB(z) = O(z1+�) for all � > 0:

For any 1 < � < 2, there exist sources such that the average path length of the
list-trie is of the form bPL(z) = �(z�):

Proof. The proof is based on relations between the dominant singularities sL and
sB :
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(i) There holds sB � sL � 2. In e�ect, the inequality u?i � (u?i + : : : u?j ) implies

that B(s) � L(s) for s real, s < 2.
(ii) If the sequence u?j is decreasing, then sB � 1. Since (u?j ) is decreasing, one

has u?i + � � �+ u?j � (j � i+ 1)u?j , so that, for 1 < s < 2,

B(s) �
X
i

u?i
X
j>i

u?j
s�1

(j � i+ 1)2�s
�
 X

i

u?i

! 0@X
j

u?j
s�1

j2�s

1A :

The Hölder inequality with � = r=(s� 1) for some r 2] max(; s� 1); 1[ and
� := r=(r + 1� s) entails the convergence of the second series.

(iii) If u?i = �(i��) with 1 < � < 2, then sL = 2=� and sB < 1. In this case, the
series B(1) is convergent with a general term that is �(i��), while L(s) has
its general term that is �(i��) with � = �(s� 1) + �� 1.

Such a discrepancy between the orders of growth of path length in array tries,
list-tries, and bst-tries occurs for instance for the generalized Zipf laws,

p
(�)
k = �(�)�1k��; � > 1;

(�(s) is the Riemann zeta function) that have �soft tails�; see also the case of the
continued fraction source in Section 8.

6.4. Dirichlet depoissonization. Mellin transforms are ideally suited to the
analysis of harmonic sums, of which the Poisson sum relative to path length in
array tries,

F (x) =
X
h

uh
�
1� e�xuh

�
;(67)

is typical. Sums very much like (67) involving an exponential occur in the analysis
of Poisson models; see Theorem 1. On the other hand, by algebraic depoissonization
(12), (13), the Bernoulli model leads to sums exempli�ed by the counterpart of (67),

G(x) =
X
h

uh (1� (1� uh)
x) ;(68)

see Theorem 2. The problem of analysing asymptotically (68) is a bit trickier than
that of (67).

The approach developed here is based on approximating directly the singularities
of a Dirichlet series (the one associated to the Bernoulli model) by the singularities
of another simpler series (the one arising from the Poisson model), this in the
perspective of Mellin analysis. The approach, called Dirichlet depoissonization, is
brie�y introduced and put to use for the analysis of multidimensional search, but
without much justi�cation, in [19]. It will be immediately realized that the heart
of the matter lies in the following result.

Proposition 12 (Dirichlet depoissonization). Let uh ! 0 with uh positive. De�ne
the two Dirichlet series


(s) =
X
h

ush; e
(s) =X
h

�
log

1

1� uh

�s
:
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Assume that 
(s) has a nonempty domain of convergence, is meromorphically con-
tinuable to the whole of C , and is in any �nite strip of polynomial growth in the

weak asymptotic sense. Then the same properties hold for e
(s). In addition, the

singularities of 
; e
 are related by

Sing(e
) = fs� k j s 2 Sing(
) and k 2 Ng ;
and the singular expansions of 
(s) and e
(s) are related bye
(s) � 
(s) + c1(s)
(s + 1) + c2(s)
(s+ 2) + � � � ;(69)

where

cj(s) = [xj ] exp

�
s log(

1

x
log

1

1� x
)

�
:

(The term �weak� refers again to the fact that growth need only be controlled
on certain parallels to the real axis tending to �i1.)

Proof. What we want to do is justify the chain of formal transformations,

e
(s) �
X

uh
s exp

�
s log

�
1 +

1

2
uh +

1

3
uh

2 + � � �
��

�
X

uh
s exp

�
s

�
12

uh
+

5

24
uh

2 + � � �
��

�
X

uh
s

�
1 +

1

2
suh + (

5

24
s+

18

s2
)uh

2 + (
1

8
s+

5

48
s2 +

1

48
s3)uh

3 + � � �
�

� 
(s) + c1(s)
(s+ 1) + c2(s)
(s+ 2) + � � � :
Let �0 denotes the abscissa of convergence of 
(s). The indices of the uh have been
dropped and it is assumed implicitly that sums range over the whole set of possible
fuhg. We also �x an (arbitrary) integerm that will control the order of expansions.

Analytic continuation. In a �rst pass, we consider the problem of transforming

(s) in a way that ensures analytic continuation, but without worrying about
uniformity with respect to s. We assume that Re(s) > �0. First, since uh ! 0,
Taylor expansions produce

log

�
1

u
log(1� u)�1

�
= D(u) +O(um+1) (u! 0);

for some computable polynomial D of degree m. Thus,e
(s) =Xus exp(sD(u)) � exp(O(um+1)):

Now,

exp(O(um+1)) = 1 +O(um+1) (u! 0):

In particular, the di�erence

�(s) := e
(s)�Xus exp(sD(u))(70)

has its general term that decreases like O(u�+m+1), where � = Re(s). It is in
particular analytic in Re(s) � �0 �m.

Next, we turn to


1(s) =
X

us exp(sD(u));
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for which one has

exp(sD(u)) = 1 + c1(s)u+ c2(s)u
2 + � � �+ cm(s)u

m +O(um+1);

where the cj are obtained by Equation (12). Indeed, for any �xed s , the quantity
sD(u) lies in a neighbourhood of 0 for which the expansion of exp(v) = 1 + v +
� � �+O(vm+1) is applicable. Thus, the di�erence

�1(s) = 
1(s)� (
(s) + c1(s)
(s+ 1) + � � �+ cm(s)
(s+m))(71)

has its general term that decreases like u�+m+1 so that it is analytic in Re(s) �
�0 �m. Equations (70) and (71) imply that

e
(s) = �(s) + �1(s) + (
(s) + c1(s)
(s+ 1) + � � �+ cm(s)
(s +m))

originally de�ned for Re(s) > �0 is meromorphic Re(s) � �0�m. Since m was �xed

arbitrarily at the beginning, meromorphicity of e
(s) in the whole of C results. In

addition, the singularities of e
 are those of 
 shifted by 0; 1; 2; : : : , and the singular
expansion (69) is justi�ed.

Growth. There remains to examine the growth of e
(s) as Im(s)! �1. This is
achieved by modifying the previous proof, taking uniformity with respect to s into
account. We may assume that Re(s) < �0 + 1, since it is analytic continuation to
the left that matters. The basic idea is that

exp(sO(um+1))� 1 =

(
O(1) = O(jsjum+1) if jsjum+1 > 1

O(jsjum+1) if jsjum+1 � 1.
(72)

The �rst line is justi�ed by the fact that u is real and Re(s) is bounded from
above, so that we have a bound of O(1) that is replaced by the less precise estimate
O(jsjum+1); the second line follows from the standard expansion of ex� 1 near the
origin. Consequently, the function �(s) de�ned in Eq. (70) is O(jsj) for Re(s) �
�0 �m.

In a manner similar to (72), separating the two cases jsju > 1 and jsju � 1 yields
a uniform version of (70):

exp(sD(u)) = 1 + c1(s)u+ c2(s)u
2 + � � �+ cm(s)u

m +O(jsjm+1um+1);

There results that �1(s) is, for Re(s) � �0 � m, of growth at most O(jsjm+1).

Therefore, e
(s) is a sum of quantities of the form cj(s)�(s+ j) and of an analytic
quantity �(s) + �1(s) that is O(jsjm+1). It is thus of weak polynomial growth in
Re(s) � �0 �m. Since m is chosen arbitrarily, the result follows.

The argument adapts to the more general pair of Dirichlet series


(s) =
X
h

�hu
s
h;

e
(s) =X
h

�h

�
log

1

1� uh

�s
;

with �h > 0, and the property stated in Proposition 12 still holds in this case.
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6.5. Asymptotics in the Bernoulli model. The principle of Dirichlet depois-
sonization shows that the only poles introduced by the method are at distance at
least one from the dominant poles arising from the Poisson model. Consequently,
the estimates of Theorem 5 remain valid in that case.

Theorem 6 (Asymptotics in the Bernoulli model, �nite alphabet). Under the
Bernoulli model of parameter n and for a source with a �nite alphabet, the O(n)
character of the expected trie size and the O(n logn) character of the expected path
lengths hold: the estimates given in Theorem 5 remain valid provided the Poisson
parameter z is replaced by the Bernoulli parameter n.

Proposition 11 is similarly susceptible to extensions in the Bernoulli model.

7. Asymptotic analysis of height

Finally, we consider the last parameter, the height. We �rst perform an asymptotic
reduction to a harmonic sum from which the asymptotic form of the expected
height in the Poisson model derives painlessly. A further step of saddle point
depoissonization provides the �nal result under the Bernoulli model.

7.1. Double exponential approximation. The expectation of height in a Pois-
son model relative to a rate z, a source S, and an initial distribution F , is expressed
by the in�nite sum (see Theorem 3):

E[h;Pz; S; F ] =
1X
k=0

[1� �k(z)] ; with �k(z) =
Y
jhj=k

(1 + zuh)e
�zuh(73)

Such a series does not fall directly in the orbit of Mellin transform techniques but
it can be well approximated by a harmonic sum. Indeed, the Quasi-Power Property
of Proposition 5 provides the existence of a constant � de�ned by

� :=
1

2
lim
k!1

�
hAi
k (F; 2)

�(2)k
:(74)

The following result gives �rst an asymptotic approximation to the distribution �k
stated under a strong form of L1-convergence.

Proposition 13. The distribution of trie height under the Poisson model admits
a double exponential approximation: the two sequences

�k(z) =
Y
jhj=k

(1 + zuh)e
�zuh ; b�k(z) := exp[��z2�(2)k];

satisfy X
k�0

[�k(z)� b�k(z)] = o(1):

Proof. We use the fact that log�k(z) is a harmonic sum relative to �
hAi
k (F; s) and

proceed in two steps.

First step. First, we compare �k(z) with e�k(z) where
e�k(z) = Y

jhj=k

exp[�z
2uh

2

2
] = exp(�z

2

2

X
jhj=k

uh
2);
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Choose an arbitrary number d in the interval�
3 log z

j log�(3)j ;
2 log z

j log�(2)j
�

and set

�(z) := bd log zc :
The existence of these quantities is granted by the strict inequality
log�(2)= log�(3) < 2=3 of assertion (ii) of Proposition 6. Then, there exist positive
numbers �; �0 and � 2 [0; 1[ such that the following three properties hold:

(C1) : z
2�2

�(z) � z� (C2) : z
3�3

�(z) � z��
0

; (C3) : (8h; jhj � �(z)) zuh � �:

The sum in (73) is split into two parts (left tail; central domain and right tail)
according to the integer �(z).

(i) Left tail. We �rst consider the part relative to indices k � �(z). The inequal-
ity (true for x � 0)

exp(�x
2

2
) � (1 + x)e�x � exp(� x2

2(1 + x)
)

implies that

e�k(z)� �k(z) � exp(�z
2

2

X
jhj=k

uh
2)� exp(�z

2

2

X
jhj=k

uh
2

1 + zuh
):(75)

This introduces the sequence

Bk =
1

2

X
jhj=k

uh
2

1 + zuh
:

For any positive sequence (ai)i2I of sum s, the inequalityX
i2I

ai
2

1 + ai
� s2

1 + s

holds, and this implies that Bk is decreasing. This fact, in conjunction with the
Mean Value Theorem, entails the inequalitye�k(z)� �k(z) � z3 exp[�z2B�(z)]:

Now, Property (C3) of index �(z), the Quasi-Power Property, and �nally Property
(C1) of index �(z) imply thatX

k��(z)

e�k(z)� �k(z) � �(z) z3 exp[�dz�] = o(1)(76)

(ii) Central domain and right tail. The second part of the sum relative to k >
�(z) is also o(1). Indeed, the inequality

�k(z)� e�k(z) � log�k(z)� log e�k(z):
and the relations

log�k(z) �
X
jhj=k

�
� (zuh)

2

2
+

(zuh)
3

3

�
; log e�k(z) = �

X
jhj=k

(zuh)
2

2
;



48 CLÉMENT, FLAJOLET, VALLÉE

entail that

�k(z)� e�k(z) � z3
X
jhj=k

uh
3:

Once again, the Quasi-Power Property at s = 3 in conjunction with Property (C2)
of index �(z) yields the following inequalitiesX

k��(z)

[�k(z)� e�k(z)] � d0z
3
X

k��(z)

�3
k = d0z

3 �3
�(z)

1� �3
� z��

0

= o(1):(77)

Second step. The distribution e�k(z) under the Poisson model is thus well

approximated by b�k(z) = exp [��z2�(2)k]. The Quasi-Power Property once again
provides two constants d1 and d2 such that the following two inequalities hold������12

X
jhj=k

uh
2 � ��(2)

k

������ � d1 �
k;

X
jhj=k

uh
2 � 2d2 �(2)

k
;

where � lies strictly between the dominant eigenvalue �(2) and the modulus �(2)
of a subdominant eigenvalue of the operator G2. Hence, the inequalities������

X
k�0

e�k(z)� b�k(z)
������ �

X
k�0

je�k(z)� b�k(z)j � d1z
2
X
k�0

�k exp[�d2 z2 �(2)k];(78)

entail, by an elementary argument or by Mellin transforms, thatX
k�0

�k exp [�d2z2�(2)k] = o(1):(79)

Finally, Equations (76), (77) and (79) imply the result.

7.2. Distribution of height under a Poisson model. First, note that Equa-

tions (76), (77) and (79) provide the asymptotic distribution of height bhz in the
model (Pz ; S; F ), since they entail

lim
z!1

sup
k�0

���Pr [bhz < k]� exp [��z2�(2)k]
��� = 0:

On the other hand, the harmonic sum that approximates the average height in
a Poisson model

D(z) =

1X
k=0

�
1� exp[��z2�(2)k]

�
;(80)

has Mellin transform

D�(s) = �1

2
��s=2

�(s=2)

1� �(2)
�s=2

:

This is a textbook example of a Mellin analysis. The fundamental strip is h�2; 0i,
with the singular expansion at s = 0 being

D�(s) � � 2

log�(2)

1

s2
+

�
 � log �

log�(2)
� 1

2

�
1

s
(s = 0):

There are also regularly spaced poles on the line Re(s) = 0 that entail periodic
�uctuations. We can state:
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Theorem 7 (Asymptotic height under the Poisson model). In the Poisson model
of rate z relative to a source S with initial distribution F , the average height is

bH(z) =
2

j log�(2)j log z +QF (log z)�
�
 � log �

log�(2)
� 1

2

�
+ o(1);

where � is a positive constant depending on the source (S; F ) and QF (u) is a periodic
function of very small amplitude.
Moreover, the asymptotic distribution of height is of double exponential type,

lim
z!1

sup
k�0

���Prfbhz < kg � exp [��z2�(2)k]
��� = 0:

7.3. Height under the Bernoulli model. We �rst recall the notations of The-
orem 4. The quantity �k;n denotes the probability that a trie built on an n�tuple
of random items has height at most k under the Bernoulli model. The exponential
generating function �k(z) of the �k;n has value

�k(z) :=
Y
jhj=k

(1 + zuh) :

In the case of a memoryless source, the analysis can be conducted from there
using the saddle point method [16, 20] and it even becomes completely elementary
in the case of unbiased binary tries; see [39]. We propose to follow precisely the
same approach in order to analyse height in the case of a general dynamical source.
The reader is also referred to Jacquet and Szpankowski's interesting paper [29] for
a general framework of saddle-point depoissonization (under the name of �analytic
depoissonization�).

The formal idea of the analysis is the following: Start with the Cauchy integral
formula

�k;n =
n!

2i�

Z


�k(z)
dz

zn+1
;(81)

where  is a simple closed contour encircling positively the origin. Since one has,
for any x 2 (0;+1) and an arbitrary �xed m:

log(1 + x) =
x

1
� x2

2
+
x3

3
� � � �+ (�1)m�1 x

m�1

m� 1
+O(xm);

the �exp-log� transformation applied to the integrand gives

�k(z) = exp
X

log(1 + zuh)

= exp

�
z
X

uh � z2

2

X
uh

2 +
z3

3

X
uh

3 � � � �+O(zm
X

uh
m)

�
;

(82)

where all the sums are taken over jhj = k. Retaining only the �rst two terms in (82)
leads us to expect, for suitable values of k at least, the validity of the approximation

�k;n � n!

2i�

Z


exp

�
�z

2

2

X
uh

2

�
ez dz

zn+1
:(83)

This may now be viewed as a perturbation of the Cauchy coe�cient integral applied
to ez. But it is well-known that the latter integral can be estimated by the saddle
point method [10] which consists in the following steps:
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(i) integrate along the circle jzj = n (an approximate saddle point of the inte-
grand);

(ii) observe that the contribution is concentrated in a small sector nei� with j�j �
�0 and �0 = n�1=2+� for any � such that 0 < � < 1

6 (this conditions ensures

that one has simultaneously n�0
2 ! +1 while n�0

3 ! 0);
(iii) �nally reduce the integral asymptotically to a complete Gaussian integral that

can be evaluated.

In the case of ez, this is of course one of the standard ways of deriving Stirling's
formula for 1=n!. If we regard the factor of ez=zn+1 as almost constant on the tiny
fraction of the integration contour that matters, we are then led to the approxima-
tions

�k;n � n!

2i�
exp

�
�n

2

2

X
uh

2

�Z
0

ez dz

zn+1

� exp

�
�n

2

2

X
u2h

�
(84)

� exp
���n2�(2)k� ;(85)

in view of the saddle point integral of ez=zn+1, of Stirling's formula for (84), and
of basic results relative to fundamental intervals for (85). The estimate (85) is
nothing but the double-exponential approximation of the distribution that was
already encountered under the Poisson model. It involves the constant � already
de�ned in (74).

Theorem 8 (Asymptotic height under the Bernoulli model). Under the Bernoulli
model of parameter n, the logarithmic character of the expected trie height and the
uniform double exponential approximation hold: the estimates given in Theorem 6
remain valid provided the Poisson parameter z is replaced by the Bernoulli param-
eter n.

Proof. We now explain how to make the preceding strategy fully rigorous. We
consider a small constant � with 0 < � < 1

6 , and we set

�0 = n�1=2+�;  = fnei� �� j�j � �g; 0 = fnei� �� j�j � �0g:
The argument needs to distinguish two domains of variation of k with a boundary
�1(n) that is

�1(n) = bd lognc ;
for a constant d chosen to satisfy the following constraints that are re�nements of
constraints already encountered in the study of the Poisson model.

(C1) d < 2=j log�(2)j, which ensures that for k = �1(n), the term n2�(2)k

is of exact order �(n�0) with �0 > 0.
(C2) d > 2=j log �j, where � is strictly enclosed between the dominant

eigenvalue �(2) and the modulus � of a subdominant eigenvalue
of the operator G2. This makes the approximation n2

P
u2h �

2�n2�(2)k accurate to O(n��1) absolute error as soon as k � �1(n)
(see Eq. (59).

(C3) d > 3=j log�(3)j, so that for k � �1(n), the cubic terms n3�(3)k are
O(n��2) (with �2 > 0) and can be neglected;
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(C4) d > (1+2�)=j log�(2)j, which ensures that the terms n2�(2)k�0
2 are

O(n��3) (with �3 > 0) for k � �1(n). This is a technical requirement
needed to validate a saddle point perturbation estimate.

Observe that (C1) and (C3) are compatible given the log-concavity properties of
�(�) while the compatibility of (C1) on the one hand, (C2) and (C4) on the other
hand is automatically granted. Consequently, the constant d can be chosen any-
where in the interval�

max

�
3

j log�(3)j ;
2

j log �j ;
1 + 2�

j log�(2)j
�
;

2

j log�(2)j
�
:

We also need repeatedly estimates of the form jeh(z)j for z = nei� and h(z) =
z � cz2 with c = �(2)k small. One has

gn(�) := log
���eh(nei�)��� = Re(h(nei�)) = n cos � � cn2 cos(2�):

An elementary study shows that for n large enough and cn = o(1) (this is granted
for c = �(2)k and k � �1(n) by (C4)), gn(�) attains uniquely its maximum on
(��;+�) at � = 0 and is unimodal on (��

2 ;+
�
2 ).

(i) Left tail. At k = �1(n) and on the circle z = nei�, we have, with condition
(C1),

log j�k(z)j � n cos � � c0n
�0 ;

for some c0 > 0 and �0 > 0, since the quadratic term dominates and is of exact
order �(n�0). Thus, trivial bounds applied to the Cauchy integral entail

��1(n);n �
n!en

nn
� e�c0n�0 ;(86)

which corresponds to the left tail of the distribution, k � �1(n), being globally
exponentially small.

(ii) Central domain and right tail. For k � �1(n), we need to check that the
saddle point method applies. On the part  n 0 of the contour, we have for n large
enough

j�k(z)j �
��en cos �0 exp

���n2�(2)k +O(n2�k) +O(n3�(3)k)
��� :

But conditions (C2) and (C3) imply that the contribution of the integral in the
noncentral region  n 0 satis�es

����� n!2i�

Z
n0

�k(z)
dz

zn+1

����� � n!

nn
sup
n0

j�k(z)j = O
�
exp[�n�02=4] exp[��n2�(2)k ]

�
:

(87)

(We used a replacement of �0
2=2 by �0

2=4 in order to absorb terms of the form
p
n

that come from Stirling Formula). From (87), the contribution on  n 0 is thus
exponentially small.
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For similar reasons, the quantity �k(z) in the central region 0 satis�es, for some
�3 > 0,

�k(z) = exp
�
z � �z2�(2)k +O(n2�k) +O(n3�(3)k)

�
= ez exp[��n2�(2)k ]

�
1 +O(

1

n�3
)

�
:(88)

This results from conditions (C2); (C3), and condition (C4) ensures that the varia-
tion of z2�(2)k on 0 is bounded.

Since the Cauchy coe�cient integral applied to ez yields 1=n!, given the
bound (87) on  n 0 and the uniform approximation (88) on 0, we conclude
that, for k � �1(n),

�k;n = exp[��n2�(2)k]
�
1 +O(

1

n�3
)

�
:(89)

Equations (86) and (89) thus fully characterize the whole domain k � 1. They
establish an approximation of the very same type as in the the Poisson model. The
proof is now completed.

As a methodological aside, we observe that the proof given above essentially
amounts to a lifting of the estimates established for large real values of the Poisson
parameter z to the case where z assumes values on (parts of) a large complex circle
z = nei�. This fact is in agreement with the general principles of saddle-point
depoissonization [16, 29]. It is also to be noted, following [16], that the double
exponential limit formula for the distribution of height is not a limit probability
distribution in the strictest classical sense: setting

�0(n) :=

�
log(�n2)

j log�(2)j
�

and leaving aside error terms, we have

��0(n)+j;n � e��(n)�(2)
j

where �(n) =

�
1

�(2)

�flog(�n2)=j log �(2)jg
;(90)

with fug the fractional part function. In other words, the distribution is a discrete
sampling of the double exponential function, as expressed by (89). Equivalently,
there is a family (90) of distributions (governed by the bounded parameter �(n))
that change gradually and periodically as n increases through powers of 1=�(2).
Such periodicity phenomena expressed by discrete samplings of an extreme value
distribution are by now fairly common in tries; see for instance [33] for a detailed
discussion.

8. Applications

We brie�y develop here three main applications to Bernoulli sources, Markov chains,
and the continued fraction source. Statements here are specializations of Theo-
rems 1 to 8 of the paper; they are systematically given under the Bernoulli model
of index n and simpli�ed forms are often stated so as to emphasize better the shape
of results. We then conclude with a few open problems.
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8.1. Memoryless sources. Memoryless sources are sources on a �nite or in�nite
alphabet M, where symbol m occurs independently with probability pm. The
standard Ruelle operator associated to the system is

Gs[f ](z) :=
X
m2M

psm f(qm + pmz); with qm :=
X
i<m

pi:

The dominant eigenfunction is the same for each component operator Gs;h and
it equals the constant function, for all values of s;Re(s) > �; then, the constant
function is also the dominant eigenfunction of Gs itself, for all values of s, and
�(s) =

P
m2M psm is the dominant eigenvalue. The dominant projector es[f ] is the

integral
R 1
0 f(t)dt. More generally, the spectrum of Gs is

SpGs = f�`(s) :=
X
m2M

ps+`m ; ` � 0g;

so that the Fredholm determinant is

F(s; u) =
Y
`�0

[1� u
X
m2M

pm
`+s]:

The eigenvector relative to the `-th eigenvalue �`(s) is a polynomial of degree `. For
symmetric memoryless sources, this `th eigenvalue is independent of s and in the
case of two symbols, the family of eigenfunctions coincides exactly with Bernoulli
polynomials [4], de�ned by

B`(z) := `! [t`]
tezt

et � 1
:

The results obtained here are to be compared to the classical results on digital
trees built on a �nite alphabetM = f1; 2; : : : ; rg where symbol i has probability pi.
We state3

Corollary 1. Consider a �nite memoryless source S with �nite alphabet of car-
dinality r and probabilities fpigri=1. The entropy and the coincidence probabilities
are

h(S) = �
X
i

pi log pi; c(S) =
X
i

p2i :

(i) Trie size and standard path length have expectations of the form

S(n) � 1

h(S)
n; P (n) � n logn

h(S)
:

(ii) Trie height has asymptotically a double exponential distribution with mean

H(n) � 2

j log c(S)j logn:

(iii) The path lengths of hybrid tries satisfy

PL(n) =
KL(S)

h(S)
n logn; PB(n) =

KL(S)

h(S)
n logn;

3We use the notation `�' for `approximately equal', (as opposed to `�' reserved for the more
precise `asymptotically equivalent'), i.e., up to possible �uctuations induced by nonreal poles.
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where

KL(S) =

rX
i=1

(i� 1)pi; KB(S) = 2
X
i<j

pipj
pi + � � �+ pj

:

The statements relative to path length and height extend the analyses of [43,
54, 55] to the case of a general analytic density. The analysis of hybrid tries was
already given in [7]. Devroye [11] considered the e�ect on the unbiased memoryless
source (p1 = p2 = 1

2 ) of a density that need not be analytic. Devroye showed

that either H(n) � 2 logn or H(n) = +1 depending on whether
R
f2 (with f the

density) exist or not, and that P (n) � n logn as soon as f is square integrable.

Quite often, authors do not take into account the possible periodic �uctuations
that may occur in the main asymptotic estimate of size. Here are some examples
of periodic memoryless sources:

(1=2; 1=4; 1=4); (p; p; p2) with p = (1=2)(
p
2�1); (pm)m�1 with pm = (1=2)m:

The case when the Fredholm determinant is pseudo�periodic, i.e.,

F(s+ it; u) = F(s; eiau) with a 6= 2k�

is also interesting. A Bernoulli source is pseudo�periodic if and only if there exist
two real numbers a and b such that b does not belong to the cyclic group < a >
generated by a and all the numbers pm=b belong to this cyclic group < a >. An
instance of this situation is (2=5; 2=5; 1=5). As noted by Pollicott [44] and Fayolle
et al. [15], there is an accumulation of s for which �(s) = 1 on the left of the line
Re(s) = 1. Our improved Mellin argument of Prop. 12 shows directly that the total
contribution of these poles contributes a term to the asymptotic expansion of size
that remains o(n), and a term o(n logn) in the expansion of path length.

8.2. Markov chains. We consider now the particular case of Markov chains. Here,
the alphabetM is �nite, of cardinality r, and the matrix �s whose general term is
pijj

s plays a central rôle. For s = 1, it is the transition matrix of the Markov chain.
The spectrum of the matrix operator Gs is exactly the union of the spectra of the
matrices �s+`, for all integers ` � 0, so that

SpGs =
[
`�0

Sp �s+` F(s; u) =
Y
`�0

det(I � u�s+`):

If the eigenvalues of matrix �s are denoted by �(i)(s) for 1 � i � r, then

SpGs = f�(i)(s+ `) j1 � i � r; ` � 0g;
and the eigenvector relative to eigenvalue �(i)(s + `) has all its components that
are polynomials of degree `. Finally, the dominant eigenvalue of the operator Gs is
exactly the dominant eigenvalue of the matrix �s, and the associated eigenfunction
has all its components that are constants. Finally, the k-th component of the
eigenfunction 	1 is nothing more than the vector of stationary probabilities of the
Markov chain.

Corollary 2. Consider a Markov chain S with transition probabili-
ties fpijjg1�i;j�r. The entropy and the coincidence probabilities are

h(S) = �
X
k

�k
X
j

pjjk log pjjk; c(S) = �(2)
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where �k the k-th component of the vector of stationary probabilities of the Markov
chain, and �(2) is the dominant eigenvalue of the termwise squared matrix

�
pijj

2
�
.

(i) Trie size and standard path length have expectations of the form

S(n) � 1

h(S)
n; P (n) � 1

h(S)
n logn:

(ii) Trie height has asymptotically a double exponential distribution with mean

H(n) � 2

j log�(2)j logn:

(iii) The expected values of path length in hybrid tries satisfy

PL(n) � KL(S)

h(S)
n logn; PB(n) � KB(S)

h(S)
n logn;

where,

KL(S) =
X
k

�k
X
i

(i� 1)pi j k; KB(S) = 2
X
k

�k
X
i<j

pijkpjjk

pijk + � � �+ pjjk
:

As mentioned in the introduction, this result supplements reference [26].

8.3. The continued fraction source. Preliminary results about the continued
fraction source have been already reported in [21], but were limited to an initial
density that is uniform. The Ruelle operator in this case is called the Ruelle�Mayer
operator,

Gs[f ](z) :=
X
m�1

1

(m+ z)2s
f(

1

m+ z
);

and convergence is granted for complex s satisfying Re(s) > 1=2.

The entropy of the source is related to what is known as Lévy's constant that
plays a key rôle in the metric theory of continued fractions and the analysis of the
Euclidean algorithm. The coincidence probability �(2) relative to the Ruelle Mayer�
operator is a constant, sometimes known as �Vallée's constant�, that intervenes in
two�dimensional generalizations of the Euclidean algorithm [9, 21, 58]. (For these
aspects, see also [21] and references therein.) The dominant eigenfunction of G1,
known as Gauss's measure, is proportional to 1=(1 + x).

Corollary 3. Consider the continued fraction source S and any initial density that
is analytic. The entropy and the coincidence probability are

h(S) = ��0(1) = �2

6 log 2
c(S) = �(2)

:
= 0:19945 88183 43767:

(i) The expected values of size and path length satisfy

S(n) =
6 log 2

�2
n+ o(n); PA(n) =

6 log 2

�2
n logn+O(n):

(ii) Height obeys a double exponential law with mean

H(n) =
2

j log�(2)j logn+O(1):



56 CLÉMENT, FLAJOLET, VALLÉE

(iii) The expected values of path length in hybrid tries satisfy

PL(n) � 3 log 2

2�2
n log2 n

PB(n) � Cn logn with C :=
3

�2

241 + 4
X
k�2

1

k2 � 1
log

k + 1

2

35 :
The example of the continued fraction source is interesting, on many counts.

First, as stated in (iii) above, the average path lengths PL(n) of the list-trie and the
average path length PB(n) of the bst-trie turn out not to be of the same asymptotic
order. when n tends to 1. (Not too unexpectedly, the continued fraction source
resembles a generalized Zipf source of parameter � = 2; see Section 6.3.) Second,
periodicity related issues are particularly fascinating.

The continued fraction source is aperiodic, and the poles of (I�Gs)�1 intervene in
deep mathematical problems: They include all the nontrivial zeros of the Riemann
zeta function. The other values s for which Gs has eigenvalue 1 are related to the
eigenvalues of the hyperbolic Laplace operators and they lie on the line Re(s) = 1=2
(see Efrat's paper [12]). However, these last values do not occur as poles of the
Dirichlet series �hAi(Id; s). In e�ect, in the half-plane Re(s) > 0, the Dirichlet
series �(Id; s) can be represented as (see Prop. 2, 3 of [21])

�(s) � �hAi(Id; s) = 2
�(2s� 1)

�(2s)

21�s � 1

1� s
+
R(s)

�(2s)

where R(s) is analytic in Re(s) > 0. So, when the initial density is uniform, the
asymptotic expansions of S(n) or PA(n) given in Theorem 6 solely involve the
nontrivial zeros of the Riemann zeta function. For an arbitrary density, the same
situation occurs, because the eigenvectors f of the hyperbolic Laplace operators

satisfy
R 1
0 f(x)dx = 0, as pointed out to us by [40]. Thus, the nature of second order

asymptotics of additive parameters must be related to the Riemann hypothesis.

Corollary 4. The �uctuations in the mean value of path length and size of standard
tries under the continued fraction source are related to the Riemann hypothesis. For
instance, for size, one has

S(n) =
6 log 2

�2
n+�(n) + O(1);

where �(n) is a sum indexed by the set Z of zeros of the Riemann zeta function in
the critical strip 0 < Re(s) < 1,

�(n) =
X
�2Z

Res
�
�(�s)�(s+ 1)n�s

�
s=�=2

:(91)

In particular, under the Riemann hypothesis (R.H.), we have �(n) = O(n1=4+�)
for any � > 0. In addition, unconditionally with respect to R.H., the following two
implications hold.

(i) If �0 = supfRe(�); � 2 Zg, then, for any � > 0, one has

lim
n!1

�(n)

n�0=2+�
= 0:
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(ii) Conversely, if �1 is the supremum of all � such that �(n)=n�=2 is unbounded,
then �(s) has at least one zero in Re(s) � �1.

Proof. Equation (91) follows, at least formally, from a residue computation along a
large rectangle (�11=10� iT; 1=10� iT ). Analytically, (91) is then justi�ed by the
fact that �(s) grows somewhat large along horizontal lines that traverse the critical
strip at high altitudes, thereby avoiding zeros in the critical strip. Accordingly,
1=�(s) is of weak polynomial growth in a strip that contains the critical strip. This
last fact is granted by known properties of the Riemann zeta function; we omit
details as they are entirely similar to the discussion of a formula of Ramanujan in
Titchmarsh's book [56]; see Sections 9.7 and 9.8.

Once (91) is granted, the other implications follow easily.

Numerical aspects of �uctuations. We o�er here a succinct discussion of the �uc-
tuating function �(n). We know, from the preceding discussion, that the function
�(s) is of weak polynomial growth. Let �[T0](n) be the truncated sum of (91)
restricted to zeros � of the zeta function such that jIm(�)j � T0. The di�erence,
j�(n)��[T0](n)j is the product of a polynomial in T0 and of a quantity that is ap-
proximately e��T0=2n1=2, given the fast exponential decay of the Gamma function
at �i1. In this discussion, we use

:
= in the informal sense of `roughly equal'.

Take for instance T0 = 5� 108 corresponding to the �rst 1:5� 109 zeros of the
zeta function, as computed by van de Lune, te Riele and Winter in 1986. These
zeros all satisfy the Riemann hypothesis. Forgetting about ancillary polynomial
factors, an upper bound on the truncation error, when the terms corresponding to
the high zeros of Z are neglected, is then at worst

j�(n)��[T0](n)j � E1(n) where E1(n)
:
=
�
10�6�109 � n

�1=2
:

This is thus totally negligible for all values of n less than huge threshold of about

106�109 .

For all practical purposes here the Riemann hypothesis is thus to be regarded
as �true�. We next focus attention on the �rst few terms in (91). Two ingredients
intervene: the fast decay of the Gamma function and the fact that the �rst nonreal
zeros of the zeta function have a fairly large imaginary part, being at �1; �2 =
1
2 � 14:134i. Assuming for the sake of illustration that the residue of �(�s) at
�1; �2 is of modulus at most 50, the corresponding contribution to �(n) �the one
that should be numerically dominating anyway� is now bounded from above by
(8 � 10�7) � n1=4: The next zeros are farther away where the Gamma function is
even smaller, so that we may reasonably expect

j�(n)j � 10�6 � n1=4 for n � 106�109 :

This quantity will become 1 only for n about 1024.

In summary, the Riemann hypothesis, whether true or false, does not really a�ect
the physical nature of the �uctuations. In addition, �(n), even though it oscillates
from �1 to +1, is still going not to be detectable until n is quite large (n > 1024).
Fluctuations will be in particular completely o�set by the constant term in the ex-
pansion of S(n). This fact is also interesting since it provides a naturally occurring
instance of the �Dumont phenomenon� (�rst discovered by Dumont in the 1980's
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and proved rigorously by Delange). The surprising phenomenon is that, empirically
for values of x very close to 1, one has apparently the numerical convergence

1X
n=1

�(n)xn
?�! 1

�(0)
= �2; (x! 1�);

(�(n) is the Moebius function), although, in reality, the left hand side eventually
oscillates unboundedly as n! +1.

8.4. Extensions and open problems. For reasons related to database applica-
tions [13, 36], one often considers the variant of tries called bucket tries or b-tries,
where recursion is halted as soon as subsets of words with cardinality � b are en-
countered. (Standard tries correspond to b = 1 and subtrees of size � b are then
stored in �buckets� or �pages�.). The framework developed in this paper applies
almost verbatim, so that we only indicate brie�y the corresponding conclusions.

Corollary 5. For bucket tries with parameter b, height obeys a double exponential
law

lim
n!1

sup
k�0

��Prfhn � kg � exp[��b �(b+ 1)k nb+1]
�� = 0;

for some �b > 0 and its expected value satis�es

E[hn] � b+ 1

j log�(b+ 1)j logn:

Size, de�ned as the number of internal nodes of the tree, has mean

S(n) � 1

b h(S)
n:

Various types of path lengths can be de�ned and similarly analysed: on average,
a random branch in the tree still has depth logn=h(S) and it is only an O(1) term
that modi�es the corresponding estimate of standard tries. It is to be noted that the
parameters governing the distribution of height change radically, while the estimate
for size shows that pages tend to be used to a fraction h(S) of their capacity since
on average a b-trie behaves in a way quantitatively similar to a perfect packing into
pages of capacity b � h(S).

Preliminary investigations suggest that our theory may also applicable to su�x
trees, despite di�culties due to correlations inherently present in that structure;
see [27] for a treatment of classical models.

Globally, we may regard standard trie height as �well known�, since its moments
and its distribution are well characterized. We leave as an open problem of interest
the following question.

(P1) Analysis of the height of hybrid tries (list tries and bst-tries), where height
is de�ned as the length of the maximal chain of pointers connecting the root to any
external node. Perhaps probabilistic methods might be of use, since the problem
amounts to determining the �balance� between the few long branches of the abstract
trie and the many large collections of long branches inside structured nodes.

For additive parameters under general source models, little distributional infor-
mation is available at the moment, even for standard tries. Here is a set of three
open problems.
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(P2) Concentration of distribution almost certainly holds for size and path length.
This is equivalent to saying that the standard deviation is of order strictly smaller
than the mean. What one needs to establish is the exact cancellation between
the main asymptotic orders of the squared mean and of the moment of order 2.
This study should be interesting since, already for the standard trie and the uni-
form Bernoulli model, Prodinger and his collaborators have discovered surprising
connections between such variance estimations and modular form identities [31, 32].

(P3) A limit distribution of the Gaussian type for size and path length is likely
to hold, at least in many subcases. This conjecture is suggested by hard analytical
results of Jacquet, Régnier, and Szpankowski [25, 28] under classical source models;
see also Mahmoud's book [39] for an account of some aspects. However, our feeling
at the moment is that such limit laws might be dependent on deep conjectures on
the eigenvalues �j(s) and on perturbations of the equation �j(s) = 1 in the form of
�j(s) = eit with t small. (In the continued fraction case, the Riemann hypothesis
lies immediately below the surface.)

(P4) The limit distribution of the search cost of a random item in standard and
hybrid tries is most probably Gaussian in many cases. The property is known for
biased memoryless models, although it does not hold for the unbiased model. This
question enables us to conclude on an optimistic note with a problem likely to be
somewhat tractable, since it reduces to an analysis of the mean number of nodes
at each level in a random tree.
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